Journal of Computing and Information Technology - CIT 7, 1999, 1, 1-18 1

Invited paper

The Spirit of Evolutionary Algorithms

Zbigniew Michalewicz', Susana Esquivel?, Raul Gallard?,
Maciej Michalewicz®, Guo Tao* and Krzysztof Trojanowski?

! Department of Computer Science, University of North Carclina, Charlotte, USA, and Institute of Computer Science, Polish

Academy of Sciences, Warsaw, Poland

2 Proyecto 338403, Departamento de Informatica, Facultad de Cs. Fisico-Matematicas y Naturales, Universidad Nacional

de San Luis, 5700-San Luis, Argentina

3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
4 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, Hubei, PR. China

Evolutionary algorithms (EAs), which are based on a
powerful principle of evolution: survival of the fittest,
and which model some natural phenomena: genetic in-
heritance and Darwinian strife for survival, constitute an
interesting category of modern heuristic search. During
the last two decades there has been a growing interest in
these algorithms; today, many complex software systems
include at least some evolutionary component.

However, the process of building an evolutionary pro-
gram is still art rather than science; often it is based on the
intuition and experience of the designer. In this introduc-
tory article we present some important ideas behind the
construction of evolutionary algorithms. These ideas are
illustrated by three test cases: the transportation problem,
a particular nonlinear parameter optimization problem,
and the traveling salesman problem. We conclude the
paper with a brief discussion on how an evolutionary
algorithm can be tuned to the problem while solving it,
which may increase further efficiency of the algorithm in
a significant way.

1. Introduction

During the last two decades there has been a
growing interest in algorithms which are based
on the principle of evolution (survival of the
fittest). A common term, accepted recently,
refers to such techniques as evolutionary com-
putation (EC) methods. The best known algo-
rithms in this class include genetic algorithms,
evolutionary programming, evolution strategies,
and genetic programming. There are also many
hybrid systems which incorporate various fea-
tures of the above paradigms, and consequently

are hard to classify; anyway, we refer to them
just as EC methods.

The field of evolutionary computation has
reached a stage of maturity. There are sev-
eral, well established international conferences
that attract hundreds of participants (Interna-
tional Conferences on Genetic Algorithms—
ICGA [31, 32, 69, 10, 26, 18, 5], Parallel Prob-
lem Solving from Nature—PPSN [73, 46, 12,
78, 6], Annual Conferences on Evolutionary
Programming—EP [22, 23,76, 47, 24, 25]), and
IEEE International Conferences on Evolution-
ary Computation [39, 60,61, 62, 63]. Also, there
are many workshops, special sessions, and lo-
cal conferences every year, all around the world.
Two journals, Evolutionary Computation (MIT
Press) and [EEE Transactions on Evolution-
ary Computation are devoted entirely to evo-
lutionary computation techniques. Many other
journals have organized special issues on evolu-
tionary computation (e.g., [19, 49, 52]). Many
excellent tutorial papers [8, 9, 65, 80, 20] and
technical reports provide more-or-less complete
bibliographies of the field [1, 29, 68, 57]. There
is also The Hitch-Hiker’s Guide to Evolutionary
Computation prepared initially by Jorg Heitkot-
ter and currently by David Beasley [35], avail-
able (http://www.cis.ohio-state.edu/hypertext
/faq/usenet/ai-faq/genetic/top.html), and a
new text, Handbook of Evolutionary Compu-
tation, is available now [7]. Many textbooks
(4, 13, 21, 28, 41, 42, 48, 54, 72] provide a
detailed discussion on various aspects of evolu-

The Spirit of Evolutionary Algorithms

tionary computations.

However, the process of buiding an evolutionary
program is still art rather than science; often it is
still based on the intuition and experience of the
designer. In this introductory article we present
some important ideas behind the construction
of evolutionary algorithms. These ideas are
illustrated by three test cases: the transporta-
tion problem, a nonlinear parameter optimiza-
tion problem, and the traveling salesman prob-
lem. The systems developed for these problems
provide many hints related to the design of evo-
lutionary algorithms, in general.

The paper is organized as follows. The next sec-
tion provides a short introductory description
of evolutionary algorithms. Section 3 presents
three interesting examples of evolutionary al-
gorithms developed for specific problems. Sec-
tion 4 concludes this article with a brief dis-
cussion on one of the most interesting develop-
ments in the field: adaptation of the algorithm
to the problem, which need not be stationary.

2. Evolutionary Computation

In general, any abstract task to be accomplished
can be thought of as solving a problem, which,
in turn, can be perceived as a search through
a space of potential solutions. Since usually
we are after “the best” solution, we can view
this task as an optimization process. For small
spaces, classical exhaustive methods usually
suffice; for larger spaces special artificial intelli-
gence techniques must be employed. The meth-
ods of evolutionary computation are among
such techniques; they are stochastic algorithms
whose search methods model some natural phe-
nomena: genetic inheritance and Darwinian
strife for survival. As stated in [16]:

“... the metaphor underlying genetic
algorithms! is that of natural evo-
lution. In evolution, the problem
each species faces is one of searching
for beneficial adaptations to a com-
plicated and changing environment.

The ‘knowledge’ that each species
has gained is embodied in the makeup
of the chromosomes of its members.”

The structure of any evolutionary computation
algorithm is shown in Figure 1.

procedure evolutionary algorithm
begin
t<—0
initialize P(z)
evaluate P(1)
while (not termination-condition) do
begin
te—r1+1
select P(z) from P(t — 1)
alter P(r)
evaluate P(t)
end
end

Fig. 1. The structure of an evolutionary algorithm

The evolutionary algorithm maintains a popula-
tion of individuals, P(r) = {x{, ..., x},} for it-
eration 7. Each individual represents a potential
solution to the problem at hand, and is imple-
mented as some data structure S. Each solution
x} is evaluated to give some measure of its “fit-
ness”. Then, anew population (iteration #+1)is
formed by selecting the more fit individuals (se-
lect step). Some members of the new population
undergo transformations (alter step) by means
of “genetic” operators to form new solutions.
There are unary transformations m; (mutation
type), which create new individuals by a small
change in a single individual (m; : § — §),
and higher order transformations ¢; (crossover
type), which create new individuals by combin-
ing parts from several (two or more) individuals
(¢ © Sx...x8 — S)2 After some num-
ber of generations the algorithm converges—it
is hoped that the best individual represents a
near-optimum (reasonable) solution.

Despite powerful similarities between various
evolutionary computation techniques there are

! The best known evolutionary compultation techniques are genetic algorithms; very often the terms evolutionary computation

methods and GA-based methods are used interchangeably.

% In most cases crossover involves just two parents, however, it need not be the case. In a recent study [17] the authors
investigated the merits of ‘orgies’, where more than two parents are involved in the reproduction process. Also, scatter search

techniques [27] proposed the use of multiple parents.

The Spirit of Evolutionary Algorithms

also many differences between them (often hid-
den at a lower level of abstraction). They use
different data structures S for their chromoso-
mal representations, consequently, the ‘genetic’
operators are different as well. They may or
may not incorporate some other information (to
control the search process) in their genes. There
are also other differences; for example, the two
lines of the Figure 1:

select P(¢) from P(z — 1)
alter P(r)

can appear in the reverse order: in evolution
strategies first the population is altered and later
a new population is formed by a selection pro-
cess. Moreover, even within a particular tech-
nique there are many flavors and twists. For
example, there are many methods for select-
ing individuals for survival and reproduction.
These methods include (1) proportional selec-
tion, where the probability of selection is pro-
portional to the individual’s fitness, (2) rank-
ing methods, where all individuals in a pop-
ulation are sorted from the best to the worst
and probabilities of their selection are fixed for
the whole evolution process,® and (3) tourna-
ment selection, where some number of indi-
viduals (usually two) compete for selection to
the next generation: this competition (tourna-
ment) step is repeated population-size number
of times. Within each of these categories there
are further important details. Proportional se-
Jection may require the use of scaling windows
or truncation methods, there are different ways
for allocating probabilities in ranking methods
(linear, nonlinear distributions), the size of a
tournament plays a significant role in tourna-
ment selection methods. It is also important to
decide on a generational policy. For example,
it is possible to replace the whole population
by a population of offspring, or it is possible
to select the best individuals from two popula-
tions (population of parents and population of
offspring)—this selection can be done in a de-
terministic or nondeterministic way. It is also
possible to produce few (in particular, a single)
offspring, which replace some (the worst?) in-
dividuals (systems based on such generational

policy are called ‘steady state’). Also, one can
use an ‘elitist’ model which keeps the best in-
dividual from one generation to the next*; such
model is very helpful for solving many kinds of
optimization problems.

3. Three Evolutionary Algorithms

The data structure used for a particular prob-
lem together with a set of ‘genetic’ operators
constitute the most essential components of any
evolutionary algorithm. These are the key el-
ements which allow us to distinguish between
various paradigms of evolutionary methods: ge-
netic algorithms, which usually operate on bi-
nary strings with crossover as a leading operator,
evolution strategies, which process populations
of floating-point vectors applying Gaussian mu-
tation to all components of the vector, evolution-
ary programming technique, which was pro-
posed for breeding finite state machines (5 mu-
tation operators are involved), or genetic pro-
gramming, which processes programs (again,
with crossover performed on program-trees as
a major operator here). In this paper, however,
we discuss three evolutionary algorithms which
are difficult to classify: some problem-specific
knowledge was incorporated in all of them and,
consequently, they resist the above classifica-
tion. These three systems were developed for
(1) the transportation problem, (2) a particu-
lar nonlinear parameter optimization problem,
and (3) the traveling salesman problem, and are
discussed in the following three subsections, re-
spectively.

3.1. The Transportation Problem

The transportation problem is one of the sim-
plest constrained optimization problems that
have been studied. It seeks the determination of
a minimum cost transportation plan for a single
commodity from a number of sources to a num-
ber of destinations. A destination can receive its
demand from one or more sources. The objec-
tive of the problem is to determine the amount

3 For example, the probability of selection of the best individual is always 0.15 regardless its precise evaluation; the probability
of selection of the second best individual is always 0.14, etc. The only requirements are that better individuals have larger

prababilities and the total of these probabilities equals to one.

4 It means, that if the best individual from a current generation is lost due to selection or genetic operators, the system forces it

into the next generation anyway.

The Spirit of Evolutionary Algorithms

to be shipped from each source to each desti-
nation such that the total transportation cost is
minimized.

If the transportation cost on a given route is di-
rectly proportional to the number of units trans-
ported, we have a linear transportation prob-
lem. Otherwise, we have a nonlinear trans-
portation problem.

Assume there are n sources and k destinations.
The amount of supply at source i is source(i)
and the demand at destination j is desz(j). The
cost of transporting flow x; from source i to
destination j is given as a function fi; . Thus
the total cost is a separable function of the in-
dividual flows rather than interactions between
them. The transportation problem is given as:

minimize total = Y 1| Z}’F:l filxy)
subject to
k
Z xy < source(i), fori=1,2,... n,
=1
n

> x> dest(j), forj=1,2,...,k

i=1

x5 20, fori=1,2,,..;n andj=12,.... k

The first set of constraints stipulates that the sum
of the shipments from a source cannot exceed
its supply; the second set requires that the sum
of the shipments to a destination must satisfy its
demand.

The above problem implies that the total supply
Zle source(i) must at least equal total de-
mand Y% | dest(j). When total supply equals
total demand (total flow), the resulting formu-
lation is called a balanced transportation prob-

lem. It differs from the above only in that all
constraints are equations; that is,

k
Z xy=souwrceli); fori="T,2 it
=1

n
Z Xy =destly), 1089=12,...%
i=1

In constructing an evolutionary algorithm for
the transportation problem, a selection of ap-
propriate data structure S together with the set

of appropriate ‘genetic’ operators is of utmost
importance. It is because there are several hard

constraints to be satisfied. As stated by Davis
[16]:

“Constraints that cannot be violated
can be implemented by imposing great
penalties on individuals that violate
them, by imposing moderate penal-
ties, or by creating decoders of the
representation that avoid creating
individuals violating the constraint.
Each of these solutions has its ad-
vantages and disadvantages. If one
incorporates a high penalty into the
evaluation routine and the domain is
one in which production of an in-
dividual violating the constraint is
likely, one runs the risk of creating
a genetic algorithm that spends most
of its time evaluating illegal individ-
uals. Further, it can happen that
when a legal individual is found, it
drives the others out and the popu-
lation converges on it without find-
ing better individuals, since the likely
paths to other legal individuals re-
quire the production of illegal in-
dividuals as intermediate structures,
and the penalties for violating the
constraint make it unlikely that such
intermediate structures will reproduce.
If one imposes moderate penalties,
the system may evolve individuals
that violate the constraint but are rated
better than those that do not because
the rest of the evaluation function
can be satisfied better by accepting
the moderate constraint penalty than
by avoiding it. If one builds a “de-
coder” into the evaluation procedure
that intelligently avoids building an
illegal individual from the chromo-
some, the result is frequently compu-
tation-intensive to run. Further, not
all constraints can be easily imple-
mented in this way.”

There are other possibilities as well. Some-
times it is worthwhile to design a repair algo-
rithm which would ‘correct’ an infeasible so-
lution into a feasible one. In such cases, there

The Spirit of Evolutionary Algorithms

is an additional question to be resolved: it is
whether the repaired chromosome should re-
place the original one in the population, or rather
the repair process is run only for evaluation pur-
pose.” Also, there is a possibility of using a data
structure appropriate for the problem at hand to-
gether with the set of specialized operators. We
will examine briefly these possibilities in turn.

It is possible to build a “classical” genetic al-

gorithm for the transportation problem, where

chromosomes (i.e. representation of solutions)

are bit strings—TIists of 0’s and 1’s. A straight-

forward approach is to create a vector ot Vs 5 5
vpy (p = n - k), such that each component v;
(i=1,2,...,p) is a bit vector {wg, ..., W)
representing a value associated with row j and

column m in the allocation matrix, where j =

(i~ 1)/k+ 1] andm = (i — 1) mod k + 1.

However, it is difficult to design a meaningful
set of penalty functions. If penalty functions
are moderate, the system often returns [51] an
infeasible solution x;; = 0.0 forall 1 < i < n,
1 < j < k, which yields the “optimum’ trans-
portation cost (zero)! It seems that high penal-
ties have much better chances to force solutions
into a feasible region of the search space, or
at least to return solutions which are ‘almost’
feasible. However, it should be stressed that

¢ with high penalties very often the system
would settle for the first feasible solution
found, or

e if a solution is ‘almost’ feasible, the pro-
cess of finding a ‘good’ correction can be
quite complex for high dimensional prob-
lems. We can think about this step as about
a process of solving a new transporta-
tion problem with modified marginal sums
(which represent differences between ac-
tual and required totals), where variables,
say, Sij, represent respective corrections of
original variables x;;.

It seems that the penalty function approach is
not the most suitable one for solving constrained
problems of this type.

Judging from the previous paragraph it should
be clear that the ‘repair algorithm’ approach has

also slim chances to succeed. Even if the initial
population consists of feasible solutions only,
there are some serious difficulties. For exam-
ple, let us consider a required action when a
feasible solution undergoes mutation. The mu-
tation is usually defined as a change in a single
bit in a solution-vector. This would correspond
to a change of one value, v;. This, in turn, would
trigger a series of changes in different places (at
least 3 other changes) in order to maintain the
constraint equalities (note also, that we always
have to remember in which column and row a
change was made—despite a vector representa-
tion we think and operate in terms of rows and
columns).

There are some other open questions as well.
Assume that two random points (v; and v,
where i < m) are selected such that they do
not belong to the same row or column. Let us
assume that v, vj, vi, v (i < j < k < m) are
components of a solution-vector (selected for
mutation) such that v; and v; as well as v; and
v belong to a single column, and v; and v; as
well as v and v, belong to a single row. That
is, in matrix representation:

Vi .. Vm

Now in trying to determine the smallest change
in the solution vector we have a difficulty. If
we increase the value v; by a constant C, we
have to decrease each of the values v; and vy by
the same amount. What happens if v; < C or
v < C? We could set C = min(vy, vj, vi), but
then most mutations would result in no change,
since the probability of selecting three non-zero
elements would be close to zero for solutions
from the surface of the simplex. Thus methods
involving single bit changes result in inefficient
mutation operators with complex expressions
for checking the corresponding row or column
of the selected element.

3 Orvosh and Davis [58] reported so-call 5% rule which states that if replacing original chromosemes with a 5% probability,
the performance of the algorithm is better than if replacing them with any other rate. In particular, it is better than with ‘never
replacing’ or ‘always replacing’ strategies. However, the rule has some exceptions (48).

The Spirit of Evolutionary Algorithms

The situation is even worse if we try to define
a crossover operator. Breaking a vector at a
random point can result in the appearance of
numbers v; larger than all sour(i) and dest(j),
obviously violating constraints. Even if we de-
sign a method to provide that all numbers in
the solution-vectors of offspring resulting from
crossovers are in a reasonable range, it is more
than likely that these new solutions would still
violate the constraints. If we try to modify these
solutions to obey all constraints, we would then
lose all similarities with the parents. Moreover,
the way to do this is far from obvious. We con-
clude that the repair algorithm approach is not
the most suitable one for solving constrained
problems of this type.

The third possibility, the use of decoders, is al-
most out of question. Decoders are used mainly
for discrete optimization problems (e.g., knap-
sack problem, see [48]), and it might be difficult
to design a decoder scheme for continuous case.
Recently, a general method fornonlinear param-
eter optimization problems was developed [43],
but it can be applied to inequalities only.

The general conclusion from the above discus-
sion is that the vector representation (whether
used with penalty functions, repair algorithms,
or decoders) is not the best data structure for the
transportation problem. Perhaps the most nat-
ural representation of a solution for this prob-
lem is a two dimensional structure. After all,
this is how the problem is presented and solved
by hand. In other words, a matrix V = (x;)
(1 <i<k 1<j< n)may represent a solu-
tion; each x;; is a real number.

It is relatively easy to initialize a population so
that it contains only feasible individuals. In [53]
a particular initialization procedure is discussed
which introduces as many zero elements as pos-
sible. Such initialization procedure can be used
to define a set of ‘genetic’ operators (two muta-
tions and one crossover) which would preserve
feasibility of solutions:

mutation-1. Assume that {ij, i, ...,7,} is a
subsetof {1,2, ..., k},and {j1, /2, ..., Jq}
is a subset of {1, 2, ..., n} such that 2 <
bK k.2 L G,

Denote an individual for mutation by the
(k x n) matrix V = (x;;). Then we can
create a (p X g) submatrix W = (wy)

from all elements of the matrix V in the
following way: an element x;; € V is in
W if and only if i € {iy,is,....i,} and
Jj € {j;,jg, : .,jq} (ifi = I, and j = J;,
then the element x;; is placed in the r-th
row and s-th column of the matrix W).

Now we can assign new values soury|i]
and destw[j] (1 < i< p, 1 <j<gq)for
matrix W:

soury[i] = ZiE{lez‘---Jrf} il & 1
destwy[j] = Zie{il,ig}...,ip} X 1<j<q.

We can initialize the matrix W (proce-
dure initialization) so that all constraints
sourw(i] and desty/[j] are satisfied. Then
we replace corresponding elements of ma-
trix V by new elements from the matrix
W. In this way all the global constraints
(sour|i] and dest|j]) are preserved.

mutation-2. This operator is identical to muta-
tion-1 except that in recalculating the con-
tents of the chosen sub-matrix W, a modi-
fied version of the initialization routine is
used (for details, see [53]) which avoids
zero entries by selecting values from a
range.

crossover. Starting with two parents (matrices
U and V) the arithmetical crossover op-
erator will produce two children X and
Y, where X = ¢; - U+ ¢;-Vand ¥ =
c1 -V + ¢y U (where ¢j,c; > 0 and
c1 + ¢ = 1). As the constraint set is
convex this operation ensures that both
children are feasible if both parents are.
This is a significant simplification of the
linear case where there was an additional
requirement to maintain all components of
the matrix as integers.

It is clear that all above operators maintain fea-
sibility of potential solutions: (arithmetical)
crossover produces a point between two fea-
sible points of the convex search space and both
mutations were restricted to submatrices only to
ensure no change in marginal sums.

The experimental results of the developed sys-
tem are discussed in [53, 48, 51]. It is worth-
while to underline, that the results were much
better than these obtained from the GAMS (Gen-
eral Algebraic Modeling System) with MINOS
optimizer.

The Spirit of Evolutionary Algorithms

Fig. 2. The graph of function f forn = 2

3.2. A Nonlinear Parameter Optimization
Problem

An interesting constrained numerical optimiza-
tion test case emerged recently; the problem [39]
is to maximize a function:

" cost(x) — n . cos*(x;
f(f) _ ‘Zi:l () 2I‘L—l ()|

H

where
[T = 0.75, (1)
Yot X X 750, (2)

and 0 < x; < 10forl <i<n.

0.8+

0.6

The problem has two constraints; the function
J is nonlinear and its global maximum is un-
known.

To illustrate some potential difficulties of solv-
ing this test case, a few graphs (for case of
n = 2) are displayed in Figures 2 — 4. Fig-
ure 2 gives a general overview of the objective
function f: the whole landscape seems to be
relatively flat except for a sharp peek around
the point (0, 0). Figures 3 and 4 incorporate
the active constraint: infeasible solutions were
assigned a value of zero. In that case the ob-
jective function f takes values from the range
{0, 1»; because of the scaling, the landscape

100

Fig. 3. The graph of function f for n = 2. Infeasible solutions were assigned value zero

The Spirit of Evolutionary Algerithms

0.8

0.6

0.4 4

0.24

<5
)
\ s
3

3“
N
SN
N

\
S
N\
N

3
1\\\\\

RO
AN
\\‘\s\‘\
SR

oS

0

()
LR
sheti
By

Fig. 4. The graph of function f for n = 2. Infeasible solutions were assigned value zero; only the corner around the
global optimum is shown

is more visible. Figure 4 displays only the area
of interest (i.e., the area of global optimum).

Many constraint-handling methods [51] were
tried on this test case with quite poor results.
As Keane [39] noted:

“I am currently using a parallel GA
with 12bit binary encoding, crossover,
inversion, mutation, niche forming
and a modified Fiacco-McCormick
constraint penalty function to tackle
this. Forn = 20 I get values like 0.76
after 20,000 evaluations.”

It seems that majority of constraint-handling
methods (for a survey, see [51]) have serious
difficulties in returning a high quality solution
for the above problem. It might be possible,
however, to build a dedicated system for this
particulartest case, which would incorporate the
problem specific knowledge. This knowledge
can emerge from analysis of the objective func-
tion f and the constraints; thus we assume that
(a) the domain for all variables is (0.1, 10.0),
(b) constraint (1) is active at the global opti-
mum, and (¢) the constraint (2) is not.

Now it is possible to develop an evolutionary
system which would search just the surface de-
fined by the first constraint:

Thus the search space is greatly reduced; we
consider only points which satisfy the above

equation. Such a system would start from a
population of feasible points, i.e., the points for
which a product of all coordinates is equal to
0.75. Tt is relatively easy to develop such ini-
tialization routine:

fori=1tondo
begin
if i is even
x;—1 = random (0.1, 10)
¥ =1 %
end
if n1s odd
x, = 0.75
else
for some random i
x; =075 x;

It is important to note, that the above initial-
ization routine is not significant for the perfor-
mance of any system; it just ensures that all
points in the population are at the boundary be-
tween feasible and infeasible regions. Many
other methods were tried with such initialized
populations and gave poor results. Also, the
value of the best individual in the population
initialized in such a way is around 0.30.

The geometrical crossover takes two parents and
produces a single offspring; for parents %! and
%2 the offspring ¥ is

2= <1fx} ~x%, e e, B M)

The Spirit of Evolutionary Algorithms

Note, that the offspring ¥* also lies on the bound-
ary of feasible region:

[Ti=1 %7 = 0.75.

Of course, it is an easy task to generalize the
above geometrical crossover into

B = (e (0,
(21)8 - 290, (4)

for 0 < o < 1. Also it is possible to include
several (say, k) parents:

PH=((e) - ()
n

@)@ ()@ (), (5)

where o; + ... + o4 = 1. However, in the
experiments reported in this paper, we limited
ourselves to the simplest geometrical crossover
(3).

The task of designing a feasibility-preserving
mutation is relatively simple; if the i-th com-
ponent is selected for mutation, the following
algorithm is executed:

o]
23]

determinerandomj, 1 <j<n,j#1i
select g such that:
0.1 <x;-qg <10.0and
0.1 <xj/qg <10.0
X=X g
Xj = Xj/q

A simple evolutionary algorithm (200 lines of
code!) with geometrical crossover and problem-
specific mutation gave an outstanding result.
Forthe case n = 20 the systemreached the value
of 0.80 in less than 4,000 generations (with
population size of 30, probability of crossover
pe = 1.0, and probability of mutation p,, =
0.06) in all runs. The best value found (namely
0.803553) was better than the best values of
any method discussed earlier, whereas the worst
value found was 0.802964. Similarly, for n =
50, all results (in 30,000 generations) were bet-
ter than 0.83 (with the best of 0.8331937). All
results of experiments were reported in [50].

It was interesting to note the importance of ge-
ometrical crossover. With fixed population size
(kept constant at 30), the higher values of prob-
ability of crossover p., the better results of the

system were observed. Similarly, the best mu-
tation rates were relatively low (p;, =~ 0.06). In
Figure 5 we illustrate the average values (out of
10 runs) of the best values found for different
probabilities of mutation (with fixed p. = 1.0).

f(x)

b
M
|

1o -+

|
e o ©®
I......ll.

e |

0.0 | P ;
0.0 0.06 0.25 P

m

Fig. 5. The performance of the system with p. = 1.0
and a variable mutation rate p,,

Clearly, geometrical crossover can be applied
only for problems where each variable takes
nonnegative values only, so its use is quite
restricted in comparison with other types of
crossovers (e.g., arithmetical crossover). How-
ever, for many engineering problems, all
problem variables are positive; moreover, it is
always possible to replace variable x; €
{a;, b;y which can take negative values (i.e.,
where a; < 0) with a new variable y; = x; — a;.

In general, it is a common situation for many
constrained optimization problems that some
constraints are active at the target global op-
timum. Thus the optimum lies on the boundary
of the feasible space. On the other hand, it
is commonly acknowledged that restricting the
size of the search space in evolutionary algo-
rithms (as in most other search algorithms) is
generally beneficial. Hence, it seems natural in
the context of constrained optimization to re-
strict the search of the solution to some part of
the boundary of the feasible part of the space,
i.e., the part of R” where some of the inequality
constraints actually are equalities.

In the case of linear programming (where both
the constraints and the objective function are
linear), theoretical results ensure that the solu-
tion is one of the summits of the surface: the

10

The Spirit of Evolutionary Algorithms

well known simplex method thus only searches
the set of these summits. However, in the non-
linear case with multiple constraints, there is no
way to tell which one are active at the global
optimum. This may cause some difficulties. In
[70, 71] the authors explored a possibility of de-
veloping evolutionary systems for searching the
boundary between feasible and infeasible parts
of the search space; the results of first experi-
ments can be found in these papers.

3.3. The Euclidean Traveling Salesman
Problem

The traveling salesman problem (TSP) is one of
the most widely studied NP-hard combinatorial
optimization problems. Its statement is decep-
tively simple, and yet it remains one of the most
challenging problems in Operational Research.

Let G = (V, E) be a graph where V is a set of
vertices and E is a set of edges. Let C = (cy)
be a distance (or cost) matrix associated with E.
The TSP requires determination of a minimum
distance circuit (Hamiltonian circuit or cycle)
passing through each vertex once and only once.
C is said to satisfy the triangle inequality if and
only if ¢;j + cjx = ci for all i,j,k € V (in
such a case we talk about ATSP). Euclidean
TSP problems (ETSP), i.e., problems where V
is a set of points in R? and cjj is an Euclidean
(straight-line) distance between i and j, are, of
course, special cases of ATSP.

A lot of algorithms have been proposed to solve
TSP. Some of them (based on dynamic pro-
gramming or branch and bound methods) pro-
vide the global optimum solution (the largest
nontrivial instance of the TSP solved to op-
timality is of 7397 cities [3], however, it re-
quired almost 4 years of CPU time on network
of machines). Other algorithms are heuris-
tic ones, which are much faster, but they do
not guarantee the optimal solutions. There
are well known algorithms based on 2-opt or
3-opt change operators, Lin-Kerninghan algo-
rithm (variable change) as well algorithms based
on greedy principles (nearest neighbor, span-
ning tree, etc). The TSP was also approached by
various “modern heuristic” methods, like sim-
ulated annealing, evolutionary algorithms, tabu
scarch, even neural networks. However, these

techniques were mainly applied to test cases
with relatively small number of cities (usually
less than 1000), whereas such problems are now
solved routinely within a few hours [37].

The evolutionary algorithm based on a spe-
cial operator inver-over,® which incorporates
the knowledge taken from other individuals in
the population. One can view this operator as a
mixture of inversion and recombination: on one
hand, the inversion is applied to a part of a single
individual, however, the selection of a segment
to be inverted depends on other individuals in
the population.

It seems that the proposed algorithm still can’t
compete (at least as far as computational time
is concern) with efficient approaches based on
local search [37], however, it has a few advan-
teges. First of all, it is extremely simple and
easy to implement (less than 100 lines of C
code). Additionally, experimental results in-
dicate that this operator outperforms all other
evolutionary operators (whether unary or bi-
nary), which have been proposed in the past
for the TSP (PMX, OX, CX, ER, EER, sim-
ple inversion, etc). Moreover, the evolution-
ary algorithm based on the proposed operator is
quite fast (in comparison with other evolution-
ary techniques) and the quality of results are
very high. For test cases, where the number
of cities is around 100, the algorithm reaches
the optimum in every execution. For larger in-
stances (10,000 cities) the results stay within
3% from the estimated optimum.

The algorithm developed for the ETSP has the
following characteristics:

e there is a population P of m individuals,
P == {SI: S2a sty S}Il}a

e cachindividual competes with its offspring
only,

e there is only one inversion operator used;
however, this inversion is not random, but
adaptive: it takes a clue from the current
population,

e the number of times the operator is applied
to an individual during a single generation,
is variable.

% The name for this operator was invented by Bob Reynolds during the EP’98 conference.

The Spirit of Evolutionary Algorithms

11

random initialization of the population
while (not satisfied termination-condition) do

for each individual S; € P do

{
S =45,
select (randomly) a city ¢ from §'
repeat

{

if (rand() < p)

select the city ¢’ from the remaining cities in S’

else

select (randomly) an individual from P

assign to ¢’ the ‘next’ city to the city ¢ in the selected individual

if (the next city or the previous city of city ¢ in §' is ¢’)

exit from repeat loop

inverse the section from the next city of city ¢ to the city ¢/ in §’

c=¢

}

if (eval(S') < eval(S;))
S; =5

Fig. 6. The outline of the algorithm for the ETSP

Such an algorithm can be perceived as a set
of m parallel hill-climbing procedures, which
preserve the spirit of Lin-Kerninghan algorithm
(each hill-climber performs a variable number
of edge-swaps). However, the operator used
here has adaptive components: (1) the number
of inversions and (2) the segment to be inverted,
depend on the current population, i.e., on the
current state of the search. So it is possible to
view this algorithm as an evolutionary one with
a strong selective pressure, and with an adaptive
operator, which is an interesting combination of
a simple inversion and crossover (as the second
city is selected on the basis of another individual
from the population).

Figure 6 provides a more detailed description
of the whole algorithm in general and of the
proposed operator in particular. With a low
probability p’ the second city for inversion is
selected randomly. This is necessary: without a
possibility to generate new connections, the al-
gorithm would search only among connections
between cities present in the initial population.

If rand() > p, a randomly selected mate pro-
vides a clue for the second marker for inver-
sion. In that case the inversion operator resem-
bles crossover, as part of the pattern (at least 2
cities) of the second individual appears in the
offspring.

Let’s illustrate a single iteration of this opera-
tor on the following example. Assume that the
current individual §’ is

8= (2,%.9.4,1,5,8,67)

(m = 9) and the current city ¢ is 3. If the gen-
erated random number rand() does not exceed
p, another city ¢’ from the same individual § is
selected (say, ¢’ is 8), and appropriate segment
is inverted, producing the following offspring

S —(2,3,8,5,1,4,9,6,7)

(note the position of the cutting points for the
selected segment, which are after cities 3 and 8).
Otherwise (i.e., rand() > p), another individ-
ual is (randomly) selected from the population;

T Interestingly, experimental results indicated that the value of this parameter was independent of the number of cities in a test
case. Note also, that the function rand() generates a random float from the range [0..1].

12

The Spirit of Evolutionary Algorithms

assume, itis (1, 6,4, 3,5,7,9, 2, 8). This indi-
vidual is searched for the city ¢’ “next” to city 3
(which is 5), thus the segment for inversion in
S’ starts after city 3 and terminates after city 5;
consequently, the new offspring is

S« (2,3,5,1,4,9,8,6,7).

Note again, that a substring 3 — 5 arrived from
the “second parent”. Note also, that in either
case the resulting string is intermediate in the
sense that the above inversion operator is ap-
plied several times before an offspring is evalu-
ated.

The experimental results of the algorithm are
presented in [77]. Almost all test cases were
chosen from TSPLIB [66]. The optimal solu-
tion of each test case was known. The size of
these test cases varied from 30 cities to 2,392
cities. We have also created one (random) in-
stance (RAN10000) of 10,000 cities, and relied
on the formula (derived empirically in [38]) for
the expected ratio & of the Held-Karp bound to
v/n for n-city random ETSP; for n > 100 it is:

- 0.52229 1.31572 3.07474
k=0.70805 + 05228 4 L3S _ 307474,

So, the length of the optimal tour is estimated as
L* = kv/n - R, where n is the number of cities
and R is the area of the square box within which
the cities were randomly placed. For our in-
stance, the number of cities is n = 10, 000 and
the edge length (of the square box) is 400, so
the approximate length of the optimum solution
is 28536.3.

The reported results demonstrated clearly the
efficiency of the algorithm. For the first nine
test cases the optimum was found in all runs
(except the test case EIL101, where the algo-
rithm failed only once in ten runs). The number
of cities in these test cases varies from 30 to
105. For the test case with 144 cities the av-
erage solution was only 0.04% above the opti-
mum, for the test case with 442 cities—0.63%
above the optimum, and for the test case with
2392 cities—2.66%. Moreover, for a random
test case with 10,000 cities the average solu-
tion stayed within 3.56% from the Held-Karp
lower bound (whereas the best solution found in
these ten runs was less than 3% above this lower

& We have experimented with the implementation provided by Bill Cook. available from ftp.caam rice.edu/pub/people /bico/970827/.

bound). The running time of the algorithm was
reasonable: few seconds for problems with up
to 105 cities, below 3 minutes for the test case
of 442 cities, below 90 minutes for the test case
with 2392 cities. These represent fraction of
time needed by other evolutionary algorithms
based on crossover operators.

In [77] the above algorithm was compared to two
other algorithms. The first one was based on
simple inversion and the second one was based
on Lin-Kerninghan algorithm.® The compari-
son with the first algorithm provided informa-
tion on the significance of the proposed adap-
tive inversion operator versus blind inversion,
whereas the other one—on relative merits of
the tested algorithms. The first algorithm, for
the test cases with around 100 cities, the er-
ror (percentage above the optimum) was much
higher (more than 10%). Time of the run in-
creased significantly, in some cases more than
100 times (the termination condition was left
without a change). On the other hand, the
Lin-Kemninghan algorithm takes a fraction of
time necessary for our algorithm (e.g., below
1 second for the test case with 2,392 cities).
However, the precision of results is much lower:
none of the test cases resulted with the optimum
solution in all ten runs. So, the proposed evolu-
tionary algorithm has much better consistency
than the Lin-Kerninghan algorithm. On the
other hand, if Lin-Kerninghan algorithm was
run for the same zime as our evolutionary sys-
tem (as opposed just to the same number of
runs), it would win the competition easily.

There are a few interesting observations which
can be made on the basis of the experiments:

e the proposed system is probably the quick-
est evolutionary algorithm for the TSP de-
veloped so far. All other algorithms based
on crossover operator (whether PMX, OX,
CX, ER, etc) provide much worse results
in a much longer time;

o the proposed system has only three pa-
rameters: population size m, the probabil-
ity p of generating random inversion, and
the number of iterations in the termination
condition; most of the other evolutionary
systems have many additional parameters;

The Spirit of Evolutionary Algorithms

13

e it is worthwhile to emphasize the preci-
sion and stability of the system for rela-
tively small test cases (almost 100% accu-
racy for all considered test cases up to 105
cities); the computational time was also
acceptable (3-4 seconds);

e the system introduces a new, interesting
operator which combines features of in-
version (or mutation) and crossover. Re-
sults of experiments reported in the pre-
vious section clearly indicate clearly that
the proposed operator is significantly bet-
ter than random inversion. The probability
parameter p (in all experiments kept con-
stant at 0.02) determines a proportion of
blind inversions and guided (adaptive) in-
versions. The latter is much higher (0.02
versus 0.98 in reported results).

4. Discussion

The effectiveness of evolutionary computations
depends on the representation used for the prob-
lem solutions, the reproduction operators used
and the configuration of the evolutionary algo-
rithm. Additionally, problem-specific knowl-
edge should be incorporated into evolutionary
systems. These ideas are not new and have been
recognized for some time. Several researchers
have discussed initialization techniques, differ-
ent representations, and the use of heuristics for
genetic operators. In [14] Davis wrote:

“It has seemed true to me for some
time that we cannot handle most real-
world problems with binary repre-
sentations and an operator set con-
sisting only of binary crossover and
binary mutation. One reason for this
is that nearly every real-world do-
main has associated domain knowl-
edge that is of use when one is con-
sidering a transformation of a solu-
tion in the domain |[...] I believe that
genetic algorithms are the appropri-
ate algorithms to use in a great many
real-world applications. I also be-
lieve that one should incorporate real-
world knowledge in one’s algorithm
by adding it to one’s decoder or by
expanding one’s operator set.”

The main conclusions one can reach from the
experiments described in the previous section
are as follows:

e Coding of chromosome structures S should

match the problem (in particular, it need
not be binary). Note, that for the three test
cases we have used a matrix representa-
tion, floating-point vector, and the permu-
tation of integer numbers, respectively.

The ‘genetic’ operators need not be ‘ge-
netic’ and should incorporate the problem-
specific knowledge. Note, that for the first
test case, a special crossover and two spe-
cial mutations operators were developed.
The second test case required specialized
operators which search the boundary be-
tween feasible and infeasible parts of the
search space. For the third test case, a spe-
cial operator (inver-over) was developed,
which combined efficiency of unary oper-
ator with a flavor of recombination.

The problem-specific knowledge incorpo-
rated into the system enhances an algo-
rithm’s performance and narrows its appli-
cability. Clearly, the system developed for
the transportation problem cannot be used
for a general nonlinear programming prob-
lem nor for the traveling salesman prob-
lem. The same is true for the other two
systems.

Because of the special representation, op-
erators (i.e., specialization of these sys-
tems), it is difficult to classify them into
historical categories (i.e., genetic algo-
rithms, evolution strategies, evolutionary
programming, or genetic programming).
For example, the system developed for the
transportation problem uses matrix repre-
sentation (used in early evolutionary
programming to represent finite state
machines) with floating point numbers (as
in evolution strategies), and incorporates
crossover (as in genetic algorithms). Prob-
ably the best thing to do is to label such a
system just as an evolutionary algorithm
(EA).

In all presented evolutionary systems, all param-
eters were fixed: population size, probabilitics
of operators, etc. However, it seems that we

14

The Spirit of Evolutionary Algorithms

can do better than that. As evolutionary algo-
rithms implement the idea of evolution, and as
evolution itself must have evolved to reach its
current state of sophistication, it is natural to
expect adaption to be used not only for finding
solutions to a problem, but also for tuning the
algorithm to the particular problem.

Adaptation gives us the opportunity to cus-
tomize the evolutionary algorithm to the prob-
lem and to modify the configuration and the
strategy parameters used while the problem so-
lution is sought. This enables us not only to
incorporate domain information and multiple
reproduction operators into the EA more easily,
but can allow the algorithm itself to select those
values and operators which give better results.
Also, these values can be modified during the
run of the EA to suit the situation during that
part of the run.

In EAs, not only do we need to choose the al-
gorithm, representation and operators for the
problem, but we also need to choose param-
cter values and operator probabilities for the
evolutionary algorithm so that it will find the
solution and, what is also important, find it effi-
ciently. This is a time consuming task and a lot
of effort has gone into automating this process.
Researchers have used various ways of find-
ing good values for the strategy parameters as
these can affect performance of the algorithm
significantly. Many researchers experimented
with problems from a particular domain, tuning
the strategy parameters on the basis of such ex-
perimentation (tuning “by hand”). Later, they
reported their results of applying a particular
EA to a particular problem, stating:

For these experiments, we have used
the following parameters: population
size = 80, probability of crossover
= 0.7, etc.

without much justification of the choice made.
Other researchers tried to modify the values of
strategy parameters during the run of the algo-
rithm; it is possible to do this by using some
(possibly heuristic) rule, by taking feedback
from the current state of the search, or by em-
ploying some self-adaptive mechanism. Note
that these changes may effect a single com-
ponent of a chromosome, the whole chromo-
some (individual), or even the whole popula-
tion. Clearly, by changing these values while

the algorithm is searching for the solution of
the problem, further efficiencies can be gained.
The action of determining the variables and pa-
rameters of an EA to suit the problem has been
termed adapting the algorithm to the problem,
and in EAs this can be done while the algorithm
is finding the problem solution [36].

Note also that the real-world problems often
present another set of difficulties: they change.
They change before they are modelled, they
change while solutions are being derived, and
they change after the execution of the best solu-
tion. Hence a real-time optimization algorithm
needs to consider changes which may occur
during the derivation or execution of the so-
lution. In such cases (so-called non-stationary
function optimization) the goal is not to locate
the extrema but rather to track their progression
through the space as closely as possible. A few
researchers have extended Evolutionary Algo-
rithms to handle non-stationary optimization;,
these extensions include:

o Maintenance of the diversity level. The
presence of many potential solutions dur-
ing the evolutionary search seems to be a
useful feature of optimization in changing
environments. As long as some level of
the population diversity is upheld we could
expect the algorithm to adapt to changes
more easily. Hence maintaining diversity
of the population could increase search
performance of the algorithm [33, 56, 81].

o Adaptation and self-adaptation mechanism.
Dynamical adjustment of the algorithm to
the nonstationary environment is the next
feature of the efficient optimisation. So
adaptive and self-adaptive techniques are
the next significant extension of evolution-
ary algorithm [2, 36]. We discussed this
aspect earlier in this section of the paper.

o Redundancy of genetic material. One of
the most important abilities in adaptation
to changes is reasoning from previous ex-
periences. So the next idea to handle
non-stationary environments is based on
addition of some memory structures to
the chromosomes. We can classify these
structures into several types [74]:

The Spirit of Evolutionary Algorithms

15

— numerical memory — where the mod-
ification of algorithm parameters is per-
formed using experience of previous gen-
erations; e.g., [67, 74, 79];

— symbolic memory — where the algorithm
gradually learns from the individuals in
the populations and thus constructs beliefs
about the relevance of schemes (Machine
Learning theory is exploited) [75];

— exact memory — where existing struc-
tures are enhanced by additional genes,
chomosomes (diploidy) or groups of chro-
mosomes (polyploidy) [11, 30, 34, 44, 45,
55, 64, 82].

All these issues, together with parallel imple-
mentations of evolutionary algorithms, consti-
tute the most interesting directions for further
research.

References

[1] ALANDER, J.T., An Indexed Bibliography of Ge-
netic Algorithms: Years 1957-1993, Department
of Information Technology and Production Eco-
nomics, University of Vaasa, Finland, Report
Series No.94-1, 1994,

[2] ANGELINE, P., “Tracking Extrema in Dynamic
Environments", in [25], pp.335-346.

[3] APPLEGATE, D. BIxBY, R.E., CHVATAL, V., AND
Cook, W., Finding cuts in the TSP: a prelim-
inary report, Report 95-05, DIMACS, Rutgers
University, NJ.

(4] BACK, T., Evolutionary Algorithms in Theory and
Practice. Oxford University Press, 1995.

[5] BAck, T. (Editor), Proceedings of the 7th Interna-
tional Conference on Genetic Algorithms, Morgam
Kaufmann, San Mateo, CA, 1997.

[6] Proceedings of the 5th Parallel Problem Solving
from Nature, T. BACK, A.E. EIREN, M. SCHOE-
NAUER, AND H.-P. SCHWEFEL (Editors), Amster-
dam, September 27-30, 1998.

[7] BAck, T., FOGEL, D., AND MICHALEWICZ, Z. (Ed-
itors), Handbook of Evolutionary Computation,
Oxford University Press, New York, 1996.

[8] BEASLEY, D., BULL, D.R., AND MARTIN, R R., “An
Overview of Genetic Algorithms: Part 1, Foun-
dations”, University Computing, Vol.15, No.2,
pp-58-69, 1993.

[9] BEASLEY, D., BULL, D.R., AND MARTIN, R.R., “An
Overview of Genetic Algorithms: Part 2, Research
Topics”, University Computing, Vol.15, No4,
pp-170-181, 1993.

[10] BELEW,R. AND BOOKER, L. (Editors), Proceedings
of the Fourth International Conference on Genetic
Algorithms, Morgan Kaufmann Publishers, Los
Altos, CA, 1991.

[11] DASGUPTA, D., MCGREGOR, D. R., “Nonstation-
ary Function Optimisation using the Structured
Genetic Algorithm", in [46], pp.145-154.

[12] DAVIDOR, Y., SCHWEFEL, H.-P., AND MANNER, R.
(Editors), Proceedings of the Third International
Conference on Parallel Problem Solving from Na-
ture (PPSN), Springer-Verlag, New York, 1994,

[13] Davis, L., Handbook of Genetic Algorithns, New
York, Van Nostrand Reinhold, 1991.

[14] Davis, L., Adapting Operator Probabilities in Ge-
netic Algorithms, in [69], pp.61-69.

[15] Davis, L. (Editor), Genetic Algorithms and Sim-
ulated Annealing, Morgan Kaufmann Publishers,
Los Altos, CA, 1987.

[16] Davis, L. AND STEENSTRUP, M., “Genetic Algo-
rithms and Simulated Annealing: An Overview”,
in [15], pp.1-11.

[17] EIBEN, A.E., RAUE, P.-E., AND RUTTKAY, Zs., “Ge-
netic Algorithms with Multi-parent Recombina-
tion”, in [12], pp.78-87.

[18] ESHELMAN,L.]., (Editor), Proceedings of the Sixth
International Conference on Genetic Algorithms,
Morgan Kaufmann, San Mateo, CA, 1995.

[19] FoGEL, D.B. (Editor), IEEE Transactions on Neu-
ral Networks, special issue on Evolutionary Com-
putation, Vol.5, No.1, 1994, ‘

[20] FOGEL, D.B., “An Introduction to Simulated Evo-
lutionary Optimization”, IEEE Transactions on
Neural Networks, special issue on Evolutionary
Computation, Vol.5, No.1, 1994.

[21] FoGEL, D.B., Evolutionary Computation: Toward
a New Philosophy of Machine Intelligence, IEEE
Press, Piscataway, NJ, 1995.

[22] FOGEL, D.B. AND ATMAR, W., Proceedings of the
First Annual Conference on Evolutionary Pro-
gramming, La Jolla, CA, 1992, Evolutionary Pro-
gramming Society.

[23] FOGEL, D.B. AND ATMAR, W., Proceedings of the
Second Annual Conference on Evolutionary Pro-
gramming, La Jolla, CA, 1993, Evolutionary Pro-
gramming Society.

[24] FoGEL, L.J., ANGELINE, P.J., BAck, T. (Editors),
Proceedings of the Fifth Annual Conference on
Evolutionary Programming, The MIT Press, 1996.

[25] Proceedings of the Sixth International Conference
on Evolutionary Programming - EP*97, vol. 1213
in LNCS, Springer, 1997.

[26] FORREST, S. (Editor), Proceedings of the Fifth
International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers, Los Altos, CA,
1993.

16

The Spirit of Evolutionary Algorithms

[27] GLOVER, E,, “Heuristics for Integer Programming
Using Surrogate Constraints”, Decision Sciences,
Vol.8, No.1, pp.156-166, 1977.

[28] GOLDBERG, D.E., Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley, Reading, MA, 1989.

[29] GOLDBERG, D.E., MILMAN, K., AND TIDD, C., Ge-
netic Algorithms: A Bibliography, IIiGAL Tech-
nical Report 92008, 1992.

[30] GOLDBERG, D.E., SMITH, RE., “Nonstationary
Function Optimisation Using Genetic Algorithms
with Dominance and Diploidy", in [32], pp.59-08.

[31] GREFENSTETTE, J.J., (Editor), Proceedings of the
First International Conference on Genetic Algo-

rithms, Lawrence Erlbaum Associates, Hillsdale,
N7, 1985.

[32] GREFENSTETTE, I.I., (Editor), Proceedings of the
Second International Conference on Genetic Algo-
rithms, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1987.

[33] GREFENSTETTE, J.J., “Genetic algorithms for
changing environments", in [46], pp.137-144.

[34] HaDAD, B., S., EIck, C., F, “Supporting Poly-
ploidy in Genetic Algorithms Using Dominance
Vectors", in [25], pp.223-234,

[35] HEITKOTTER, J., (Editor), The Hitch-Hiker’s
Guide to Evolutionary Computation, FAQ in
comp.ai.genetic, issue 1.10, 20 December 1993,

[36] EIBEN, A.E., HINTERDING, R., AND MICHALEWICZ,
Z., Parameter Control in Evolutionary Algorithms,
Technical Report TR98-07, Department of Com-
puter Science, Leiden University, Netherlands,
1998.

[37] JoHNSON, D.S., “The Traveling Salesman Prob-
lem: A Case Study”, in Local Search in Combi-
natorial Optimization, E. Aarts and J.K. Lenstra
(Editors), John Wiley, 1996, pp.215-310.

[38] JOHNSON, D.S., MCGEOCH, L.A., AND ROTHBERG,
E.E., “Asymptotic experimental analysis for the
Held-Karp traveling salesman bound”, Proceed-
ings of the Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, ACM, New York,
and SIAM, Philadelphia, PA, pp.341-350.

[39] KEANE, A.J., “A Brief Comparison of Some Evo-
lutionary Optimization Methods”, in V. Rayward-
Smith, I. Osman, C. Reeves and G. D. Smith
(Editors), Modern Heuristic Search Methods, .
Wiley, pp.255-272.

[40] KINNEAR, K.E. (Editor), Advances in Genetic Pro-
gramming, MIT Press, Cambridge, MA, 1994.

[41] Koza, JR., Genetic Programming, MIT Press,
Cambridge, MA, 1992.

[42] KozA, J.R., Genetic Programming — 2, MIT Press,
Cambridge, MA, 1994.

[43] KOZIEE, S. AND MICHALEWICZ, Z., “Evolution-
ary algorithms, homomorphous mappings, and
constrained parameter optimization”, Evolution-
ary Computation, Vol. 7, No. 1, pp. 19-44, 1999.

[44] KwaASNICKA H., “Redundancy of Genotypes as
the Way for Some Advanced Operators in Evolu-
tionary Algorithms - Simulation Study", VIVEK
A Quarterly in Artificial Intelligence, Vol. 10,
No. 3, July 1997, National Centre for Software
Technology, Mumbai, pp.2—-11.

[45] Louis, S.J. AND JOHNSON, 1., “Solving Similar
Problems using Genetic Algorithms and Case-
Based Memory", in [5], pp.283-290.

[46] MANNER, R. AND MANDERICK, B. (Editors), Pro-
ceedings of the Second International Conference
on Parallel Problem Solving from Nature (PPSN),
North-Holland, Elsevier Science Publishers, Ams-
terdam, 1992.

[47] MCDONNELL, J.R., REYNOLDS, R.G., AND FOGEL,
D.B. (Editors), Proceedings of the Fourth Annual
Conference on Evolutionary Programming, The
MIT Press, 1995.

[48] MICHALEWICZ, Z., Genetic Algorithms + Data
Structures = Evolution Programs, Springer-Verlag,

3rd edition, 1996.

[49] MICHALEWICZ, Z. (Editor), Statistics & Comput-
ing, special issue on evolutionary computation,
Vol.4, No.2, 1994, :

[50] MICHALEWICZ, Z., NAZHIYATH, G. AND MICHA-
LEWICZ, M., “A note on usefulness of geometrical
crossover for numerical optimization problems”,
in [24], pp.305-312.

[51] MICHALEWICZ, Z. AND SCHOENAUER, M., “Evo-
lutionary Algorithms for Constrained Parameter
Optimization Problems”, Evolutionary Computa-
tion, Vol.4, No.1, 1996, pp.1-32.

[52] MICHALEWICZ, Z. AND SCHOENAUER, M., (Edi-
tors), Control & Cybernetics, special issue on
evolutionary computation, Vol.26, No.3, 1997.

[53] MICHALEWICZ, Z., VIGNAUX, G.A., AND HOBBS,
M., “A Non-Standard Genetic Algorithm for the
Nonlinear Transportation Problem”, ORSA Jour-
nal on Computing, Vol.3, No.4, 1991, pp.307-316.

[54] MITCHEL, M., An Introduction to Genetic Algo-
rithms. MIT Press, 1996.

[55] Mori, N., IMANISHL, S., KiTA, H., NISHIKAWA, Y.,
“Adaptation to Changing Environments by Means
of the Memory Based Thermodynamical Genetic
Algorithm", in [5], pp.299-306.

[56] MORI, N., KITa, H., NISHIKAWA, Y., “Adaptation to
Changing Environments by Means of the Memory

Based Thermodynamical Genetic Algorithm", in
[12], pp.513-522.

[57] NISSEN, V., Evolutionary Algorithms in Manage-
ment Science: An Overview and List of Refer-
ences, Buropean Study Group for Evolutionary
Economics, 1993.

The Spirit of Evolutionary Algorithms

17

(58] OrvOSH, D. AND Davis, L., “Shall We Repair?
Genetic Algorithms, Combinatorial Optimization,
. and Feasibility Constraints”, in [26], p.650.

[59] Proceedings of the First IEEE International Con-
ference on Evolutionary Computation, Orlando,
26 June — 2 July, 1994,

[60] Proceedings of the Second IEEE International
Conference on Evolutionary Computation, Perth,
29 November — 1 December, 1995.

[61] Proceedings of the Third IEEE International Con-
ference on Evolutionary Computation, Nagoya,
18-22 May, 1996.

[62] Proceedings of the Forth IEEE International Con-
ference on Evolutionary Computation, Indianapo-
lis, 13-16 April, 1997.

[63] Proceedings of the Fifth IEEE International Con-
ference on Evolutionary Computation, Anchorage,
5-9 May, 1998.

[64] PUPPALA, N., SEN, S., GORDIN, M., “Shared mem-
ory based Cooperative Coevolution”, in [63],
pp.570-574.

[65] REEVES, C.R., Modern Heuristic Techniques for
Combinatorial Problems, Blackwell Scientific
Publications, London, 1993.

[66] REINELT, G., “TSPLIB — A Traveling Salesman
Problem Library”, ORSA Journal on Computing,
Vol.3, No.4, pp.376-384, 1991.

(67

REyNOLDS R., G., CHUNG C,, J., “Knowledge—
based Self-adaptation in Evolutionary Program-
ming using Cultural Algorithms", in [62], pp.71-
76.

(68

SARAVANAN, N. AND FOGEL, D.B., A Bibliogra-
phy of Evolutionary Computation & Applications,
Department of Mechanical Engineering, Florida
Atlantic University, Technical Report No. FAU-
ME-93-100, 1993.

SCHAFFER, J., (Editor), Proceedings of the Third
International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers, Los Altos, CA,
1989.

(69

[70] SCHOENAUER, M. AND MICHALEWICZ, Z., “Evolu-
tionary Computation at the Edge of Feasibility”,
in [78], pp.245-254.

[71] SCHOENAUER, M. AND MICHALEWICZ, Z., “Bound-
ary Operators for Constrained Parameter Optimiza-
tion Problems”, in [5], pp.322-329.

[72] SCHWEFREL, H.-P., Evolution and Optimum Seek-
ing, John Wiley, Chichester, UK, 1995.

- [73] SCHWEFEL, H.-P. AND MANNER, R. (Editors), Pro-
ceedings of the First International Conference on
Parallel Problem Solving from Nature (PPSN),
Springer-Verlag, Lecture Notes in Computer Sci-
ence, Vol.496, 1991.

[74] SEBAG, M., SCHOENAUER, M., Ravisg, C., “To-
ward Civilized Evolution: Developing Inhibi-
tions", in [5], pp.291-298.

[75] SEBAG, M., SCHOENAUER, M., RAVISE, C., “Induc-
tive Learning of Mutation Step-Size in Evolution-
ary Parameter Optimisation”, in [25]. pp 247-261.

[76] SEBALD, A.V. AND FOGEL, L.J., Proceedings of
the Third Annual Conference on Evolutionary
Programming, San Diego, CA, 1994, World Sci-
entific.

[77] Ta0, G. AND MICHALEWICZ, Z., “Inver-over oper-
ator for the ETSP”, in [6], pp. 803-812.

[78] VoigT, H.-M., EBELING, W., RECHENBERG, 1.,
SCHWEFEL, H.-P. (Editors), Proceedings of the
Fourth International Conference on Parallel Prob-
lem Solving from Nature (PPSN), Springer-Verlag,
New York, 1996.

(79] WHITE, T., OPPACHER, F., “Adaptive Crossover
Using Automata”, in [12], pp.229-238.

[80] WHITLEY, D., “Genetic-Algorithms: A Tutorial”,
in [49], pp.65-85.

[81] VavaK EF, FoGaRTY T.C., JUKES K., “Learning the
Local Search Range for Genetic Optimisation in
Nonstationary Environments", in [62], pp.355-
360. .

[82] YOsHIDA, Y., ADACHI, N., “A Diploid Genetic
Algorithm for Preserving Population Diversity —
pseudo-Meiosis GA", in [12], pp.482-491.

Received: June, 1998
Accepted: December, 1998

Contact address:

Zbigniew Michalewicz

Department of Computer Science
University of North Carolina
Charlotte, NC 28223

USA

e-mail: zbyszek@uncc.edu

Susana Esquivel

Proyecto 338403

Departamento de Informatica
Facultad de Cs. Fisico-Matematicas y Naturales
Universidad Nacional de San Luis
Ejercito de los Andes 950, local 106
5700-San Luis

Argentina

e-mail: esquivel@unsl.edu.ar

Raul Gallard

Proyecto 338403, Departamento de Informatica, Facultad de Cs
Fisico-Matematicas y Naturales, Universidad Nacional de San Luis,
Ejercito de los Andes 950, local 106, 5700-San Luis

Argentina

e-mail: rgallard@unsl.edu.ar

Maciej Michalewicz

Institute of Computer Science
Polish Academy of Sciences

ul. Ordona 21

01-237 Warsaw

Poland

e-mail: michalew @ipipan.waw.pl

Guo Tao

State Key Laboratory of Software Engineering
Wuhan University

Wuhan

Hubei, 430072

P.R. China

e-mail: gt@rjge.whu.edu.cn

18

The Spirit of Evolutionary Algorithms

Krzysztof Trojanowski

Institute of Computer Science
Polish Academy of Sciences

ul. Ordona 21

01-237 Warsaw

Poland

e-mail: trojanow @ipipan waw.pl

ZBIGNIEW MICHALEWICZ is Professor of Computer Science at the Uni-
versity of North Carolina at Charlotte. He completed his MSc degree
at Technical University of Warsaw in 1974 and he received PhD degree
from the Institute of Computer Science, Polish Academy of Sciences,
in 1981, His current research interests are in the field of evolutionary
computation. He has published several books, including a monograph
(3 editions), and over 120 technical papers in journals and conference
proceedings. He was the general chairman of the First [EEE Interna-
tional Conference on Evolutionary Computation held in Orlando, June
1994. He has been an invited speaker of many international conferences
and a member of 40 various program committees of international con-
ferences during the last 3 years. He is a current member of the editorial
board and/or serves as associate editor of 8 international journals (in-
cluding IEEE Transactions on Evolutionary Computation). He is also
the executive vice-president of the IEEE Neural Network Council.

SusaNA ESQUIVEL received the Licentiate in Computer Science degree
in 1988 from the Universidad Nacional de San Luis. Presently she
1s Associate Professor in Languages and Compilers. She has been an
clected Academic Director of the Informatics Department since 1994,
Her main research area since 1984 has been related to computer sys-
tems, intelligent tools and presently she conducts an investigation on
Evolutionary Computation.

RAUL GALLARD received the Computador Cientifico degree in 1975
from the University of Buenos Aires and the Master of Sciences degree
from the University of Aston in Birmingham, UK, in 1982. From 1985
he is Full Professor at the Universidad Nacional de San Luis. In 1984
he created a research group on Computer Systems and from that time
he has conducted six different projects in the area. Three other research
projects under his supervision in different Argentinian Universities are
related to theory and aplications of Evolutionary Computation. Profes-
sor Gallard is a voling member of the ACM, member of the IEEE and
of a many other Computer Science and Educational organizations in
Argentina. Rescarch activities of his group are supported by the AN-
PCYT (National Agency for Promotion of Science and Technology).
His current interest is mainly centered on Evolutionary Computation
and Intelligent Systems.

MACIE] MICHALEWICZ, Ph D., Assiociate Professor in Institute of Com-
puter Science of Polish Academy of Sciences. Presently - Head of the
Group of Foundations of Artificial Intelligence. Scientific interests are
concentrated on data analysis systems, information retrieval systems,
knowledge discovery and intelligent information systems. Scientific
activities have always been connected with many practical implemen-
tations, mainly in medicine and industry.

Guo Tao is a Ph.D. student in computer science at the State Key Lab-
oratory of Software Engineering, Wuhan University, China (degree
expected in June, 1999). His research interest is involved in finding a
simple and effective genetic algorithm for some problems, such as TSP,
constrained optimization.

KRzYSZTOF TROJIANOWSKI received the M.Sc. degree in computer sci-
ence from the Warsaw Technical University, Poland, in 1994. He is cur-
rently pursuing the Ph.D. degree at the Institute of Computer Sciences,
Polish academy of Sciences, Warsaw, Poland, under the supervision
of Prof. Z. Michalewicz. His research interests include evolutionary
computation techniques.

