Journal of Computing and Information Technology - CIT 7, 1999, 2, 153-163 153

An Efficient Implementation of the
Iterative ML-EM Image Reconstruction
Algorithm for PET on a Pentium

PC Platform

George Kontaxakis', Ludwig G. Strauss! and George S. Tzanakos?

! Division of Oncological Diagnostics and Therapy, Medical PET Group - Biological Imaging, German Cancer Research

Center (DKFZ), Heidelberg, Germany

2 Physics Department, Division of Nuclear and Particle Physics, University of Athens, Greece and Biomedical Engineering

Department, Rutgers University, New Brunswick, NJ, USA

The EM (Expectation-Maximization) algorithm is be-
coming more and more popular as a solution to the image
reconstruction problem in Positron Emission Tomogra-
phy (PET). However, as an iterative method, it shows
high computational cost in terms of the time required to
complete the reconstruction procedure and the computer
memory needed (main memory and disk space) for the
storage of the weight coefficients (probability matrix).
These were the main problems, which impeded the
practical application of this promising method in the
modern PET units. In principle, the conventional filtered
backprojection algorithms are still in use, although the
EM algorithm and the other maximum likelihood esti-
mation (MLE) techniques of the same kind have been
known and extensively studied during the past 15 years.
An efficient implementation of the ML-EM algorithm
is presented here, for a low-cost PC Pentium platform
running Windows NT, which can be applied to any
PET system configuration, without major modifications.
For the first time an iterative reconstruction algorithm
for emission tomography is brought down to the PC
level. A detailed description of the implementation of
the algorithm is given here. Emphasis is given on the
calculation of the transition (probability) matrix and its
efficient implementation using sparse matrix techniques.
A practically feasible implementation of the EM al-
gorithm is the final result of this work, with optimal
performance on the common PC systems available today
and producing tomographic reconstruction in clinically
meaningful times. The implementation of the various
methods proposed to further improve the results obtained
by the EM algorithm, such as acceleration methods (i.e.,
ordered-subsets EM), and other Bayesian, maximum
entropy, etc., reconstruction techniques can be also de-
veloped and performed following the same principles
described here.

Keywords: Positron Emission Tomography, Image Re-
construction, Maximum Likelihood Estimation, Expec-
tation Maximization (EM) Algorithm, Sparse Matrix,
PC Pentium.

Introduction

The use of PCs is becoming more and more pop-
ular among physicians. The modern PC Pen-
tium platforms, with the recently widespread
multitasking operating systems and numerous
software packages for medical applications, com-
bine excellent computational capabilities at a
low cost. In nuclear medicine, the use of com-
puters is a necessary and indispensable tool for
the processing and further analysis of large sets
of data collected by the different kinds of cam-
eras. It is shown here that even the processing
and the iterative reconstruction of PET data, a
task that was up to now the exclusive privilege of
higher-cost workstations, can be efficiently per-
formed with a Pentium PC, right over the desk of
the physician. Implementation of the PET im-
age reconstruction algorithm presented here is
part of a larger on-going project undertaken by
the Medical PET Group at the German Cancer
Research Center, within the framework of the
development of a complete PET data processing
tool, which will include sinogram correction,
iterative image reconstruction (IIR) and image
quantification modules. To the knowledge of
the authors, this is the first reported implemen-
tation of an IIR algorithm for a high-resolution
multi-ring commercial PET tomograph on a PC
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Pentium platform running a standard operating
system such as Windows NT.

During the last decade, mathematical models

for image reconstruction in PET have been de- -

veloped, which take into account the Poisson
nature of positron emissions and the statisti-
cal characteristics of the generation of the an-
nihilation events inside the source. In math-
ematical statistics there is a general iterative
method known as the Expectation - Maximiza-
tion (EM) Algorithm, presented by Dempster et
al., (Dempster et al, 1977) in its full generality.
The EM algorithm is applied in Emission To-
mography (Shepp and Vardi, 1982; Lange and
Carson, 1984) as an iterative technique for com-
puting maximum likelihood estimates of the ac-
tivity density parameters. In this approach to the
problem of image reconstruction, the measured
data are considered to be samples from a set
of random variables, whose probability density
functions are related to the object distribution
according to a mathematical model of the data
acquisition process. Using the mathematical
model it is possible to calculate the probability
that any initial distribution density in the object
under study could have produced the observed
data. In the set of all possible images, that rep-
resent a potential object distribution, the image
having the highest such probability is the maxi-
mum likelihood estimate of the original object.

On a typical PET tomograph there is an array
of discrete detector elements placed around the
detector ring which contains the y-ray source,
and the pair of photons produced in an anni-
hilation event are detected in coincidence by a
pair of detector elements that define a cylindri-
cal volume, or detector tube (Vardi et al, 1985).
The set of data collected in a PET scan is rep-
resented by the vector y, where y(j) is the total
number of coincidences counted in the j de-
tector tube and J is the total number of detector
tubes. The measured coincidence events also
include scattered and accidental coincidences
and, in addition, not all the events produced in-
side the source are detected, because of tissue
attenuation or photon traveling paths that do not
intersect the detector ring and thus pass unde-
tected.

The problem of image reconstruction in PET
is to estimate the true unobserved counts X¢rue
inside the source using the vector of the mea-
sured data y. The EM algorithm provides an

iterative formula to solve the above problem, by
maximizing the probability to observe the given
counts in the coincidence detector tubes if the
true activity distribution in the source is x, un-
der a Poisson probability model for the positron
emissions (Shepp and Vardi, 1982). This prob-
ability is expressed by the likelihood function:
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where 3(j) is the backprojection of the estimated
image vector X to the space of the measured data:
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and a(i, j) describes the probability for an an-
nihilation event that occurred in the area of the
source covered by the i™ pixel to be detected by
the /™ tube. Application of MLE techniques to
Eq. (1), leads to the EM update of the i'" pixel at
the (k-+ 1) iteration according to the following
multiplicative pixel-updating scheme:
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where C¥) is the vector of the correction factors
applied to the image, defined by the ratio of the
measured projections and the backprojection of
the current estimate of the image vector at the
k™ iteration:
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The EM algorithm has been found to produce
better results, i.e., better contrast, S/N ratio
and resolution (Shepp et al, 1984; Llacer et
al, 1993), than other well established recon-
struction techniques, such as filtered backpro-
jection. Its properties of non-negativity and
self-normalization (Shepp and Vardi, 1982), are
considered the major advantages of this method-
ology (Lewitt and Muehllehner, 1986), as well
as the practical ability of the ML-EM techniques
to incorporate in the probability matrix A sev-
eral physical factors (Lange and Carson, 1984),
such as attenuation, scatter and accidental co-
incidence corrections, time-of-flight, positron
range and angulation information, etc. As an
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iterative technique, however, it requires a lot
of computational effort and shows a relatively
slow convergence rate. As the use of the ML-
EM image reconstruction algorithms is becom-
ing more and more popular in clinical practice
(Doll et al, 1995), an efficient implementation
of the EM algorithm on a conventional, low-cost
PC Pentium platform is presented here, which
is able to produce images in a clinically mean-
ingful time and without the need of dedicated
parallel vector machines or other hardware re-
quirements, which, however, have been already
presented as solutions to the problem of the high
computational complexity of the algorithm.

Parallel and Hardware Implementations

Methods to overcome the problem of the high
computational demand of the EM algorithm
have been proposed, using parallel machines
or specialized hardware design. Therefore, im-
ages can be produced with the use of specially
designed hardware that exploits the structure of
this algorithm by means of a high degree of
parallelism and pipelining (Klotz and Snyder,
1988). A dedicated VLSI architecture has also
been proposed (Jones, et al, 1988) towards this
direction. It is true that the EM reconstruction
algorithm, as expressed by Egs. (2)-(4), can
be easily parallelized, since the update of each
pixel in one iteration does not depend on the up-
dated values of the other elements of the image
vector.

In a parallel implementation of the EM algo-
rithm, data parallelism schemes can be used
and are of three types (Chen et al, 1991): The
partition-by-box scheme, in which one process-
ing unit (PE) is assigned all the computation
associated with a box (pixel or voxel) from the
image vector in both forward and backward pro-
jection steps. In the partition-by-tube scheme
one PE is assigned all tasks and data associated
with one tube from the data vector in both steps,
and the third scheme is the partition-by-tube-
and-box, where the partition-by-tube is used for
the forward projection and the partition-by-box
is used for the backprojection. Ideas on par-
allel implementation of the EM reconstruction
technique have been proposed as early as 1985
(Llacer and Meng, 1985) and preliminary re-
sults on the application of the EM algorithm

on parallel machines, especially in attempts to
perform 3-D image reconstruction in PET, have
been published since the late *80s (Miller et al,
1988; Hebert and Leahy, 1989; Herman et al,
1990).

The main disadvantage of these implementa-
tions is that parallel programming for dedicated
architectures 1s highly platform-dependent. Re-
cently, the idea of distributed processing on a
cluster of workstations seems to become more
and more popular. Sharing the workload be-
tween 8 and 16 CM-5 processors and (in a sep-
arate experiment) the same number of SPARCS
Workstations (Olesen et al, 1994), as well as
among 8 SPARCstation 10/40 class CPUs
(Fricke, 1996) has been reported to signifi-
cantly reduce the reconstruction time for dy-
namic studies. A parallel implementation of
the algorithm on a heterogeneous workstation
cluster has been recently presented (Zaers et
al, 1997), where the computational load is dis-
tributed to the workstations available within the
clinical environment.

Instead of occupying the CPUs of all the com-
puting systems available and developing inter-
faces for the distribution of the computational
load to the different machines or developing
software for highly specialized parallel archi-
tectures, a much simpler implementation of the
EM algorithm is presented here. The proposed
computing system is a standard low-cost Pen-
tium PC, running Windows NT and with ade-
quate RAM, which will be dedicated for the it-
erative reconstruction of PET data. The ability
of the Windows NT to address more than one
Pentium processor makes this idea even more
appealing, since a multiprocessor Pentium plat-
form will allow a certain degree of parallelism
for the EM reconstruction, without any signifi-
cantincrease in cost or major modification of the
basic implementation. The reconstruction mod-
ule on the PC server will accept Java scripts with
the reconstruction parameters and will automat-
ically initiate the reconstruction of the data, un-
der the implementation scheme presented in the
following sections (Kontaxakis et al., 1998).
The completed module will perform all correc-
tions to the raw data (attenuation, scatter, nor-
malization, etc., corrections) on the PC and will
also include routines for the quantification and
parametrization of the reconstructed images.



156

An Efficient Implementation of the Iterative ML-EM Image Reconstruction Algorithm for PET

The Probability Matrix

For the study described here a model of the CTI
ECAT EXACT HR+ tomograph is created and
its basic configuration is used to calculate the
values of the probability matrix. This tomo-
graph delivers images in 63 planes (32 direct
and 31 cross-planes) and has an axial field-of-
view of 15.5 cm. It is constructed using 4 rings
of 72 8 x 8 BGO detector blocks. Each of its 32
rings consists of 576 individual detector crys-
tals, each of dimensions 4.39 x 4.05 x 30 mm?
and images a transaxial field-of-view with di-
ameter of 58.3 cm. Each plane delivers 82944
lines-of-response (LORs) or detector tubes. A
standard angular compression method (mash-
ing) of 2 reduces this number by half.

According to Shepp and Vardi (Shepp and Vardi,
1982), the choice in the calculation method for
the matrix a(i, j) is not critical and does not
affect significantly the final result, in contrast
to the algebraic-reconstruction-type iterative re-
construction techniques, where the choice and
the calculation of the transition rule is of criti-
cal importance. However, some discussion on
the above argument has been raised (Llacer, et
al, 1986) during the first practical implemen-
tations of the EM algorithm in PET image re-
construction and the experience of the authors
also showed that an accurate choice of the prob-
ability matrix is of significant importance to the
final reconstructed image quality.

The calculation of the probability matrix a(i, )
is based on the general observation that the ma-
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trix depends on the geometry of the tomograph.
In this implementation there is no use of ap-
proximate formulas such as the averaging of
the angles of view (Vardi et al, 1985; Chen
et al, 1991). Instead, a Monte Carlo method
for the calculation of the values a(i, j) has been
used. Similar techniques in the calculation of
the probability matrix have been used by Vek-
lerov and colleagues (Veklerov et al, 1988) who
found that, in general, Monte Carlo calculation
of the matrix a(i, j) is more accurate than tech-
niques based on the angle of view or other meth-
ods. According to the procedure followed here,
in the area of the box i a sufficient number of
lines is generated uniformly in the geometry of
the tomograph and the number of y-ray pairs
(represented by these lines) in each detector
tube are recorded. Then, the probability a(i, j)
is given by the expression:

N;
Ntot

ai, j) = (5)
where N, is the total number of lines produced
in the area of the box i and N, is the number
of these lines that intersect the detector tube j.
The accuracy of this method depends on the
total number of annihilation events (lines) gen-
erated in each box. The accuracy of the recon-
structed image quality versus Ny, has been care-
fully studied, since it has been observed that as
N, increases, the number of non-zero elements
in the probability matrix increases rapidly, and
therefore the quality of the produced images is
not the best achievable at that stage. After a
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Fig. 1. Distribution of the non-zero values in the probability matrix, for a model of a head tomograph with 128
detector crystals, tomograph diameter of 30 ¢cm, patient port of 20 cm and a 64 x 64 image grid.
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certain value for the Ny, which depends on
the system configuration, the number of non-
zero values reaches a plateau phase and stops
increasing with Ny,. After that point, the pro-
duced matrix a(i, j) has no visible effect on the
reconstructed image quality.

The dimensions of a(i, j) are I x J (number of
pixels in the image grid x number of detector
tubes). For an image grid of 128 x 128 pixels
including the whole patient port, I = 16384,
and for a mashing factor of 2, J = 41472. The
matrix a(i, j) has therefore a total of I x J =~
6.8 x 10% elements. However, it is clear that
from these elements, the non-zero ones are these
for which the box i is intersected by the detector
tube j, and a(i,j) = 0 if box i does not inter-
sect tube j, therefore a(i, j) is a sparse matrix.
For the tomograph configuration used, the num-
ber of non-zero elements was found to be about
8.15 x 10% (more than 98% of the total number
of elements of the matrix a(i, j) are zero). Fig. 1
shows a typical distribution of the values in the
probability matrix, for a model of a one-ring to-
mograph, with 128 detector crystals on the ring
and an image grid of 64 x 64 pixels. It is in-
teresting to observe that there is a considerable
number of elements in the probability matrix
with very small values, which correspond to el-
ements a(i, j) where the i box has only a small
intersection area with the /™ detector tube.

This Monte Carlo calculation of a(i,j) takes
into consideration the variable width of detec-
tor tubes as one moves away form the center of
the image, but assumes perfect detectors oth-
erwise. Exclusive use of the geometrical char-
acteristics of the system in the calculation of
the probability matrix a(i, j) could possibly lead
to a significant reduction in the number of the
non-zero elements of the matrix that need to
be stored, if one considers the symmetry of a
detector ring and an image grid centered in it.
Kaufman (Kaufman, 1987) showed that there
could be a 4- or even an 8-fold symmetry in
such a system and a specific value is the same
for 4 matrix elements, associated with different
pixels and detector tubes and related with sim-
ple geometrical rules dictated by the symmetry
of the tomograph layout: for example, rotating
the system about the central point of the ring by
90°, 180° and 270°, one will find the same prob-
abilities, but associated with different boxes and
detector tubes.

The above could be proven very useful, espe-
cially for very large configurations and 3- D
systems, where a parallel implementation of the
EM algorithm is to be developed. However,
in this implementation the symmetry of the to-
mograph model was selected not to be used, in
order to present a reconstruction method that
could be easily expanded and applied to sys-
tems without circular symmetry. For a system
with an 8-fold symmetry, the number of de-
tectors in one ring has to be a multiple of 8, the
image grid should be a square with an even num-
ber of pixels on each side and there should be
no wobbling or other motion that would break
the system’s symmetry. In addition, the image
plane has to be centered in the detector ring and
any attempt to move the field-of-view (FOV)
off-center would require not only a new calcu-
lation of the probability matrix, but also a totally
new implementation of the EM reconstruction
algorithm. When other information is to be in-
cluded in the probability matrix, such as scatter
and attenuation correction information, the con-
cept of symmetry does not apply. The use of
the (possible) system’s symmetries is therefore
an excellent method to save space and memory,
however, such an implementation is limited not
only to that particular system and data process-
ing protocol used, but it also limits the FOV to
the center of the tomograph. In addition, the
unfolding of the matrix would also increase the
computational effort with the necessary decod-
ing calculations.

Implementation of the EM Algorithm

The size and the sparsity of the probability ma-
trix a(i, j) are the basic features that require most
of the attention and effort for an efficient imple-
mentation of the algorithm. During one itera-
tion each of the matrix elements is used twice:

e The forward projection of the reconstructed
image vector X to the data space requires
a pass through the probability matrix along
each column j.

e The calculation of the updating coefficients
C in each iteration requires a pass through
the probability matrix along each row i.

An efficient implementation of the algorithm
would therefore require a fast scanning through
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Fig. 2. Diagram of the sparse-matrix representation (two-dimensional linked list) of the probability matrix a(i, ). A
floating point record is reserved for the value of each non-zero element and two integer records contain its i (pixel
number) and j (detector tube number) coordinates. Two pointers show to the next non-zero element in the i and j
directions, Fermitting fast scanning of the matrix in both directions. The TOP pointer is always located at the first

element o

the matrix and an array of pointers is located at the top of each column; each element is linked to the

following one in each column and row; t 1e Tow pointer connects the last element in each row with the first element of
the next row; the pointer of the last element in each column shows to NUL.

a(i,j) row-wise and column-wise in each iter-
ation and sparse matrix techniques have to be
used. A two-dimensional linked list structure
was recently proposed (Kontaxakis, 1996) for
the representation of the matrix non-zero ele-
ments: a floating point record is reserved for
the value of each element a(7, j) and two integer
records contain its i (pixel number) and j (tube
number) coordinates. Two pointers show to the
next non-zero element in the i and j direction,
permitting a fast scanning of the matrix in both
directions.

Fig. 2 shows a schematic example of the sparse
matrix structure used for loading a(i, j). This di-
agram corresponds to an oversimplified model
of a PET system with 5 lines-of- response and
4 pixels in the image matrix. Each element is
linked with the next non-zero one for the same
row (pixel) and column (tube or LOR). The link
that connects all elements in the structure is the
row link (at the end of each row the next ele-
ment in the list is the first one in the next row).
In order to carry out fast the backprojection step
of Eq. (2), a matrix of links is placed to show at
the top of each column. These links are called
during this step and another pass of the whole

structure suffices to perform the forward pro-
jection step. With this technique, each element
is visited exactly twice (as needed) during each
iteration, without having to search within the
matrix structure for the elements needed at each
step.

This is a simple but efficient approach to solve
the problem of the long computation time re-
quired for this iterative algorithm. The com-
putation of the matrix elements is done once
and before the reconstruction procedure, as de-
scribed in the previous sections. No additional
computation 1s performed on the matrix ele-
ments during the EM reconstruction. Encoding
schemes (such as using the same integer to store
both coordinates of an element) could have been
used to reduce the amount of memory required,
however the additional computation required for
decoding purposes, each time a matrix element
is used, would significantly increase the compu-
tational complexity of the method (Kontaxakis,
1996).

It is clear that this implementation trades off
memory for speed, an idea recently also pro-
posed by Miller and Wallis (Miller and Wal-
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lis, 1992), who did not, however, take full ad-
vantage of the sparsity of the probability ma-
trix. Today, large quantities of memory can be
purchased at low cost and are easily upgraded
in conventional computing systems, whereas
speed deals with hardware considerations and
the architectural limits of the computer used,
which cannot be improved unless an expensive
investment on equipment is undertaken.

Since all the elements of the matrix a(i, j) are
visited during the calculation of the updating co-
efficients C according to the sequence defined
by the pointer to the next non-zero element in
row i, one can eliminate the use of this pointer
if each element a(i, j) is placed in a static one-
dimensional array of the size equal to the num-
ber of the non-zero elements. Since this imple-
mentation requires the calculation beforehand
of the non-zero a(i, j) elements, their number is
known and therefore a static array can be de-
fined. The pointer to the next non-zero element
in each column however is still necessary to ef-

ficiently perform the forward projections of Eq.
(2). For the implementation of the EM algo-
rithm for the ECAT EXACT HR+ tomograph,
with a standard acquisition protocol employing
an angular compression (mashing) of 2, there
are 41472 LORs and therefore a 16-bit (un-
signed short) integer can be used for the index-
ing of the detector tubes in each slice. The same
holds for the pixel indexing, up to an image grid
of size 256 x 256. The values of the a(i, j) ele-
ments of the probability matrix are bounded be-
tween 0 and 1.0, therefore these values can also
be encoded in a 2-byte integer format by the use
of an adequate multiplicative coefficient, with-
out significant loss in accuracy. The pointer can
only be represented with a 32-bit integer. The
total size of the structure is now 10 bytes per
non-zero element, however for a Windows NT
implementation, this practically means 12 bytes
perelement. Fig. 3 shows a diagram of the static
array implementation proposed here.

typedef struct probability_matrix {
unsigned short i,j,value;

int

}

next_j;

aliyj) | i i

pointer to next
element a(i,j,)

a(ipji) i ik

[next element

a(iyiul]

Wiin )| T | p

[next element

a(i,)]

a(imﬂ:.jl) Ly i

[nex

Fig. 3. Diagram of the static array implementation for the sparse matrix representation of the probability matrix
proposed here. The value of each non-zero element and its coordinates in the a(i, j) matrix are stored in 16-bit

integers. The need of the row pointer of the two-dimensional linked list in Fig. 2 is eliminated and a 32-bit integer
stores the memory location of the next element for each detector tube.
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Image grid  Size of probability Time required for one EM iteration Time required for one EM

(whole FOV)  matrix (in MB) (in sec) on a Pentium iteration (in sec) on a
PC* (200 MHz, 256 MB) SPARCserver 1000 system
64 x 64 30 2.6 8.8
96x 96 60 54 14.0
128x% 128 90 9.1 229
192 192 170 16.6 43.0
256 256 220 21.0 65.8

Table 1. This table shows the size (in MB) of the probability matrix represented in memory according to the
implementation described in Fig. 3 and the computation time (average over 100 iterations) required for one EM
iteration for different sizes of the image grid. The size of the sparse matrix depends on the accuracy with which it has

been calculated with the Monte

arlo procedure described.

* using one Pentium processor

Table 1 shows the execution (user and system)
time required for one EM iteration and for dif-
ferent sizes of the image grid for the PET tomo-
graph used. The results were obtained from the
implementation of the algorithm on a PC Pen-
tium Pro (200 MHz, 256 MB RAM) platform.
At the same table the memory required for im-
plementing the EM algorithm for each config-
uration is also reported. The memory require-
ments reported here correspond to the minimum
memory necessary for the setup of the static-
array implementation. The same implementa-
tion was tested for comparison on the RCI (Re-
search Computing Initiative) three- SPARC-
server 1000 cluster at Rutgers University, run-
ning Solaris 2.5 and with adequate memory in
order to avoid memory paging. The correspond-
ing execution times per iteration are also given
in Table 1. For the comparison, one should take
into account that RCI is a Unix multi-user sys-
tem, however the experiments were performed
during night-time off-peak hours. The EM al-
gorithm runs approximately three times faster
on a dedicated Pentium Pro platform than on
this Unix system.

To achieve fast EM reconstruction sufficient
memory must be available in the computing sys-
tem used. Itis interesting to compare the results
presented in Table 1 with the ones recently pre-
sented by Rajan and colleagues (Rajan et al,
1995), where a simpler PET tomograph model
was used (128 detectors on the detector ring)
and the EM algorithm was implemented on an
IBM 6000 RISC workstation. For an EM re-
construction on a 64 x 64 image grid the au-
thors in (Rajan et al, 1995) report an execution
time of 2.49 seconds for one iteration, which
i1s comparable to the time reported in Table 1.

However, for a reconstruction on a 128 x 128
grid (which corresponds to a 4-fold increase in
the image vector dimension) they report a 10-
fold increase in the execution time (21.48 sec),
whereas in this implementation only 9.1 sec-
onds are needed. However, such an observation
should not be taken as a direct comparison on
the performance of both implementations, since
no sufficient information of the exact configura-
tion used in the experiments described in (Rajan
et al, 1995) is available. The size of the field-
of-view and the method for the calculation of
the probability matrix are of crucial importance
on the number of non-zero elements and they
directly affect the execution time. In addition,
no information on the exact memory require-
ments and management of that implementation
has been disclosed.

It is important to remark that such an imple-
mentation can be universally applied to any PET
system, independently of the tomograph design,
the image grid and the location of the field-of-
view, and can be applied either in 2D or a 3D
reconstruction of PET data. Each element of the
(one-dimensional) image vector X is numbered
according to a certain protocol. The same pro-
cedure should be followed for the data vectory.
Therefore, it makes no difference for the recon-
struction procedure if the data acquisition was
performed for a 2D or a 3D reconstruction, and
the inherent properties of the EM algorithm for
such an implementation will remain the same
for any configuration and any system design.
A fully portable implementation of the EM al-
gorithm for any PET system is presented here.
The steps to be taken for adapting this algorithm
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Fig. 4. Four slices (128 x 128 matrix) of a soft-tissue necrotic sarcoma of the right leg of a patient. Left:
reconstructed images with filtered-backprojection (ramp filter with 0.5 cutoff frequency). Right: reconstructed
images with the implementation of the EM algorithm presented here and the stopping criterion presented in
(Kontaxakis and Tzanakos, 1996).

to a particular PET tomograph and acquisition
protocol are the following:

1. Create anumbering protocol for the elements
of the image grid and the data vector and sort
the projection data according to it.

2. Calculate the probability matrix according to
the system’s geometrical characteristics and
the numbering protocol used.

For this implementation, the sinogram data should
be pre-corrected for random coincidences, at-
tenuation, scatter, detector efficiencies and iso-
tope decay. Arc correction is not necessary,
as the Monte Carlo calculation of the probabil-
ity matrix takes into account the variable width
of the detector tubes for each view. Negative
entries in the sinogram vector that occur after
corrections are set to zero.

Fig. 4 shows four slices of a necrotic soft-
tissue sarcoma of the right leg of a patient.
The images are reconstructed using the filtered-
backprojection algorithm provided by the man-
ufacturer of the tomograph and the implemen-
tation of the EM algorithm presented here, us-
ing the stopping criterion described in (Kon-
taxakis and Tzanakos, 1996). Due to the low-
count statistics in the sinogram data, there are
strong reconstruction artifacts in the filtered-
backprojection images. The iteratively recon-
structed images on the other hand provide a
much clearer picture on the activity distribution

and even the left leg is there much better de-
lineated. Such efficient implementation of the
iterative EM algorithm is therefore expected to
provide images of higher diagnostic value by
reducing the artifacts that often lead to false-
positive results (Strauss, 1996).

Conclusions

The class of maximum likelihood reconstruc-
tion algorithms has been briefly discussed, with
emphasis on the EM (Expectation Maximiza-
tion) algorithm. This method has several at-
tractive features: the non-negativity of recon-
structed images, preservation of the total num-
ber of counts in the image and convergence of
the reconstructed images to a unique maximum
likelihood estimate. It also allows direct incor-
poration to the reconstruction model of many
physical factors that are fundamental in emis-
sion tomography, namely the Poisson nature of
the positron annihilations, otherwise neglected.
Moreover, the EM algorithm tends to reduce
the statistical noise artifact over filtered back-
projection algorithms.

A major disadvantage in the practical imple-
mentation of the EM algorithm in image recon-
struction in PET, is the fact that it is a very
computationally demanding method, requiring
times to produce an image, on a conventional
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serial computer, that up to now have been im-
practical for the routine clinical practice. The
computational needs of the EM algorithm in ex-
ecution time and main memory have been exten-
sively studied. For the first time a detailed im-
plementation of the EM algorithm on a low-cost
PC Pentium platform has been presented. This
study showed that the use of low-cost memory
can provide fast execution and produce results
in clinically meaningful times, thus alleviating
the argument of the computational burden of
the method, which prevented the extensive use
of this new and promising reconstruction algo-
rithm in today’s modern PET systems.
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