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Process network synthesis (PNS) has an enormous prac-
tical impact and a structural model can be given for it
on the basis of a combinatorial approach. An optimal
solution to this model can be generated by different
branch-and-bound procedures. In the present work, we
compare such procedures empirically.

Introduction

The mixed integer programming model of pro-
cess network synthesis (PNS) contains a large
number of binary variables associated with op-
erating units which renders this model difficult
to solve by any available method. On the other
hand, a combinatorial analysis of the MIP mod-
els of PNS and that of feasible process structures
have yielded mathematical tools which provide
a good background for obtaining an optimal so-
lution by a branch-and-bound search.

The present work demonstrates that the size of
a PNS problem can be reduced in general, and
compares empirically some branch-and-bound
procedures for solving PNS problem under the
assumption that each operating unit has a posi-
tive fixed charge in the object function. Firstly,
three procedures, that of a conventional branch-
and-bound procedure, the accelerated branch-
and-bound algorithm (ABBA, see [11]), and a
modified version of the ABBA (see [14]) are
compared under the same bounding function,
i.e., the three procedures being compared differ

only in the branching strategy applied. After
this, the modified ABBA, the modified ABBA
equipped with a stronger bounding function (cf.
[14]), and an adaptation of the latter procedure
are compared. In this case, the different proce-
dures differ only in the bounding functions.

The paper is organized as follows: Section 1
introduces the PNS problem and some relevant
basic concepts. In Section 2, two classes of PNS
problems involved in the empirical analysis are
described, and the measure of the reduction is
demonstrated. Section 3 presents the above
mentioned different branch-and-bound methods
for solving PNS problem. Section 4 contains the
results of our computational studies. Finally,
Section 5 presents some conclusions based on
the empirical analysis.

1. Preliminaries

In a manufacturing system, materials of differ-
ent properties are converted into desired prod-
ucts through various physical, chemical, and
biological transformations. Devices in which
these transformations are carried out are called
operating units and a manufacturing system can
be considered as a network of operating units,
i.e., process network. Naturally, minimizing the
cost of a process network is essential indeed.
There are several papers on the application of
global optimization methods for solving PNS

* This work was partially supported by the Hungarian Ministry of Education, Grant 635 /96.



374

Procedures for Solving Process Network Synthesis Problem

problems (see, e.g., [3] and [13]). Here, we use
a combinatorial approach based on the feasible
graphs of processes (cf. [5], [6], and [7]). In
this approach, an operating unit denoted by u
can be given by its input and output materials,
and its behaviour can be described by such a di-
rected graph in which edges lead from every in-
put material into # and from u into every output
material. Joining the graphs belonging to the
given operating units, we obtain a network of
operating units which is called a process graph
or P-graph in short.

A design problem M is defined from structural
point of view by the raw materials, the desired
products, and the available operating units. The
available operating units determine the structure
of the problem as a process graph containing the
corresponding interconnections among the op-
erating units. Let us denote this P-graph by
(M, O). A subgraph of (M, O), which is also a
P-graph, can be assigned to each feasible pro-
cess of the design problem; such a subgraph rep-
resents the structure or network of the process
under consideration. If additional constraints
like the material balance are disregarded, the
subgraphs of (M, O), which can be assigned
to the feasible processes, have some character-
istic combinatorial properties (see [6]). The
subgraphs of (M, O) satisfying these properties
are called solution-structures. Let us denote
the set of solution-structures of M by S(M).
It can be seen that S(M) is closed under the
finite union. Thus, the union of all the solution-
structures is also a solution-structure provided
that S(M) # @; it is the greatest solution-
structure with respect to the relation, subgraph
ordering, which is called the maximal structure
of M.

Now, a class of optimization problems can be
defined such that each operating unit has a pos-
itive fixed charge. We are to find a feasible
process with the minimum cost; by the cost of
a process, we mean the sum of fixed charges
of the operating units belonging to the process
under study. Each feasible process in this class
is uniquely determined from the corresponding
solution-structure and vice versa. Hence, the
problem under consideration can be formalized
as follows.

Let a design problem M be given; moreover, let
z be a positive real-valued function defined on
0. The optimization problem is then

min{z.z(u) - (m, 0) € S(M)}. (1)

ueo

Problem (1) is called PNS problem. It has been
proved [2] that this problem is NP-hard; there-
fore, the branch-and-bound technique may be
an appropriate tool for its solution. Prior to pre-
senting our branch-and-bound procedures, let
us introduce several notions.

Let M be a design problem with S(M) # 0.
Then, M has a maximal structure denoted by
(M, 0'). Now, we can construct a new design
problem M/, called reduced design problem, by
leaving out the unnecessary raw materials and
reducing the available operating units to O’
Obviously, M’ is uniquely determined and its
maximal structure is also (M’, 0'); moreover,
S(M) = S(M'). An efficient algorithm (cf. [6]
and [10]) is available for deciding if S(M) = 0;
if it is not, this algorithm generates the corre-
sponding maximal structure. Consequently, in
what follows, we confine ourselves strictly to
reduced design problems.

Now, a new concept, that of decision-mapping
(see [12]), is introduced. Let M be a reduced
design problem and denote by R the set of the
raw materials. Then, the maximal structure,
(M, O), of M determines a function A as fol-
lows. For any material X € M \ R, let A(X)
be the set of the operating units in O producing
X. It is worth noting that one of the defin-
ing properties of the solution-structures implies
A(X) # 0. Let m be a subset of M; furthermore,
let 6(X) be a subset of A(X), forall X € m. This
mapping denoted by §[m| is called a decision-
mapping belonging to M. A decisison-mapping
can be visualized as a sequence of decisions,
each of which is concerned with a single mate-
rial involved in the process being synthesized;
it identifies the set of operating units which
are to be used for producing directly the ma-
terial under consideration. Decisions contained
in such a sequence are independent, and each
decision is material-specific. Suppose that we
have made two decisions independently: One
is to produce material X and the other is not
to produce material ¥ in a single process by
adopting an operating unit generating both ma-
terials X and Y. Obviously, these two indepen-
dent decisions are contradictory. To circum-
vent such a contradiction, decision-mappings
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must be consistent. Hence, a special class of
decision-mappings need be introduced for this
purpose. Decision-mapping &[m] is said to be
consistent when §(X) N A(Y) C §(Y) is valid,
for all X, Y € m, and the set of all consistent
decision-mappings of M is denoted by Qp. In
particular, if §[m| € Qum andm = M \ R, then
we sometimes use the shorter notation § instead
of §[M\R]. Let us denote by op(&[m]) the func-
tion giving the set of operating units contained
in any set 6(X) for some X € m. Furthermore,
for any finite set of operating units o, let us de-
note by mat™(0) the set of the input materials
of the operating units in o, by mar® (o) the set
of the output materials of the operating units in
o, finally, let mat(0) = mat™(0) U mat® (o).

Relation extension on £y is reflexive, antisym-
metric and transitive; hence, it is a partial order-
ing on Qpr. Let us denote the set of all maximal
elements of this partially ordered set by Qj.
Then, the following statement is valid:

Lemma 1. If §[m] € Qum \ Q}, then 8[m] has
at least one proper extension.

A strong relationship exists between some ele-
ments of Q) and the solution-structures of M.
Namely, there is an injective mapping p of (M)
into Qpp. Let §'(M) denote the image of S(M)
under p. The elemes ntof §'(M) are called fea-
sible solutions. (Note that p is not surjective in
general.)

Using this relationship, it is possible to solve the
problem stated below instead of problem (1)

min{ Z z(u): 6 € S’(M)}. (2)

ucop(8)

Function z can be defined on Qp as follows: for

any 8[m] € Quy, letz(8[m]) = 37, cop5pm) 2()-

To solve problem (2), the following observation
is important: since §'(M) C Qj,, any partition
of Q) induces a partition of $'(M). The branch-
and-bound procedures presented in Section 3
are based on this observation.

2. Some classes of PNS problems

In this section, such classes of PNS problems

are described which are involved in the empir-

ical analysis outlined below. To generate real-

istic S PNproblems randomly, we have investi-

gated some practical applications published in

the works [4], [8], [9], and [10]. Analyzing these
applications, the generation of one class of prob-

lems under a fixed number of materials denoted

by n is established according to the following

rules:

(
(b) The number of desired products is fixed to
1

(
(

a) The number of raw materials is 0.35n.

c¢) The number of operating units is m = 0.6n.

d) Three types of operating units are distin-
guished:

(i) Operating units producing the desired prod-
uct. Their number is j = 0.1m. Each of them
has one output material which is the desired
product, 50% have two input materials while
the remaining 50% have three input materials.
None of the input materials of this type of op-
erating units is a raw material; moreover, the
desired product cannot appear as an input ma-
teria 1.

(ii) Operating units consuming raw material.
Their number is k = 0.2m. This group of
operating units is divided into two subgroups;
the homogeneous and inhomogeneous operat-
ing units. For each of the homogeneous oper-
ating units, all input materials are raw materials
and each of these operating units has only one
output material which is not the desired prod-
uct. The inhomogeneous operating units have
one no raw material input differing from the de-
sited product and each of the remaining input
materials is araw material. Their output materi-
als differ from the desired product. The number
of homogeneous operating units is 0.5k, their
distribution with respect to the number of input
materials being presented in Table 1.

Similarly, the number of inhomogeneous oper-
ating units is 0.5k, their distribution with respect

Table 1
number of input materials 1 2 . 4
operating units % 10 40 40 10
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Table II

inputs/outputs 272 2/3 3)2

operating units % 50 20 30
Table III
inputs/outputs /71 12 1/3 1/4 2/1 2/2 2/3
operating units % 10 50 15 5 5 10 5

to the ratio of the input and output materials be-
ing given in Table II.

(iii) Operating units consuming no raw mate-
rial. The input and output materials of these op-
erating units differ from both the desired prod-
uct and raw materials. Their numberis! = 0.7m
and their distribution with respect to the ratio of
the input and output materials is presented by
Table IIL

(e) The fixed charges of the operating units are
independently drawn from the uniform distribu-
tion of the integers over interval [1, 100].

To increase the complexity of the above class
of PNS problems, we have investigated another
class of PNS problems which can be derived
from the above class with the following modi-
fications:

(1) The number of desired products is fixed to
2.

(2) The number of operating unitsis m = 0.65n,

(3) The number of operating units producing
one of the desired products is j = 0.2m.

(4) The number of operating units consuming
raw materials is k = 0.3m.

(5) The number of operating units consuming
no raw material is [ = 0.5m.

The input and output materials for the operating
units of this class were generated according to
Tables I, 11, and III, respectively. To distinguish
the two classes, the former one is called class A
and the latter one is called class B.

We generated randomly 10000 PNS problems
in accordance with the above rules and dis-
tributions for both classes and for all n, n =
20, 30, ..., 150. The computational results are
summarized in Tables IV and V for the classes
A and B, respectively. For each problem, the
reduced design problem was determined by the
reduction procedure from [10]. For each group
of PNS problems belonging to a fixed n,

the average of the numbers of the materials
included in the reduced problems,

the average of the numbers of the operating
units included in the reduced problems,

the average of the ratios, number of oper-
ating units/number of materials, with re-
spect to the reduced problems

Table IV

n 20 30 40 50 60 70 80

unsolvable 4169 3027 2866 1693 1718 1427 1087
solvable% 58.31 69.73 71.34 83.07 82.82 85.73 89.13
materials 12.84 18.21 23.14 27.39 32.33 36.97 40.93
operating units 9.07 12.19 15.72 18.22 20.63 24.19 26.08
[OT/]M'| (%) 70.63 66.96 67.97 66.55 63.81 65.42 63.70
n 90 100 110 120 130 140 150
unsolvable 981 812 607 570 444 451 320

solvable% 90.19 91.88 93.93 94.30 95.56 95.49 96.80
materials 45.89 49.66 54.55 58.89 63.40 67.54 71.85
operating units 29.96 31.51 34.43 37.45 39.84 42.75 45.23
“TOT/TM'] (%) 65.28 63.46 63.10 63.59 62.84 63.30 62.95
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Table V

n 20 30 40 50 60 70 80

unsolvable 7252 5984 5443 3649 3730 2793 2645
solvable% 27.48 40.16 45.57 63.51 62.70 72.07 73.55
materials 15.50 22.25 27.45 32.73 37.65 43.33 47.94
operating units 10.82 15.87 18.29 21.93 24.21 2829 30.61
|O'|/IM'] (%) 69.78 71.29 66.62 67.00 67.00 65.30 63.86
n 90 100 110 120 130 140 150
unsolvable 2362 1970 1447 1356 1070 1016 797

solvable% 76.38 80.30 85.53 86.44 89.30 89.84 92.03
materials 51.61 56.43 62.53 65.39 71.49 75.35 80.36
operating units 32.26 35.23 39.42 40.41 44.45 46.16 49.41
[07/IM] (%) 62.51 62.44 63.03 61.62 62.13 61.27 61.48

were calculated. When a problem of a group
under consideration had no solution-structure,
then it was not included in the average, and the
number of such problems of the correspond-
ing group were calculated as well; the second
rows of Tables IV and V show these values,
while the third rows give the numbers of the
solvable problems in percent. The fourth rows
present the average of the numbers of materials,
the fifth rows give the average of the numbers
of operating units, finally, the sixth rows con-
tain the average of the ratios, number of oper-
ating units/number of materials, regarding the
reduced models, respectively.

3. Branch-and-bound procedures

In this chapter, different branch-and-bound al-
gorithms are constructed to solve (2). The
branch-and-bound method has been widely pub-
lished in the literature (see e.g. [1], [15]). The
algorithms presented here are particular ones
based on special features of PNS problems. To
give their descriptions, let M be a reduced de-
sign problem with the maximal structure (M, O)
and let z be the object function. Our goal is to
solve problem (2). Since $'(M) is a nonempty
finite set, there should exist at least one optimal
solution for (2).

One of the main components of a branch-and-
bound algorithm is the branching rule which
divides some subsets of S'(M) into their par-
titions. Here, §'(M) is given in an implicit
way and this makes it difficult to give an ap-
propriate branching rule. This difficulty can

be eliminated by the including set, Qj},, which
can be more easily treated than §'(M). In gen-
eral, the branching rule or branching opera-
tion can be defined as a mapping which as-
signs to some nonempty subsets of Q, their,
not necessarily nontrivial partitions. Here, a
more general function is applied. To define it,
let 6[m] € Qum \ Q. Then, let us define set
w(8[m]) as follows:

w(8[m]) = {6 : 6 € Qy and §[m] < &},

i.e., w(&[m]) is the set of all consistent maximal
extensions of §[m]. From Lemma 1, @ (8 [m]) is
nonempty. It is worth noting that w(8[0)]) =
Q- The elements of set w(8[m]) N §'(M)
are called the feasible solution extensions of
8[m]. The sets assigned to different decision-
mappings from Qy \ Qy by o are disjoint,
provided they differ in at least one common
material. This observation is presented by the
following statement.

Lemma 2. If §[m], §'[m'] € Qm \ Q) and
8(X) # 8'(X) for some X € m N m', then
w(8[m]) N w(8'[m]) = 0.

In the light of Lemma 2, we can define a par-
tition of w(8[m]) for any §[m] € Qum \ Q)
as follows: Since §[m] & Qur, m # M\ R.
Moreover, m C M \ R implies that there exists
an X in set M \ (RUm). Since (M, O) is the
maximal structure, A(X) # (). For each subset
Qiof A(X), i =1,2,...,28%) the decision-
mapping &;[m U {X}] can be defined by
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§ilm U {X}] = 8[m] U {(X, 0)}.

Lemma 1 indicates that at least one consistent
decision-mapping exists among &;[m U {X}],
i = 1,2 ...,28XI Let us denote the con-
sistent members of the decision-mappings by
8, muU {X}], r = L,2,...,k Without loss
of generality, i; can be replaced by ¢ for r =
1,2,..., k. Then, the following theorem can be
stated on the partitioning of (8 [m]):

Theorem 1. The sets, (8,[m U {X}]), t =
1,2, ...,k constitute a (not necessarily non-
trivial) partition of @ (8[m]).

Theorem 1, together with an additional rule on
material selection, establishes a branching rule
or branching operation denoted by ¢, 1.e.,

o(8[m]) = {0(&mu{X}]):t=12,..

The other main component of a branch-and-
bound procedure is the bounding rule or bound-
ing operation. In our case, it is defined as a
real-valued function denoted by g on set Qm
which gives a lower bound of values z(8'),
§' € ' (M)Nw(8[m]), forall §[m] € Qm\ QL
while it provides value z(8) if §[m] € S'(M),
and oo if §[m] € Q) \ §'(M).

A branch-and-bound algorithm can be consid-
ered as a special intelligent enumerating proce-
dure based on an enumeration tree. Its intelli-
gence means that by using the bounding oper-
ation, the algorithm does not necessarily build
up the whole enumeration tree, but only a part
of this tree. Specifically, it does not branch the
classes of the partition determined by the leaves
of the actual tree for which it is known that
they do not contain feasible solutions or they
do not contain better feasible solutions than a
known one. A class satisfying one of the last
two conditions is called fathomed or dead leaf,
otherwise, it is referred to as a live leaf. Now,
we are ready to build up a branch-and-bound
algorithm to solve (2).

LK)

Branch-and-Bound Algorithm

Initialization

o LetL:= {w(8[0])}. 2" := 00,5 := 0, and
set r := 0. Calculate g(5[0]).

Iteration (r-th iteration)

e Step I. Terminate if L = (; s contains
the optimal solution, z* provides the opti-
mal value. Otherwise, proceed to Step 2 if
r>0andtoStep3if r = 0.

e Step 2. (Selection.) Choose an element
(8 [m]) from L for which the ratio g(8 [m])
/|m| is minimal. (If there are more candi-
dates with the same value, choose one of

them in a random way.) Proceed to Step
3

e Step 3. (Branching.) Form the partition
@(8[m]) of w(8[m]); denote this partition
by {w(&[m]):i=1,2,..., k}. Proceed
to Step 4.

e Step 4. (Calculating bounds.) For each
i,i = 1,2,...,k, calculate lower bound
g(8;[m;]); furthermore, if m = M \ R
and §; € §'(M) and g(§;) < z*, then let

* = g(8;), s := {6;}. Proceed to Step 5.

o Step 5. (Fathoming.) Redefine set L in the
following way:

L={o(8'[m']):0(8'm])e

(I\{@(8[m])})Ue(8[m]), g(8'[m'])<z"}.
Set r := r + 1 and proceed to the next
iteration.

As far as the introduced procedure is concerned,
we note that the selection of the actual leaf in
Step 2 is based on the ratio g(8[m])/|m| (see
[14]). With respect to the leaf selection rule, we
carried out more computational experiments to
test its efficiency. The classical selection rule
based on the minimal bound, some selection
rules based on different combinations of the
classical selection and the selection based on
the ratio g(8[m])/|m| were investigated, and we
found in every case that the classical strategy
was the best one in terms of computational time.
On the other hand, the size of the built enumer-
ation tree, and thus the number of live leaves
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increased so rapidly under the classical strat-
egy, that it was not practically possible to solve
PNS problems of higher complexity. Therefore,
we employed the strategy which minimized the
ratio g(8[m])/|m| because this approach, like a
kind of depth-first search, kept the number of
live leaves to a moderate value.

Furthermore, it is worth noting that the algo-
rithm above is not complete in the following
Sense:

(1) In Step 3, the material selection rule (to
choose a material from set M \ (R U m)) is not
fixed, different rules yield different branching
functions.

(2) The bounding operation is not given, only
some properties are prescribed.

Therefore, to present a complete procedure, we
have to furnish a material selection rule and
suitable bounding operation. In what follows,
we apply some material selection rules and
some bounding functions, then build up differ-
ent complete branch-and-bound algorithms to
solve (2).

We will use three material selection rules. To
define them, itis assumed that M = {Ay, ..., A,},
P ={A...,A} and R = {A,,...,A,} for
some integers v, w,n with 1 < v < w < n
where P denotes the set of the desired products.
Now, we are in a position to define our material
selection rules for leaf w(8([m]) € L.

Material selection on index. In this case, the
material with the smallest index is chosen from
set M\ (mUR).

Input material selection rule. This means that
the material with the smallest index is selected
from the set (mat™*(op(8[m])) U P) \ (R U m).
This rule introduced in [11] implies the follow-
ing property. If we cannot choose a material in
accordance with this rule, i.e., the above set is
empty, then the leaf w(8[m]) contains one and
only one feasible solution which can be deter-
mined.

Input but no output material selection rule.
Here, the material with the smallest index is
chosen from the set (mat™(op(8|m])) U P) \
(mat®(op(8[m])) U R). This rule introduced
in [14] has the following important property. If
we cannot choose a material using this rule, in

@ (8[m])NS' (M) there is a best feasible solution
that can be determined.

Three bounding functions are involved in the in-
vestigations. Let us suppose that the leaf under
consideration is (8 [m]).

Trivial bounding function. In this case, the sum
of the values belonging to the operating units
fixed by §[m] gives a trivial lower bound. For-
mally, let

Y. z(u) if 8[m]gQy, or
ucop(8)

8(8[m]) = 8[m]eS' (M),

00 otherwise.

Refined bounding function. In this case, a
stronger bounding procedure is applied. Its pre-
cise description is presented in [14]. Here, we
only mention the basic idea of this procedure.
Concerning the trivial bounding function, at the
beginning of the procedure, when a small num-
ber of operating units are fixed, there is a large
gap between the bound, g(§[m]), and the min-
imum value of z(6), § € w(8[m]) N §'(M).
The deficiency of this bounding function arises
from the following fact: when we determine
the bound, g(8[m]), we do not take into account
additional operating units which appear in the
feasible solution extensions of §[m]. The re-
finement of the bounding function is based on
this observation. To make up for this, a cost is
assigned to each material X in M by an iterative
procedure. This cost is a lower bound for the
cost of producing X in any feasible solution in
@ (8[m]) N S(M'). Using these costs, a sharper
lower bound can be determined than the bound
given by the trivial bounding function.

Modified refined bounding procedure. Since the
refined bounding function needs a hard compu-
tation, moreover, it does not provide a sharp
lower bound, especially when a few operating
units are fixed, the bounding procedure is mod-
ified in the following way: The original refined
bounding function is relaxed, furthermore, we
count the cheap trivial bound when the number
of fixed operating unit does not exceed 30%.
When the number of fixed operating units ex-
ceeds 30%, then the bound calculation is altered
and the relaxed refined bound is calculated.
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Table VI
n 15 20 25 30 40 50 60 70 80 90
Conv. 38.44354.41146 12799 — s 2

ABBA 0.96 1.81 2.60 3.30 5.59 11.6219. 7527 6538 9452 70
mABBA 1.10 1.52 2.46 2.91 5.01 9.16 18.8623.5432.3241.80
Table VII

n 15 20 25 30 40 50 60 70 80 90
Conv. 270.71675 5082 20436 — — @ —

ABBA 8.63 12.1222.9025.2942.7173.09 100. 6130 1 165 4 188 0
mABBA 526 7.57 15.5816.5026.7048.2477.4790.70114.8 130.0

4. Empirical analysis

In this section, we compare several branch-and-
bound procedures. In the comparison study, a
133Mhz Pentium PC was used, and the run-
times were expressed in units of 0.01sec. In the
first comparison, three procedures were com-
pared under the trivial bounding function and
various material selection rules. The first pro-
cedure called the conventional procedure ap-
plies the material selection on index, the second
called the Accelerated Branch-and Bound Algo-
rithm or ABBA for short (see [11]) uses the in-
put material selection rule, while the third called
the modified ABBA or mABBA for short (see
[14]) applies the input but no output material
selection rule. For all n, n = 15, 20, 25, 30, 40,

., 90, we solved 100 randomly generated PNS
problems of class A. Tables VI and VII show
the average of the run-times and average of the
number of iteration steps, respectively.

In the second comparison, three algorithms were
tested. The first is the modified ABBA, the sec-
ond, denoted by mABBA+-g*, is such a ver-
sion of the mABBA which uses the refined
bounding function, while the third, denoted
by mABBA+g, is such an alteration of the
mABBA which uses the modified refined bound-
ing procedure. For all n, n = 30, 40, ..., 100,
we solved 100 randomly generated PNS prob-
lems of the classes considered. For class A,
Tables VIII and IX show the average of the run-
times and average of the number of iteration
steps, respectively. Tables X and XI present the
corresponding values for class B.

5. Conclusions

First of all, we have to emphasize that all of
the conclusions presented below concern PNS
problems belonging to the classes considered.

The results in Tables IV and V show that the
number of the unsolvable design problems de-
creases if the problem size increases, further-
more, this number increases if the operating
units have a higher complexity. Another ob-
servation that the ratios, number of operating
units/number of materials, show a small de-
crease depending on the size and the average is
approximately 63%. This means that the reduc-
tion does not yield a large change in this ratio,
and therefore, the measure of the reduction can
be presented approximately by the decrease of
the number of materials. The ratios, number of
materials in the reduced model/original num-
ber of materials, in percent, show a decrease
depending on the size, and the average measure
of the reduction is approximately 47% and 38%
for class A and class B, respectively, which is a
significant reduction.

Regarding the first comparison, the results inTa-
bles VI and VII show that on the problem in-
stances tested the conventional procedure is not
suitable for problem solving, the run-time in-
creases terribly fast depending on the problem
size. As regards the other two procedures, both
the run-time and number of iteration steps are
significantly better for the mABBA procedure.
(We obtained similar results for class B.) The
latter observation motivated us to investigate
such procedures which use the input but no out-
put material selection rule and different bound-
ing functions. It was established in the second
comparison.
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Table VIII

n 30 40 50 60 70 80 90 100
mABBA 3.24 8.00 8.19 11.7022.2029.2341.48 59.53
mABBA + g 19.51 82.75138.8251.7719.3851.7 2030 2247
mABBA + g 12.8744.8639.64 59.46 86.41 136.8 126.4 296.3
Table TX

n 30 40 50 60 70 8 90 100
mABBA 21.83 39.7039.74 50.22 86.80 109.8 136.5 199.8
mABBA +¢* 7.96 15.2117.0819.7429.1035.2441.07 47.53
mABBA + g 13.7125.0433.1242.4079.9291.55131.0173.2
Table X

n 30 40 50 60 70 8 90 100
mABBA 15.21 17.9560.56 130.9 346.5 528.1 610.2775.2
mABBA + g* 81.60 153.8 572.4 1324 2913 6932 1019516969
mABBA + g 58.1196.39292.8564.7918.8 2004 1763 2867
Table XI

n 30 40 50 60 70 8 90 100
mABBA 8§2.1294.97 263.1 419.3798.8 1431 1655 2083
mABBA + g* 28.3429.48 64.84 90.42 147.7 285.0 254.1 394 .3
mABBA + ¢ 41.8957.89165.9323.7683.31089 1562 18183

The results of the second comparison (Tables
VIII, IX, X, XTI) show that the stronger bound-
ing functions decrease the number of iteration
steps as it can be expected, but the run-time is
significantly better for the mABBA procedure.
This shows that the applied stronger bounding
functions are too expensive, their applications
are unjustified for the problem classes under
consideration.

To summarize, our computational experiments
indicate that on the problem instances tested,
the mABBA procedure based on [11] and [14]
led to distinct improvements in computational
performance; furthermore, the extensions using
sharper bounding functions did not produce any
of the hoped-for improvements.
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