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Application of Artificial Neural Networks
for Direct Detection of Microcalcification
Clusters in Digital Mammograms

Thierry-Pascal Baum

Orly, France

Computer-aided diagnosis (CAD) schemes for the de-
tection of microcalcification clusters (MCCs) come in
two types: indirect and direct. Indirect detection of
MCCs detect individual microcalcifications first, which
are then used to detect clusters. Direct detection de-
tects clusters in a unique step, without any previous
detection of individual microcalcifications. Nearly all
the existing literature describes indirect detection. In
this study, we investigated a direct detection scheme.
We divided digital mammograms into regions of interest
(ROIs) and computed a set of parameters on each ROI.
We discriminated parameters through an artificial neural
network (ANN) that gave the presence or absence of an
MCC in the examined ROI. Final images with suspicious
ROIs containing MCCs were shown to radiologists.
Results appeared to be interesting enough to compete
with indirect detections. Extra studies could prove direct
detection to be a better approach as compared to indirect
detection CAD schemes.

Keywords: breast cancer, digital mammography, mam-
mograms, artificial neural networks, direct detec-
tion, indirect detection, clusters of microcalcifications,
computer-aided diagnosis.

Introduction

At present, breast cancer is a major public health
problem and is the leading cause of cancer and
the second cause of death in Europe (Le code
Européen 95). In western countries, about one
out of 10 women will develop breast cancer in
their lifetime. With ageing population, statistics
are getting worse as shown by the progression
of breast cancer in woman lifespan in the United
States: 1 out of 20 women in 1940, 1 out of 14
in 1960, 1 out of 11 in 1980 (Hoffman et al 94)
and 1 out of 8 in 1993 (Winfield et al 94).

Early diagnosis is the most important factor in
mortality reduction (Feig 93). The best way to
provide the earliest diagnosis is systematic mass
screening by mammography. Such a screening,
if applied in good conditions and generalized to
all the population, would allow a decrease of
30% in breast cancer mortality (Wald et al 94,
Cuckle 91). Mammography allows the detec-
tion of very early signs of breast cancer, one of
the major signs being clusters of microcalcifi-
cations (MCCs).

Computer-aided diagnosis (CAD) may contri-
bute to solve some of the problems raised by
mass screening in breast cancer detection. Sev-
eral studies have shown that missed lesions
could be reduced by half when radiologists were
given computer prompts with regard to possi-
ble abnormalities (Vyborny 94, Kegelmeyer et
al 94, Chan et al 90), and that artificial intelli-
gence techniques could provide a correct benign
to malignant classification ratio that is more ef-
ficient than the one given by general radiologists
not specialized in mammographic reading (Vy-
borny 94, Getty et al 88, Wu et al 93).

In this study, we developed a CAD scheme to
help radiologists in mass screening of breast
cancer by prompting them for MCCs. Nearly
all the teams publishing about MCCs detection
use an indirect scheme (Chan et al 90, Davies et
al 90, Chan et al 87, Clarke et al 94, Fam et al 88,
Bankman et al 91, Bankman et al 93, Stafford
et al 93, Nishikawa et al 93, Nishikawa et al 95,
Karssemeijer et al 92, Qian et al 95) and real-
ize their detections by first detecting individual
microcalcifications, and then use these previ-
ously detected microcalcifications to detect the
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Fig. 1. Progression of ROIs with partial overlapping
over a half mammogram.

clusters. In this study, we have not detected
individual microcalcifications, but we have re-
alized a direct detection of clusters, without
using previously detected microcalcifications.
We wanted to avoid adverse effects inherent
to indirect detections, the numerous false posi-
tive microcalcifications detected by this type of
schemes (Baum 97a, Baum 97b).

Material

Mammograms

The 50 mammograms used for this study were
obtained from the Curie Institute in Paris and
have been selected by expert mammographers
as being particularly difficult and subtle to di-
agnose. Cases were selected among patients
who had undergone a biopsy with X-ray and an
histologic examination of the removed tissue to
confirm the existence of the MCCs detected by
mammographers.

Digitization of Mammograms

All mammograms were acquired with the dedi-
cated mammographic system UM Philips Mam-
modiagnos at 28 kV. A Kodak ortho MA mam-
mographic film was used.

The films were digitized on a rectangular sur-
face containing all of the breast tissue and its
close surroundings (air). The spatial resolution
was 50 pum/pixel and the quantification was 8
bits/pixel allowing a dynamic range of 256 grey
levels on a CCD scanner. The average size of

the resulting digital images was 3000 x 1500
pixels.

Methods

Extraction of Parameters

A set of parameters was computed to character-
ize clusters of microcalcifications and was used
as input in the neural network for discrimina-
tion.

Digital images were processed by 128 x 128
pixels regions of interest (ROIs). ROIs were
taken all over the image with a step of 96 pixels
(representing a 32 pixels overlapping) for width
and height (Figure 1).

Twenty four parameters were computed on each
ROI: Fourier transform (10 parameters), Hu
moments (7 parameters), granulometry (6 pa-
rameters), variance (1 parameter). Each of the
24 parameters was entered in a neural network
with 24 input cells to discriminate between two
classes: presence or absence of a cluster of mi-
crocalcifications in the ROI analyzed. Thus,
instead of directly pointing to a cluster, we in-
dicated one or several areas (ROIs) containing
a potential cluster of microcalcifications.

Choice of methods

Our aim was to detect an MCC in a ROI To
do this, we had several possibilities. When we
looked at MCCs, we could see them in different
presentations: a cluster in the centre of the ROI;
shifted somewhere in that ROI; a large or a small
cluster; or a cluster with different orientations.
To simplify the problem, we can reduce the wide
variety of cluster presentations in ROIs by uti-
lizing parameters coming from mathematical
methods that are invariant to transformations
such as translation, rotation or scaling. Image
analysis provides some of these descriptors. We
chose four of them, belonging to three different
domains: frequency domain (FFT), mathemat-
ical morphology domain (granulometry), and
statistical domain (Hu moments, variance).

Fourier parameters

The Fast Fourier Transform (FFT) is an algo-
rithm that computes the Fourier transform, de-
fined in a continuous space, to a discrete space
like a digital image. We used two properties of
the FFT:
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Fig. 2. FFT magnitude invariance: (a) concentric bands, (b) virtual band with inner radius of 4, and outer radius of
33 pixels, (c) virtual band divided into 10 sub-bands.

— shifting invariance: when an object is trans-
lated within an image, the FFT magnitude of
that image does not change;

— rotation invariance in specific conditions: ro-
tating an object with an o angle within an image
will produce the same o angle rotation in the
Fourier transform magnitude. Rotation invari-
ance can be obtained if we divide the Fourier
spectrum representation space into concentric
bands (Figure 2a). Thus, we can compute the
energy within each band and obtain a texture
description that is invariant to rotation.

The analysis of energy bands shows MCCs in
a specific range of frequencies. When FFT is
centered in a 128 x 128 pixels ROI, this range
corresponds to a virtual band having an inter-
nal radius of 4 pixels and an external radius of
33 pixels (Figure 2b). In this study, we di-
vided this virtual band into ten 3-pixels wide
sub-bands (Figure 3c). On each of these ten
sub-bands, we computed the mean energy per
pixel (sum of grey levels divided by the num-
ber of pixels). These 10 energies constituted 10
parameters related to FFT.

Hu moments parameters

An image may be described by its outline or by
the part inside the outline. Hu moments belong
to methods allowing the description of a region
by its inner part, implying a thickness different
from zero (e.g. the line has a null thickness, then
it cannot be described by Hu moments (Rauber
et al 94)). MCCs have a thickness different
from zero. J

We considered an image f represented by a ma-
trix (x,y) where x and y were the coordinates
of a pixel and f(x, y) was the grey level of that
pixel.

The definition of a p + g order moment m,,, for
the image f is:

qu:ZZxquf(x’y), p,g=0,12 ...
x ¥y

From the centered and normalized order 2 and
3 moments, Hu extracted 7 moments, invari-
ants for translation, rotation and scaling (Hu 62,
Gonzalez et al 92). We used these 7 moments
as 7 additional parameters.

Granulometry parameters

The principle of mathematical morphology is
to compare an unknown structure (e.g. image to
be studied) to a set of forms, the structuring el-
ements, for which all the characteristics (form,
size) are known (Schmitt et al 94).

Granulometry is a branch of mathematical mor-
phology. Granulometry filters particles of a de-
termined size in an image (Gonzalez et al 92).
For this filtering we used an operation called
opening, described in (Schmitt et al 94).

When a structuring element is applied to an im-
age containing particles of different sizes, those
particles which do not contain the structuring
element, will disappear. Then, it is possible to
“sift” an image by using an opening with struc-
turing elements of increasing sizes.

In our study, microcalcifications were assimi-
lated to particles. When the structuring element
size was larger than the size of microcalcifica-
tions, these were eliminated from the image as
were all the other objects having a size under or
equal to that of the microcalcifications.

If we consider an image as an horizontal plane
and grey levels as an “altitude”, the represen-
tation of a grey-level image becomes three-
dimensional, and the grey-level sum of all the
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Fig. 3. Multi-layer perception (MLP) used. Nodes (circles) are organized in layers. All nodes from one layer are
connected to all nodes in the following layer. Forward propagation is from input to output layer.

pixels of an image will be called the “volume”
of that image.

Morphological opening of an image f, noted
fBg> applied with structuring elements having
an increasing size R, progressively suppresses
the very subtle structures like noise, and at a
later stage, microcalcifications. If we substract
from the initial image f the image fz, resulting
from the opening, the new image obtained re-
veals microcalcifications for some specific val-
ues of R. If we take the mean volume m(R)
(sum of grey levels divided by the number n of
pixels) of the new image, R varying from 1 to
6, we can extract 6 granulometry-related m(R)
parameters according to the following equation:

volume(f — fz,)

n
L s o203

m(R)
R

Il

n = number of pixels.

These parameters are invariant for translation
and rotation, but not for scaling.

Variance parameter

One of the characteristics allowing radiologists
to visually detect an MCC is the cluster contrast
from the surrounding tissue. Grey-level vari-
ance is a measure of the contrast of an image.
Variance is easily computed and invariant for
translation, rotation and scaling. It was used as
the last parameter.

Avrtificial Neural Network

Choice

In order to establish a discrimination between
the 24 parameters, we chose a multi-layer per-
ceptron (MLP) neural network for the following
reasons:

— absence of a model sufficiently precise for
our needs. The huge variation of the images
to be analyzed, including normal and abnor-
mal breast tissues has precluded, until now, any
team from building a model which would take
into account the diversity encountered. Thus, a
learning method more appropriate than a con-
ventional algorithm has been considered, taking
into account the following;

— the nature of the problem to solve suggests a
highly non-linear problem for which standard
techniques of statistical analysis are very com-
plex to use. By contrast, neural networks are
very easy to use with such a non-linear prob-
lem;

—absence of strong assumptions concerning the
shapes of underlying distributions. For exam-
ple, when we use neural networks, the distri-
bution of data is not assumed to be Gaussian.
Thus, neural networks prove to be more robust
when distributions are generated by non-linear
processes and are strongly non- gaussian (Lipp-
mann 87).

Architecture

The topology of the net is a multi-layer percep-
tron (MLP) feed-forward network.
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We use a 3-layer perceptron since we can form,
with this number of layers, arbitrarily com-
plex decision regions and can separate meshed
classes. Such an MLP can form regions as
complex as those formed with mixed distri-
butions and nearest-neighbor classifiers (Lipp-
mann 87).

The first layer, or input layer, had 24 nodes for
each of the 24 parameters. All input nodes were
fully connected to the hidden layer nodes.

The second layer, or hidden layer, had 4 nodes
fully connected to the output layer. The num-
ber of hidden nodes was determined by repeated
trials.

The third layer, or output layer, had a unique
node to discriminate between two classes: the
presence or the absence of a cluster of micro-
calcifications in the ROIs to be examined. The
output was a continuous value between 0 and
1, and could be seen as the estimation of the
probability to have a cluster (conditionally to
the observation of the 24 parameters presented
as input).

Learning

All weights were initialized to small random
values. Weight adaptation was done by apply-
ing the standard error back propagation (EBP)
algorithm in five steps (Lippmann 87):

All node offsets were initialized to small ran-
dom values between —0.1 and +0.1. For all
nodes, we used a sigmoidal non-linearity given
by the equation:

1

fe) = Treeo

General Algorithm

We began to digitize mammograms on their
complete area containing breast tissue and its
close surroundings. On these full size digitized
mammograms, we extracted ROIs as previously
described. The choice of the size of ROIs was
determined by two constraints. The first one
was the ROI size that should be close to an MCC
size (1 cm?) (Chan et al 87, Fam et al 88, Sick-
les 86, Freundlich et al 89, de Lafontan et al 94,
Lamarque et al 94) but should not exceed that
size, which has a maximum of 200 x 200 pix-
els with the chosen resolution of 50 um/pixel.

The second constraint was related to the opti-
mization of FFT calculus for which width and
height of ROIs should be a power of two. Thus,
the closest ROI size was set to 128 x 128 pixels
(0.64 x 0.64 cm). All processings were calcu-
lated on each ROI. The study was segmented
into two phases, learning and testing.

The learning phase started with the creation of
the learning database (LDB). The LDB was
made of 190 ROIs containing an MCC and 340
ROIs containing no MCC. Among the 50 initial
images, 24 were reserved for learning. Learn-
ing ROIs were selected by an expert mammo-
grapher among these 24 mammograms. Then,
24 parameters were computed for each of these
ROIs, normalized, and served as input in the
MLP. The desired output was 1 for a ROI con-
taining an MCC and 0 for a ROI containing
no MCC. After learning, values of the MLP
(weights) were kept for later use in the test
phase.

The test phase began after the learning phase
was completed, and underwent a similar course.
The 26 remaining mammograms forming the
test database (TDB) were segmented in ROIs
on the entirety of their surface, leading to hun-
dreds of ROIs per test mammogram. The 24 pa-
rameters were computed on each of these ROIs,
and normalized. Parameters entered as input
in the MLP gave, for each ROI, a continuously
valued output between 0 and 1, depending on
the presence of a “full” MCC, a “partial” MCC
or the absence of MCC. We considered that
a ROI was containing an MCC when the cor-
responding output was above or equal to 0.5.
This threshold was experimentally determined
to have approximately the performance of a ra-
diologist under mass screening conditions, that
is to say about 70% of correct detection [Hol-
land 82, Kimme-Smith 92]. The location of
a ROI containing an MCC was pointed, in the
displayed mammogram, in the computer screen.
Contiguous ROIs containing an MCC delimited
an area containing a “complete” MCC, consti-
tuted of several “partial” MCCs.

Upon termination, automated detection of “com-
plete” clusters was compared to the detection by
a radiologist expert in mammographic reading.
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Results

The performance of our fully automated di-
rect detection scheme was evaluated with the
26 mammograms from the TDB. Each of these
mammograms contained one or two MCCs rep-
resenting an overall number of 30 MCCs. All
these MCCs were qualified by experts as be-
ing “difficult” or “very difficult” to detect. 540
ROIs were used for the LDB composed of 190
ROIs with MCCs and 340 ROIs containing no
MCCs. 11472 ROIs were automatically ex-
tracted from digital mammograms belonging to
TDB.

Results are given in two forms:
— a form compatible with direct detection;
— a form compatible with indirect detection.

Since direct detections used ROIs to compute
all their processings, results are given in terms
of the ROIs containing:

—an MCC and being correctly detected = true
positive MCC (TP MCC);

—no MCC and being detected as containing an
MCC = false positive MCC (FP MCC).

Then, among the 30 existing MCCs, if we look
at the FP ratio for a TP ratio of 70% (that is,
21 MCGCs correctly detected among 30), the FP
ratio from our algorithm was 60 FP ROIs out
of a total number of 11472 ROIs analyzed. The
FP ratio is then 0.52% (see Table 1).

For comparison purposes with indirect detec-
tions (as far as we can compare them), our re-
sults were also expressed in terms of FP MCCs
per mammogram. Since we obtained 60 FP
ROIs out of 26 mammograms, we had an aver-
age of 2.3 FP ROIs per mammogram.

Discussion and Conclusion

One of the main difficulties in the detection of
MCC:s is the high similarity between the signal
to detect (MCCs) and the surrounding tissue,
both spatially and in frequency. If one does not
want to miss a potential cancer, a very sensitive
detection is needed, and then a high number of
objects close in aspect to microcalcifications,
but that are not useful, will be detected at the
same time.

In indirect detection, the first thing which is
done is to detect all the individual microcalci-
fications. It is during this first step that one
encounters the main problem of this type of
detection. If one wants to detect all the ex-
isting individual microcalcifications (that is, a
high sensitivity), one detects at the same time
a large amount of undesired objects (that is,
a low specificity) that we call false positives
(FPs). The difficulty is to find a way to elim-
inate all these FPs. After several processes to
eliminate FPs, clustering criteria are applied to
determine if the remaining microcalcifications
can form an MCC. The problem is at the level
of FP microcalcifications that are close enough
to each other to form a cluster that will be a FP
MCC.

To avoid such an adverse effect, we chose direct
detection. In this type of scheme, we do notrely
on previous detection of individual microcalci-
fications, that is to say on potential “errors” due
to FPs inherent to the indirect detection scheme.
The difficulty in direct detection is to find a way
to describe the clusters in such a way that is truly
representative.

Wau et al. 92 Our study
Resolution 0.1 um/pixel | 0.05 um/pixel
Dynamic 10 bits/pixel 8 bits/pixel
Number of mammograms 34 50
ROI number for learning 56 540
ROI number for testing 56 11472
Size of ROIs 3.2 x 3.2mm” | 1.08 x 1.08 cm”
True positive ROIs 70% 70%
False positive ROIs 20% 0.52%
Type of direct detection image pixels parameters

Table 1. Comparative chart for the two direct detections.
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We differentiate between two types of direct de-
tection that can be used alone or in combination:

- use of image pixels, directly or after process-
ing;
- use of parameters calculated from image pix-
els.

In this study, we chose a direct detection CAD
scheme using parameters calculated from image
pixels.

In literature, we found only one other team that
used a direct approach (Wu et al 92). In their
study, they tried to detect both individual mi-
crocalcifications and MCCs. We considered
only the part related to MCCs. The test was
performed with 20 combinations of randomly
selected training and testing ROI pairs from the
database. Pixels of ROIs were used in two neu-
ral networks. The networks were able to detect
clusters in the frequency domain, but not in the
spatial domain. Frequency domain detection
gave 20% of FP MCCs for 70% of TP MCCs
detected (see Table 1).

If we compare our results to those of (Wu et
al 92), we observe a dramatic decrease in FP
MCCs since for 70% of TP MCCs we had only
0.52% of FP MCCs (compared to 20%). It is
difficult to draw a conclusion, since the reason
of these results is probably multifactorial as both
studies were conducted on different databases.

Nevertheless, we think that two explanations
may be relevant: the representativity of data-
bases and the appropriate choice of parameters
to describe MCCs.

In their study, they used a small number of ROIs
for learning and testing. We know that, to be
useful, the databases must be representative of
the problem to be solved. To be representa-
tive, one must choose a high number of ROIs
to take into consideration the high variety of
visual aspects of the normal breast tissue and
types of clusters. We tried to take a large train-
ing database, but this one has to be selected
manually by an expert, to include representative
areas. This is a very tedious and time consum-
ing task to accomplish and could be one of the
reasons why databases are small. Accordingly,
the initial set of mammograms is also very im-
portant.

Another problem is to find parameters that can
describe and differentiate MCCs from the sur-

rounding breast tissue. It seems there is no
theory to solve this problem, and various stud-
ies did not show a clear superiority of one of
the methods over the others. Our approach
wanted to address two problems: reduction of
the high diversity, and then the complexity of
visual presentations of ROIs; and the compen-
sation for the probably insufficient diversity of
databases. For that purpose and in order to de-
scribe MCCs on these databases, we found it
appropriate to use methods that are invariant to

‘geometrical transforms that MCCs can present,

such as translation, rotation and scaling.

Concerning indirect detection, even though the
methodology is different, a comparison with di-
rect detection is possible if we use the results
in literature as the number of TP MCCs per
mammogram, which is not always possible to
do. As mentioned for direct detection, the same
restrictions apply to the comparison of results
since data sets were different in all studies. Our

-detection is roughly within the range of perfor-

mance of indirect detection, but seems inferior
to the best indirect detection schemes which de-
tect about 1 FP MCC per mammogram for 85%
of MCCs.

In this study, our aim was to use direct detection
of MCCs instead of indirect detection in order
to see if it was possible to avoid the adverse ef-
fects related to indirect detection CAD schemes
and to obtain a very low percentage of FPs.

Results show that we achieved our goal since
11412 ROIs out of 11472 have been correctly
classified, giving a correct discrimination above
99%, and performance of our algorithm is still
increasing as we are increasing the learning
database, qualitatively and quantitatively. The
direct detection approach is then more than vi-
able and is even competitive, compared to indi-
rect detection.

The scanner available at the time of our study
was an 8 bit/pixel scanner, since the availabil-
ity of a dedicated 12 bit/pixel scanner espe-
cially designed and under construction for that
purpose was delayed. Experiments will be con-
ducted with the 12 bit/pixel scanner as soon as
available and will permit a comparison to see if
there really is an increase in performance com-
pared to an 8 bit/pixel scanner.
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If we want a daily use in clinical practice, fur-
ther studies are needed since the results are still
neither sufficient nor reliable enough.
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