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Neural and Evolutionary Computing in
Finite Element Analysis

Amir M. Sharif
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This paper presents a discussion of current neural and
evolutionary techniques, applied to the field of Finite
Element Analysis and Finite Element Mesh Generation.
This numerical method is widely used in many science,
and engineering analyses to compute many forms of
static and dynamic fields and potentials, such as heat,
stress or velocity, on a mesh of interconnecting ele-
ments. The accuracy of the underlying finite element
mesh determines the magnitude of the error of the
solution to the differential equations. Meshes have to
be adapted to limit this as far as possible, usually in an
a-posteriori sense. These techniques have been widely
automated and used with great success, but no means
yet exist which allow the efficient a-priori evaluation of
a prospective finite element mesh before the equations
are to be solved. As such, the application of expert and
heuristic knowledge is largely required to produce visible
benefits from adaptive remeshing processes. This paper
discusses how neural and evolutionary architectures have
addressed this problem and presents a complementary
evolutionary model, which may aid in the generation of
finite element meshes, as a result of on-going research
into the development of such ‘intelligent’ techniques.

Keywords: Neural and evolutionary computing, Finite
Element Analysis, Mesh

1. Finite Element Analysis and the Role
of Soft Computing

1.1. Finite Element Analysis and Mesh
Generation '

Finite Element Analysis (FEA) is a powerful
analysis and simulation tool used to solve many
forms of engineering and mathematics-related
problems, primarily to find quantities such as
heat or stress, which are described by differen-
tial equations. The method relies upon solving
the discretised form of these equations on the
vertices of a mesh of finite elements, i.e. inter-
connecting structured / unstructured polygons

within a geometrical boundary (George 1991,
Thompson et al. 1985; Zienkiwicz and Tay-
lor 1971). Mesh adaption is required such that
a high concentration of elements is generated
where a large number of unknowns need to be
solved for. By calculating the solution error
of the discretised equations, the density of the
mesh distribution can be refined in an iterative,
a-posteriori sense (Zienkiwicz and Zhu 1990).

FEA has become a very powerful and popular
way of modelling many engineering and physi-
cal phenomena in 2 and 3 dimensions. A mesh
of interconnecting polygons, known as finite
elements, are used as a basis for solving dis-
cretised PDEs (Partial Differential Equations)
which describe many physical phenomena such
as heat, stress, velocity vectors or electromag-
netic fields. Modelling such systems of equa-
tions still remains to be both a science and a
skill, with respect to how the equations are dis-
cretised and solved and to the choice of elements
for a particular problem.

The essential format for applying FEA to a prob-
lemis quite straightforward and is shown in Fig-
ure 1. After the definition of the problem ge-
ometry, boundary conditions are stated and then
a matrix of discretised algebraic equations is
assembled which are subsequently solved with
respect to an error tolerance. Because of this
simplicity, FEA has understandbly become a
very flexible tool for providing analyses of real-
world phenomena.

Finite elements are used for generating a ma-
trix of unknowns which relate directly to the
differential equations described by a variational
calculus formulation of the general form of the
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Fig. 1. The typical FEA procedure

equations,
Pu=F (1)
with the boundary conditions,

u = up on the boundary I (2)
)
% _ 0 within the region Q (3)
on
where u are the unknown quantities to be found,
and n is the unit normal vector. As such equa-
tions (1-3) are widely known as the Boundary
Value Problem (BVP), simply stated, it is nec-
essary to find a function, #, which minimises a
function, f.

Typically, finite elements are described using
shape / basis functions, which are polynomial
expressions of the form

uma(x) = Nigi(x) (4)
1

where ¢; are unknown variables and N; are shape
or basis functions. The solution of (4) involves
finding the values of ¢;. A solution procedure
must be formed whereby the approximation #

via the shape functions N (or ¢ ) will minimise z.
Basis functions describe the subdivision of the
domain into a series of finite regions and essen-
tially are based on the topological relationship
between element nodes.

Equation 1 is solved by a discretisation of the
differential equations which subsequently de-
composes the into the solution of a matrix prob-
lem,

Au=B (5)

where A and B are vectors which relate to the
function u. The vectors A and B are usu-
ally defined as the geometrical composition of
the domain €2, and the vector u respectively.
In plane elasticity problems for example, this
vector principally describes external forces and
loads on the body being studied. The compo-
sition of u with respect to these vectors means
that a series of algebraic equations needs to be
solved in matrix form. This is usually carried
out via schemes such as Gaussian Elimination
and Gauss-Seidel iteration.

Of primary concern to the FEA process is the
question of generating a mesh of interconnect-
ing polygons for a particular problem. Meshes
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can be generated fairly easily, through manual
(CAD), automatic (algorithm-based) and even
purely random means (through user-oriented ar-
bitrary node insertion). The choice of element
shape largely depends upon the nature of the
problem being studied. Typically, quadrilat-
eral elements (i.e. structured meshes) are used
to mesh geometries or domains where irregular
boundaries occur or where statically determi-
nate solutions to PDEs are required (such as in
plane stress and plane strain problems). These
elements can be generated simply by interpolat-
ing between a uniform distribution of points in
space (i.e. finite element nodes). Triangular el-
ements are hence used for meshing well-defined
geometries, such as rectangular or annular do-
mains found in many fluid flow, diffusion and
vibration problems Unstructured meshes such
as these, are generated using either a Delau-
nay triangulation of the set of points in the
plane (Risler 1992; Filipiak 1996) or by the
Advancing Front technique, whereby triangles
are added to the domain as required, so as to
solve for many unknowns (George 1991).

Within classical algorithmic means of node and
element generation the distribution characteris-
tics are generally based on a polynomial law,
the power of which defines the accuracy of any
ensuing finite element (FE) calculation. Al-
though elements can be generated and posi-
tioned within a geometrical domain quite eas-
ily, an optimal distribution of elements requires
that the characteristics of a given problem be
also taken into account (for example, increas-
ing element distribution near a point of singu-
larity, such as an acute corner where there may
be a stress concentration). This is more com-
monly expressed through an error tolerance or
‘energy norm’, which describes convergence of
the solution of the PDEs to the exact solution
on the prescribed mesh (Zienkiwicz and Zhu
1990). This measure is then used as the basis
for either increasing the density of the elements
in the mesh (known as h-adaptivity) or for in-
creasing the power of the polynomial power law
(p-adaptivity). These levels of refinement can
greatly improve the convergence properties of
an FE simulation and are now widely employed
throughout industry-standard FEA codes (Fil-
ipiak 1996).

1.2. Al-Driven Computation

Although the advent of FEA has greatly helped
in the design of many engineered components
from aircraft wings through to magnets, mesh
adaptivity and refinement is still an area of great
interest. Also, it has been argued that numerical
methods can produce results which may appear
to be accurate but can easily be misrepresented
out of the context (Babuska 1996; Szabo and
Actis 1995). Furthermore, the use of artificially
intelligent means of control and manipulation of
the FEA cycle has shown that automated assis-
tance within this modelling technique is a devel-
oping science which has great potential (Sharif
1997, Sharif and Barrett 1998). There remains
to be a plethora of knowledge-based systems
which are based upon application-specific finite
element case studies used to support FEA mod-
elling decisions - for example as in the case of
supplying mesh density distributions (Rank and
Babuska 1987), or for collating diverse meth-
ods of solution to the same problem via a series
of interconnected knowledge-bases (Turkiyyah
and Fenves 1996). To aid in the description of
elicited knowledge, fuzzy logic has also been
used for describing verbose and imprecise infor-
mation such as in the case of describing bound-
ary and edge data for thermal analysis of a nu-
clear reactor wall (Yagawa 1995). For cases
which require limited changes in the definition
of a problem, as for pressure vessel design, for-
mal relationships in terms of location, adjacency
and size of mesh elements are more appropri-
ate (Dolsak 1998). In such a way, the refine-
ment of a mesh relies upon the refinement of
the representation of each element (or subset of
elements) within the mesh to achieve a low so-
lution error. However, such approaches are not
suitable for cases when both the problem ge-
ometry and mesh distribution requirements are
likely to vary greatly and are therefore compu-
tationally brittle.

To overcome some of the limitations of these
traditional Al approaches, biologically inspired
means of computation, adaption, search and
learning have been much sought after to aug-
ment human problem solving and analytical
modelling tasks. Systems which mimic the pro-
cessing capabilities of the human brain, Neural
Networks (NN), and also the systems which
are akin to processes of Darwinian principles
of ‘survival of the fittest’, Genetic Algorithms



140

Neural and Evolutionary Computing in Finite Element Analysis

(GA), are two current techniques becoming
widely used within engineering applications
which rely on numerical computation (Michal-
ewicz 1992). Techniques, such as these, have
gained widespread popularity in engineering
design and manufacture in recent years, where
optimum criteria to be satisfied or searched for
can be evaluated through evolving technique
aims to develop successively better, ‘fit’, so-
lutions to a problem via Darwinian principles
of evolution i.e. ‘survival of the fittest’.

This paper outlines applications of such tools,
against the background of FEA which has been
described in the preceeding paragraphs. A dis-
cussion of how feedforward, back-propagating
and self-organising neural networks are utilised
within FEA, is given in section 2. Section 3 sub-
sequently discusses some similarities between
neural and evolutionary architectures as a re-
sult of the author’s on-going research in the
application of genetic algorithms to this prob-
lem, wherein a combined neuro-genetic system
is proposed.

2. Neural Networks within FEA

A Neural Network (NN) is a computational
structure comprising a series of data processing
units which serve to operate as a ‘black box’,
analogous to the thinking and problem solving
capabilities of the human brain. In its simplest
form, a NN consists of a series of interconnected
data processing units or ‘neurons’ which take in-
put data (a;) and produce output data (b), based
upon the result of some neural weights (w;).
These weights define the influence that each
neuron within the network has on its neighbour,
based upon the ‘strength’ of information flow-
ing into it. This allows data to flow in and out of
the neural node via an activation function, de-
scribed by an neuron threshold 0 (see Figure 2).
Neural networks are predominantly efficient at
being trained to learn and find patterns within a
given set of data and can be categorised into Su-
pervised (teacher-pupil), or Unsupervised (ex-
perimentalist) learning paradigms ( Aleksander
and Morton 1990; Simpson 1990). The former
method involves providing the network with in-
formation about characteristic features within a
prescribed data set, wherein data is processed
by the network at the pace of the expert supply-
ing the information. This is typically defined as

‘off-line’ learning. Unsupervised, or ‘on-line’,
learning involves the NN adjusting the input
weights to new information as it is presented to
the neurons, and as such is a dynamic process,
more equivalent to how the human brain learns
by trial and error, in real-time.

a;

ai1
Fig. 2. A neuron, some inputs (ai, ..., a;_1), its weights
(wi, ..., wi1), neuron threshold (@), and an output (b)

Communication between the nodes can exist
by passing information onto the proceeding
nodes, which is therefore classed as a feedfor-
ward NN or by passing information between
the output and input nodes during the learning
phase, i.e. a back-propagating NN. Feedforward
nets have been found to be useful for automat-
ing the entire FEA while back-propagation and
self-organising maps are more suitable to error
analysis and mesh generation tasks (i.e. low-
level structural processes which are necessary
for high level processes), as shown in Table 1.
These details are discussed in more detail in the
following sections.

2.1. Error Norms

Within adaptive mesh refinement (a-posteriori
error analysis), a mesh is refined automatically
by the mesh generator when the FE error ex-
ceeds an acceptable percentage. Meshnodes are
inserted or removed as requried within certain
regions of the mesh and by iteratively carrying
out this process the error of the FE solution 1s
reduced and a convergent solution is obtained
with this modified mesh. An energy norm that
is generally used to describe the error is given

as:
[Veall = 4/ /Q Ves2d2 (6)
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Dycketal (1992) Khanetal (1993)  Ahnetal (1991)
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design Mechanics Alfonzetti et al.
FEMG Lowther and Dyck  Jadid and Fairbairn  (1996)
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Yagawa and Okuda
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| AUTOMATION  AUTOMATION MESH |
Aspect of the | OF ENTIRE FEA OF ERROR ADAPTION
Modelling Task PROCESS ANALYSIS
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§ (process) (structure) |
, . , A

Table 1. Taxonomy of Neural techniques in FEA /FEMG

nodes
where Vey, = > N, Veg, Q is a 2D domain,
n=1
N are the elemental shape functions and E is
an element. An associated refinement indicator
relates how well the mesh is being refined:

n= K'M+(I_K)ANG_AH (7)
> [0l 5 ol

where ¢ is the computed solution, e is the er-
ror and Kk is a weight value (Zienkiwicz and
Zhu 1990). Only regions of the mesh which
produce high error values are refined upon ev-
ery successive iteration (i.e. a completely new
mesh does not have to be produced, but only
locally refined).

Similarly, within neural network models it is de-
sirable to perform some error correction on the
learning of any new input patterns, that should
satisfy the training data. For example, a feed-
forward net processes training data in the form

of p ordered pairs (xp, 7,), which are input to a
node, x;, and an output o; is produced. The tar-
get outputis #;, 1.e. the given pattern to be found,
which means that for the learning to be conver-
gent, o; — #;. Hence we need to minimise the
error between the input and output states, which
can be written as:

P

1
E=3Y lloi—t? (8)

=1

whence we require £ =~ (0. Since the neural
weights essentially control the convergence of
the output data, we also require that the deriva-
tives of the errors related to these weights also
approach zero. The gradient of E can be subse-
quently written as:

VE:(ae de Be)

aWI’ (9W2’ S 3wi

%)

Each weight can then be updated by the gradient
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Fig. 3. An Unstructured mesh / Delaunay triangulation
(-) of a set of points ( . ), based upon the Voronoi
diagram (—) (George 1991; Risler 1992)

rule:

oE

AWl v (3%‘5)
where y is the learning rate (constant), for each
weight w;. Gradient learning seeks to minimise
a functional describing the potential error in a
training run, by finding the minimum value of
its derivative. Hence minimisation of the er-
ror function in (8) relative to the input weights
is required to increase the convergence of the

output data towards the training set, ¢, (Rojas
1996).

(10)

2.2. Feedforward Nets in FEA Processing

As stated in Section 1, the power of finite el-
ement analysis lies with applying variational
calculus to the underlying equations which de-
scribe many engineering phenomena. Since all
that is required is the discretisation and minimi-
sation of the underlying differential equations,
the formulation of an FE problem is relatively
straightforward and can be represented through
a series of algebraic equations.

As the underlying equations which the FEA pro-
cess uses do not change, the only modification
to a new problem to be solved is that of the
model’s geometry and material characteristics
(i.e. width, height). In the case of tape head
design (Dyck 1992; Lowther and Dyck 1993),
a comparison is made between newly generated
and previously learnt Delaunay-type meshes (as
shown in Figure 3), for which an optimal solu-
tion for the magnetic field is reached through
successive training runs. When a large amount
of new data is to be learnt in this manner, scal-
ing test data to new problems means that the
potential for solution errors increases. In order

to capture potentially ‘lost’ or unknown data
as a result of scaling FE computations, fuzzy
rule generation can be used in a neural net to
learn new test problems (Satsios 1997). This
is achieved by a fuzzy set of parameters which
describe both network interconnections and the
related parameters which are processed within
them.

Research encountered so far has shown that the
feedforward mechanism encompasses a ‘black
box’ type processing ability, where patterns or
solutions can be found between input and output
states. Given a geometry and suitable boundary
conditions for an FE problem, this can be im-
parted as training data into a network of neurons
which contain activation functions based upon
the variational equation (given as f in Figure
4).

In some cases it may be useful to adapt the
feedforward processing capability to adhere to a
state transition rule, i.e. the output from one neu-
ron is dependent upon the output from a previ-
ous neuron. Since the convergence of FE com-
putation is reliant upon previously computed
values, the mesh used for a given problem can
be made equivalent to a directed graph of neu-
ral nodes in the network (Yagawa and Okuda
1996). Communication between the nodes in
the graph subsequently allows processing of
the solution of the discretised equations to take
place. In terms of solving the series of alge-
braic equations, the unknown values may be
distributed across the neurons, the converged
solutions for each of these being fed-forward in
the network.

2.3. Back-propagation and Self-
organisation for FEMG

For a mesh to be of any use to a finite element
computation, it should be adaptable in order
to limit any growth of errors in the solution of
the differential equations as discussed in section
1. Back-propagating and Self-organising neu-
ral nets have the advantage over feedforward
nets in this regard, such that learning errors are
used to supervise and regulate the input weights.
Back-propagation essentially deals with find-
ing the minimum of a network error functional
(as given by equation 8 in Section 2.2), such
a network lends itself very well to variational
problems (of which FEA is the best example).
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Fig. 4. A neuron within a Feedforward network applied to FEA (where f is an equivalent variational equation for the
specific FEA case, u; are the FE solutions to f and d are the respective degrees of freedom, w; are weights based upon
the discretisation of PDEs)

2.3.1. Back-propagation

Back-propagating algorithms are capable of stor-
ing both the initial and derivative data on each
node and feedback the error in solution to pre-
ceeding nodes, as in Figure 5. The output vector
(in 0;) is propagated back to the input weights
and an evaluation is made between the original
and current solutions. After this error analysis,
E in Figure 5, the network is expected to inter-
polate between a new dataset, ¢;, and the one
that it has just learnt, 0;. The prime considera-
tion in this type of network is to minimise the
differences between learnt and unlearnt data, so
as to recognise whether new input vectors pre-
sented to the network are similar to the previ-
oulsy learnt ones. It therefore seems surprising
that little application of back-propagation tech-
niques to FEA and FEMG has been achieved
in this light. This could possibly be due to the
scaleability of some FEA problems, where the
representation and learning of datasets may not
be able to capture the required detail for new
problems.

One method to overcome this is to decompose

the problem into its constituent parts as in the
sub-domain mesh generation problem. This re-
quires that the amount of new elements to be
included into an adapted mesh has to be found
before the initial mesh is adapted, based upon
a decomposition of the entire mesh over a se-
ries of processors (Khan 1993). Extensions to
this work by Topping and Bahreininajad (1995)
describe how an initial coarse mesh is fed into
the NN, which predicts the number of new el-
ements to be introduced into the mesh based
on trained data (similar to Jadid and Fairbairn
1994). Similar to the state transition paradigm
of Yagawa and Okuda, each neuron in the net-
work fires only when it receives an output from
a previous neuron. Optimisation of the parti-
tioning of the mesh is then carried out using
a simulated annealing procedure, whereby the
error tolerance is allowed to converge to a lo-
cally acceptable value based upon the sum of
the inputs and outputs (i.e. a Hopfield energy
functional, Aleksander and Morton 1990). Ac-
cording to the authors, this is particularly useful
since the application of the annealing algorithm
helps to find a locally optimum adapted mesh el-
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Fig. 5. A neuron within a Back-propagation network applied to FEA (where f is the equivalent FEA variational
equation / elemental shape functions calculated on the backward pass, f' are the respective derivatives calculated on
the forward pass and E is the network error function which is to be minimised)

ement. This means that parallel speedup of the
partitioned mesh can be achieved. The learning
rate and sensitivity of the annealing parameters
mean that the optimum mesh decomposition is
susceptible to increasing errors in computation.

2.3.2. Self-organisation

An interesting topological equivalence exists
between unstructured meshes used in FEA and
Kohonen’s self-organising feature maps (SOM)
(Simpson 1990). The purpose of an SOM is to
provide a mapping of external stimuli to neural
processing components. These mappings sub-
sequently rely upon a spatial decomposition of
a set of points from an input or sensory space to
a computational or organised state, such as the
Delaunay triangulation shown in Figure 3.

The behaviour of these mappings means that
spatial topologies can be adapted to approach

(meta)stable states of organised points in space,
by ‘sensing’ and satisfying rules of growth and
supervision. In the context of engineering anal-
yses, the FE mesh and its solution error may be
mapped in such a way by allowing it to respond
to an external stimulant in the form of either a
previously computed solution or randomly gen-
erated mesh coordinates (Ahn 1991), and Rao
(1994) have used a similar approach in their
work, based upon non-uniform mesh densities
predefined by the user.

More recently, a ‘Let-1t-Grow’ neural network
has been described in which the nodal density
distribution is increased gradually by the neural
network (Alfonzetti 1996). Density function,
based upon a homogenous probability distribu-
tion, is the given activation in this case, and the
density distribution is allowed to increase to a
pre-defined user value. Standard triangulation
of the input space is performed on the learnt
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a) Appropriation : Understand the problem which the user wishes to model and

analyse, i.e. assist in the formulation of partial differential equations and their

associated finite element formulation;

b) Context : Select appropriate element types for the resulting FE mesh that is

required for FEA (high / low order triangles, quads, tetrahedra, bricks, etc);

¢) Evaluation : Optimise the FE mesh in terms of geometry, topology or

tesselative qualities (i.e. the overall design of the mesh);

d) Characterisation :

Learn 'good' as well as 'bad' solutions, i.e. extract mesh

characteristics via error analyses of proposed optimal meshes.

Table 2. Fundamental modelling criteria for Engineering Simulations

nodes and a mesh is produced. Since both mesh
quality and speed of generation of the mesh are
entirely reliant upon the relationship between
mesh density and the amount of neural nodes
carrying out the mapping, little user interaction
is required to allow self-organisation of the el-
ements to take place. It appears, however, that
without inclusion of a functional which relates
the outputs to the weights as are found in feed-
forward and back-propagating networks, global
minima cannot easily be evaluated.

In extreme cases, the SOM has been found to ex-
hibit weak self-organisation, wherein the map-
ping may degenerate for 1D lines and 3D hy-
percube spaces (Fort and Pages 1996). This is
partly due to the need for a target mapping to be
given so that the stimuli space of the mapping
can achieve equilibrium (equivalent to orthogo-
nality and minimum angle criteria used in mesh
adaption). This is particularly important when
one considers providing a mapping to a defined
boundary. One method to overcome this defi-
ciency has been to “interweave” maps of differ-
ent dimensions so that a 2D SOM approximates
a user-specified density distribution while a 1D
SOM is used to smooth the 2D SOM to the
boundary edges (Manevitz and Yousef 1997).

3. Evolution and Adaption

It is apparent from the literature on FEA, that
in order to produce consistent and definitive nu-
merical simulation results, the context of the

problem being analysed should be fully under-
stood, at the same time realising that the under-
lying FE mesh should be as optimal as possible.
These points are highlighted in Table 2. Auto-
mated adaption of the modelled problem should
allow such errors to be eradicated, by means of
learning and optimisation.

Biologically inspired adaptive systems, such as
genetic algorithms, have shown the ability to
learn and solve many scientific and engineer-
ing search and optimisation problems in an
optimal sense (Goldberg 1989; Michalewicz
1992). Specifically, this technique encodes
problem parameters into a population of bit
string structures (known as chromosomes) and
by using Darwinian principles of ‘survival of
the fittest’, each individual is evaluated against
a performance measure, called fitness. Those
individuals which do not perform well are dis-
carded whilst better performing individuals are
evolved via genetic operators such as reproduc-
tion, crossover and mutation, from one genera-
tion to the next (see Figure 6). The algorithm
proceeds until termination criteria set by the
user are satisfied. A GA has the benefit of
finding a global set of naturally fit or success-
ful solutions as compared to other probabilistic
techniques which have a tendency to converge
to singluar points of global equilibrium (such
as Hill climbing and Simulated Annealing ap-
proaches, Davis 1991).

Because of the inherently large number of pop-
ulations that can be produced every successive
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generation, each individual encoding a pattern
or scheme that may represent potentially fit so-
lutions, genetic algorithms can be quite com-
putationally intensive. The scheme theory of
genetic algorithms therefore provides the funda-
mental result, that this method of optimisation
and search is inherently parallel and scaleable
to multiprocessor computer architectures.

3.1. Evolving a Mesh to be Fit

If we concentrate on the optimisation of a mesh,
we find that this task is essentially a search
for a mesh which exhibits some ‘nice’ quali-
ties defined by the FE analyst. This can be in
the form of heuristics or previous solution at-
tempts as may be coded in NN training data

X M R
(Crossover) (Mutation) (Reproduction
& Selection)
01101
101 Select fittest
f 041101 individuals from
produces previous
population
011 produces
pop (i+1)
and 11101 = pop (i)
10101

Evaluate Error

Norm

Fit Mesh ?

YES

' ar-diai g
mesh found

Genetic
Manipulation

Fig. 6. A typical Genetic Algorithm
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reviewed in section 2. Whilst it has been shown
that neural processing structures are efficient at
learning and recognising patterns in input data
sets, the application of these techniques is at
present specifically limited to the mapping of
variational relationships as are found in the for-
mulations within FEA.

The tedious and time-consuming “model-mesh-
remesh” cycle can be overcome by the optimi-
sation of the mesh generation task. The self-
organising maps reviewed in section 2 appear to
address this problem quite well. Since the basis
of these mappings use classical Dirchlet tessel-
lation techniques (Risler 1992), direct analo-
gies can be made to similar tessellations used in
some FEA calculations. However, the steady-
state condition attained by these feature maps
is heavily reliant upon some target mapping,
which is required to be known beforehand. This
is of course the basis of how a neural network
operates. For generating optimal FE meshes, a
target mesh may not be known in some cases
and hence a suitable search and optimisation
strategy might be better suited to the problem in
hand.

It is proposed that the mesh generation process
be optimised in such a way as to produce meshes
which will ultimately limit the amount of time
spent on excessive refinement strategies, by ob-
jectively evaluating the cost or ‘fitness’ of a
candidate tessellation in an a-priori sense. The
development of the concept of a fit mesh is now
described.

A fit mesh is the one which needs to be adapted
least for a range of different system parame-
ters. In other words, changes in the underlying
equations and boundary conditions of the finite
element discretisation will mean that the mesh
should be able to accomodate these changes
with the least amount of adaption of the mesh.
As described in earlier work (Sharif and Et-
tinger 1997), a fit mesh should be produced via
amesh generation scheme that allows the repre-
sentation of the problem most effectively (MG)
and provides the basis for producing convergent
FE results (Feopny). At the same time consistent
topological relationships throughout the mesh
should be maintained (E;,), whilst provid-
ing sufficient amounts of elements in those re-
gions of high solution requirement (E;;). This
can summarily be represented as the functional

relationship:
mesh_fit = f[Fcanv; Econn, MG, Ed:’st}

Essentially, a fundamental fitness measure for
the evolutionary design of a mesh should de-
scribe a large distribution of elements in regions
of high solution requirement. More specifically,
further measures for describing the quality of
mesh elements can be given in terms of as-
pect ratio and geometrical construction. For ex-
ample, each particular type of element should
retain its topology even after refinement and
adaptation. Taking extreme conditions into ac-
count, a quadrilateral element’s width should
not be equivalent to its height, i.e. all inter-
nal angles must sum to 360 degrees, and any
single angle must equal 90 degrees. Similarly
for triangular elements within a Delaunay trian-
gulation, each element should satisfy the min-
imum angle condition, i.e. all internal angles
must sum to 180 degrees, and any single an-
gle should be equal to or less than 60 (Risler
1992). When evaluating each element for such
dimensionality conditions, the mesh elements
should relate to a structured and representative
numbering scheme to aid with the refinement
process. Canann et al. (1998) have recently
described methods with which to resolve the
topology of quadrilateral meshes in this regard,
by analysing the connectivity characteristics of
local elements on a node-by-node basis through
suggesting the nodes which should either be re-
moved or amalgamated.

However, it should be noted that the overriding
concept of a mesh, which should be fit, may be
misleading and difficult to define. A fit mesh
for one class of problem may be totally incorrect
for another class of problem. Such concepts are
difficult to perceive in general terms. A gener-
ally fit mesh would be problem-unspecific and
based on topological or geometrical character-
istics, which for a range of different problems,
would change. A range of different scenarios is
highlighted in Table 3 which further categorises
modelling phenomena into either internal or ex-
ternal boundary meshing.

For stress analysis problems such as Case (a)
and (b), the mesh element density will largely be
controlled by the physics of the constitutive pa-
rameters such as elastic modulii, tensile strength
and buckling load characteristics. Hence, a
check must be maintained on the adaptability
of the mesh elements so that when solving the
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CASE TYPE

Internal Geometry
(Meshing occurs inside
domain)

External Geometry
(Meshing occurs outside
domain)

Stress Mechanics

(a) Plane Strain
(constitutive parameters)

(b) Plane Bending
(in-plane elasticity)

(velocity and shear profiles)

(¢) Turbulence Modelling

Fluid-Structure
Interaction (d) Streamline Modelling
(Pressure and velocity
profiles)
(e) Waveguiding Devices
(Polarisation and reflective =
power)
Electromagnetics
(f) Magnetic Devices

(dispersion characteristics)

Table 3. Characteristic meshing problems

quantities such as plane strain or plane stress,
mesh elements do not get distorted due to the
effects of boundary conditions (i.e. so-called
“hourglass” modes encountered with quadrilat-
eral elements having few degrees of freedom).
When concerned with modelling turbulent in-
ternal and / or external fluid flows (case (c)), a
compromise must be made between producing
a static or transient simulation of the flow. If
this is the case then, inter alia, the mesh should
be highly adaptable to changes in the rates of
mixing between streamline vortices and body
boundary layers. Transient analyses will almost
certainly require elements to have a high degree
of orthogonality so that the propagation of flow
characteristics is not hampered by poorly sized
quadrilateral or triangular elements.

Streamline modelling (case (d)) requires an
opposite approach in that the choice of ele-
ment will be dependent on the nature of the
flow regime being looked at. For example,
tetrahedral elements are better suited to three-
dimensional supersonic flows as opposed to
brick elements (Filipiak 1996). In such a case,
the propagation of flow characteristics, such as
a travelling shockwave, is most important to the
solving the pressure and velocity profiles over
a body moving at high speed. Finally, waveg-
uiding and electromagnetic device simulation
will require a reasonable level of element re-
finement in order to capture polarisation effects
of the propagating light mechanism at different
powers (case (e)) and the dispersive nature of
electrical and magnetic waves (case (f)).
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3.2. Neuro-genetic Architecture

Since the prime concern of many discretisation
problems is in the effective manner with which
to segment either a data set or given geometry,
it appears that such a problem is principally of
an optimisable type.

The minimisation problem described in finite
element problems as shown in section 1, can be
posed as a set of input vectors in the guise of
mesh nodes, and output vectors in the guise of
bounded solutions. Comparing equations (1)
with (3) and (2) with (5) we can see that both
error indicators rely upon their respective up-
dates of weight values which relate directly to
input data (in the case of the neural net) or lo-
cal elemental node error (in the case of mesh
refinement). Rewriting (3) in terms of required
FEA components, we can say that the error to
be minimised in training is equivalent to

nodes

E=7Y |6 — Ve
n=1

where nodes are the total number of nodes in
the finite element mesh where the differential
equations are to be solved.

(11)

In this respect, the allied usage of a back-
propagating neural system to find and classify
only those types of problem which are best
suited to optimisation by a GA-based FEMG
routine, may provide a solution to this problem
(Table 4). The genetic algorithm would be able

to guide the global minimisation of mesh re-
lationships to satisfy error norms of the form
of equation (1), after which the learning task
would be handed over to either a feedforward
or back-propagating neural network / SOM to
locally refine FE solution attempts. Similar hy-
brid approaches have been used in the literature
whereby local search algorithms such as Sim-
ulated Annealing are used to ‘fine tune’ opti-
mal search results found by global evolutionary
search methods (Hameyer and Belmans 1996).

4. Conclusions

The application of neural networks to finite ele-
ment analysis has been reviewed and discussed
in this paper. Principally, it has been found
that at the present moment there is very lit-
tle research interest in time, which addresses
the utility of the adaptive learning processes
within such artificially intelligent techniques.
Generally, feedforward architectures have been
found to be suitable for automating the complete
FEA process, in terms of minimising an equiv-
alent variational equation. Back-propagating
networks have the ability to transmit and feed-
back data asynchronously, which, when applied
to numerical algorithms, is a most useful as-
set as far as error minimisation is concerned.
Self-organising feature maps appear to be of
assistance in the generation of meshes where

Solution of PDEs Mesh Adaption &
TECHNIQUE Refinement
Ax=B
Neural Network Feedforward Backpropagation /
Self-Organising Maps
(SOM)
Minimisation of Eq. (8) Minimisation of Eq. (6)
Genetic Algorithm _ .

(search for connection (search for optimum

strength) location / size of elements)

Table 4. Neuro-genetic FEA
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user-defined elemental and nodal density distri-
butions are to be found, by using concepts of
‘growing’ tessellations.

Since such networks are suited to the learning
of sets of training data which incorporate pre-
viously known solutions, the application to nu-
merical analysis techniques allows reasonably
efficient output to be computed for new input
data. In cases where the input data does not
adhere to learnt patterns, fuzzy rules or prob-
abilistic methods of inference may need to be
generated to allow realistic output data to be
found (MacKay 1996). Efficient, low error
FEA is reliant upon optimal meshes. Optimi-
sation and convergence of tessellations by neu-
ral techniques may lead to solutions which sat-
sify locally minimum conditions. For optimal
meshes, the description of a fit mesh will allow
the generation and evaluation of meshes on an
a-priori basis, before fully fledged FEA com-
putations are carried out.

The application of global search techniques,
such as are found in Genetic Algorithms (GA)
has the potential to not only encode known train-
ing data but also enable the generation of inter-
esting and non-trivial globally optimum solu-
tions. By application of a locally defined error
correction algorithm in the shape of a neural ar-
chitecture, recognition and convergence of po-
tential FE solutions may provide a reduction of
the recompute-and-analyse cycle, which is of-
ten found in FEA.
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