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Multi-Step Differential Approaches
for the Localization of 3D Point
Landmarks in Medical Images
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In this contribution, we are concerned with the detection
and refined subvoxel localization of 3D point landmarks.
We propose multi-step differential approaches which are
generalizations of an existing two-step approach for sub-
pixel localization of 2D point landmarks. This two-step
approach combines landmark detection by applying a
differential operator with refined localization through a
differential edge intersection approach. In this paper, we
investigate the localization performance of this two-step
approach for an analytical model of a Gaussian blurred
L-corner as well as a Gaussian blurred ellipse. By
varying the model parameters, differently tapered and
curved structures are represented. The results motivate
the use of an analogous approach to 3D point landmark
localization. We generalize the edge intersection ap-
proach to 3D and, by combining it with 3D differential
operators for landmark detection, we propose multi-step
approaches for subvoxel localization of 3D point land-
marks. The multi-step approaches are experimentally
tested on 3D synthetic images and 3D MR images of
the human head. We show that the multi-step ap-
proaches significantly improve the localization accuracy
in comparison to applying a 3D detection operator alone.

Keywords: 3D anatomical point landmarks, 3D differen-
tial operators, 3D differential edge intersection approach,
subvoxel localization.

Introduction

The registration of 3D medical images such as
Magnetic Resonance (MR) and X-Ray Com-
puter Tomographic (CT) images with the aim
to combine complementary information from
different data sets is important, for example,
for the planning of neurosurgical interventions,
radiotherapy planning, and therapy evaluation.
One possibility to register two images is a point-
based approach, where corresponding anatom-
ical points, denoted also as point landmarks,

are localized in the images and then are used
as features to compute a geometric transforma-
tion for mapping one image onto another (e.g.,
Bookstein (1989), Rohr et a.(1996)). Poten-
tial landmarks of the human head are salient
tips, which can be found, for instance, on the
ventricular system, the skull base, as well as
on other anatomical structures. Usually, such
points have been localized manually, which is
time-consuming and often lacks accuracy. An
alternative to this is a semi-automatic proce-
dure, which has the advantage that the user
can interactively control the results: First, the
user determines an approximate position of a
specific landmark. Second, to extract poten-
tial landmark candidates, a computational ap-
proach is applied within a region-of-interest
(ROI) around the approximate position. Third,
the user selects the most promising candidate.
The computational approach has to reliably de-
tect and to accurately localize prominent points.
Recently, 3D differential operators have been
introduced which are, however, only designed
for the detection of 3D point landmarks (Thirion
(1994), Rohr (1997), Beil ez al. (1997)).

In this contribution, we propose multi-step ap-
proaches for 3D point landmark localization,
combining landmark detection with additional
steps for refined localization. The multi-step
approaches are based on an existing two-step
approach of Forstner and Giilch (1987) for sub-
pixel localization of 2D point landmarks. This
approach combines landmark detection by ap-
plying a 2D differential operator with refined
localization through a 2D differential edge in-
tersection approach. In this paper, first, we
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investigate the localization performance of the
two-step approach for a 2D analytical model
of a Gaussian blurred L-corner and a Gaussian
blurred ellipse. By varying the model param-
eters, differently tapered and curved structures
are represented. The superior localization per-
formance of the two-step approach in compar-
ison to applying a 2D detection operator alone
motivate the use of an analogous approach for
3D point landmark localization. We then gener-
alize the differential edge intersection approach
to 3D and combine it with existing 3D differen-
tial operators for landmark detection to obtain
multi-step approaches for subvoxel localization
of 3D point landmarks. The multi-step ap-
proaches are experimentally tested on 3D syn-
thetic images and 3D MR images of the human
head.

Two-step Approach for Localizing 2D Point
Landmarks

Forstner and Giilch (1987) proposed a two-step
approach for subpixel localization of 2D point
landmarks. First, we summarize this two-step
approach. Then, we investigate the localiza-
tion performance of the two-step approach in
comparison to applying a 2D detection opera-
tor alone. We study a 2D analytical model of a
Gaussian blurred L-corner as well as a Gaussian
blurred ellipse.

Description of the Approach

Landmark detection The used differential
operator (see Forstner (1986), Noble (1987))
exploits the matrix (up to a factor)

N = ( Zingc,' Zigx.-igy.- ) ‘
ngxig)h' Zigy,'

The subscripts x and y of the image function
_g(x, y) stand for the partial derivatives in the re-
spective spatial direction and the sum index i
denotes the spatial location. The operator reads

P = S (1)

where det(-) denotes the determinant and #r(:)
denotes the trace of a matrix. Each point

x = (x, y)in the image is assigned the measure
in (1), where the matrix N is usually computed
in a symmetric and quadratic observation win-
dow of certain size around x. Point landmarks
are detected by searching for local maxima of
the operator responses.

Refined localization Suppose an L-corner has
been detected and an observation window is
placed around the detected position capturing
sufficient edge information of the structure (see
Fig. 1, where x; denotes the detected posi-
tion and the observation window is drawn with
dashed style; x* denotes the position of the tip,
where the two edges meet).

Fig. 1. Sketch of the 2D edge intersection approach,
where x4 denotes the detected position and x* denotes
the correct position of the tip, where the two edges meet.
The observation window around x, 18 drawn with
dashed style.

For simplicity, a local coordinate system with
the detected point as origin is chosen. At each
edge point in the observation window a tan-
gent is defined to locally approximate its cor-
responding edge direction. For this the image
gradients are taken as normals to the tangents.
The tangents are represented in the Hessian nor-
mal form. For example, for a point x; with
gradient Vg; the Hessian normal form reads
< Vgi,Xx>=< Vg, X; >, where < -, - > de-
notes the inner product. This is also illustrated
in Fig. 1, where the tangent at X; is drawn with
bold style. Rewriting the tangent equation as
ei(x) =< Vgi, X — X; > yields the perpendicu-
lar distance from x to the tangent at x;. Note
that the distance is implicitly multiplied with the
gradient magnitude since Vg; generally is not
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Fig. 2. a L-corner with aperture angle § b Ellipse with semi-axes a and b. The positions of the tips are marked
through black dots.

a unit vector. An estimate for the position of
the tip can be obtained through intersection of
all tangents using the least-squares method, that
is, through minimization of the residual error

function
B(x) = > &(x)> (2)

So far, solely edge points have been considered.
However, due to implicitly weighting the resid-
ual errors with the gradient magnitude, it is pos-
sible to give up this restriction and to include in
the sum in (2) all points within the observation
window. Points in rather homogeneous regions
with low gradient magnitude should hardly con-
tribute to the sum anyway. On the other hand,
edge points with generally high gradient magni-
tude should actually force a small distance from
the position estimate to their corresponding tan-
gent. Finally, the condition VE(x) = 0 yields a
system of normal equations

Nx* =y, (3)

where x* denotes the estimated subpixel posi-
tion of the tip, N is the matrix from above, and

i ( Y eki + 2 gugyi ) |
Zi 8xi8yiXi + Z;’ yiYi

Localization Performance for 2D Analytical
Models

The localization properties of the first step of
the two-step approach of Forstner and Giilch
(1987), that is, applying a detection operator
alone, have been analyzed in Rohr (1994) for
an analytical model of a Gaussian blurred L-
corner (see Fig. 2a for the unblurred structure,
where the position of the tip is marked through

a black dot). It has been shown that the 2D dif-
ferential operator in (1) yields systematic local-
ization errors w.r.t. the correct position of the
tip. In the following, we analyze the localiza-
tion capabilities of the two-step approach for
the analytical model of the Gaussian blurred L-
corner and compare the achieved accuracy with
that resulting from the 2D detection operator
alone. We also analyze the localization capa-
bilities of the two-step approach for a Gaussian
blurred ellipse (see Fig. 2b for the unblurred
structure, where the position of the considered
tip is marked through a black dot).

First, we have considered the detection opera-
tor in (1) and have determined the locus of the
maximal operator response along the symmet-
ric axis of the structures, that is, the x-axis. For
the computation of the operator responses we
have used the approximation

N ~ Vg(x)Vg(x)” + cHy(x)?,

where Vg(x) is the gradient of the respec-
tive Gaussian blurred function (see below) and
H,(x) is the Hessian matrix. The parameter ¢
is a measure for the size of the observation win-
dow of the operator. We have used ¢ = 2/3,
which stands for a window width of 3pix (pix
denotes spatial unity). Then, for the 2D differ-
ential edge intersection approach we have com-
puted the matrix N and the vector y and have
solved the system of normal equations in (3) to
obtain the position estimate.

Results for the L-corner The model func-
tion of a Gaussian blurred L-corner with unit
height and aperture angle 8 can be obtained
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Fig. 3. a and b Localization accuracy for a Gaussian blurred L-corner with o = 1. The distances e from the localized
positions to the correct corner position at (0, 0) are depicted in dependence on the aperture angle 8. The solid line
results from the detection operator alone and the dashed line results from the two-step approach. Observation
windows of sizes 3 x 3 pixels (a) and 15 x 15 pixels (b) have been used.

through convolution of the ideal function shown
in Fig. 2a as

1 ifx>0 A |y gxtan%,
0 otherwise

1 ) = {

with a Gaussian blur function G(x, o) = ﬁg

exp(~(x2 + yz)/(202)), where o denotes the
standard deviation (see Rohr (1992) for details).

In Fig. 3a, the distances e from the localized po-
sitions to the correct corner position at (0, 0) are
depicted in dependence on 3. The standard de-
viation of the Gaussian blur function has been
set to o = 1. The solid line results from the
detection operator alone and the dashed line re-
sults from the two-step approach using the edge
intersection approach. The size of the observa-
tion window for the edge intersection approach
has been the same as that for the detection oper-
ator, that is, 3 x 3 pixels. The localization error
for the detection operator alone heavily depends
on the aperture angle . The localization error
is very small for values near f = 180° and high
for small values of . The position estimates
resulting from the edge intersection approach
are significantly more accurate. In fact, the
additional second step improves the accuracy
by about 1pix for a large range of values of §.
Moreover, we can obtain even better position
estimates if we further enlarge the observation
window for the edge intersection approach and
thus take more edge information into account.
The result for a window size of 15 x 15 pixels

is shown in Fig. 3b. It can be seen that the
localization error is reduced to nearly zero.

Results for the Ellipse The ellipse with semi-
axes a and b in Fig. 2b can be described by

g R
Exx,ab)={ 1 Tatpsl
0 otherwise.
The Gaussian blurred ellipse can be obtained
through convolution with G(x, o). The con-
sidered landmark is the tip at (@, 0). We have
investigated ellipses with different shapes. For
this we have varied the ratio a/b. For instance,
a large value of this ratio gives a more tapered
shape and a value near 1 gives a more rounded
shape. We have permanently set b = 4 and have
varied a in the range of a = 6...128.

In Fig. 4a, the distances e from the localized
positions to the position of the tip are depicted
in dependence on the ratio a/b. The standard
deviation of the Gaussian blur function has been
set to o = 1. The localization error resulting
from the detection operator alone amounts on
average to a bit more than 1lpix. Again, the
second step of the approach significantly im-
proves the localization accuracy. However, the
localization error increases for the edge inter-
section approach if we further enlarge the ob-
servation window. This is because the ellipse
deviates from the assumed polygonal model and
this deviation increases if we enlarge the obser-
vation window. Nevertheless, in Fig. 4b it is
shown that even for an observation window of
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Fig. 4. a and b Localization accuracy for a Gaussian blurred ellipse with o = 1. The distances e from the localized
positions to the position of the tip at (a, 0) are depicted in dependence on the ratio a/b, where we have permanently
set b = 4 and have varied a in the range of @ = 6. .. 128. The solid line results from the detection operator alone and
the dashed line results from the two-step approach. Observation windows of sizes 3 x 3 pixels (a) and 7 x 7 pixels
(b) have been used.

size 7 x 7 pixels the position estimates resulting
from the edge intersection approach are signif-
icantly more accurate than those resulting from
the detection operator alone.

Our investigation has demonstrated the supe-
rior localization performance of the two-step
approach in comparison to applying a detection
operator alone and hence motivates the use of
an analogous approach for 3D point landmark
localization.

Extension of the Edge Intersection
Approach to 3D

Let us now generalize the edge intersection ap-
proach of Forstner and Giilch (1987) to 3D. In
the 2D case, we have dealt with an L-corner to
motivate the approach. A 3D generalization of

Fig. 5. Tetrahedron with aperture angle 8. The position
of the tip is marked through a black dot.

an L-corner is a tetrahedron, which is shown in
Ew. 5.

Suppose we have obtained an approximate po-
sition of the tip, for instance, by applying a
3D detection operator, and have placed there an
observation window which captures sufficient
edge information. The position of the tip of
the tetrahedron is the intersection point of three
plane surfaces, which correspond to 3D edges.
Analogously to the 2D case, we locally approxi-
mate the surfaces at a landmark through tangent
planes. The image gradients are taken as nor-
mals to the tangent planes. The Hessian normal
form of the tangent plane at a point x; reads
< Vgi, X >=< Vg, x; >. The position of the
tip can be estimated through intersection of all
tangent planes using the least-squares method,
that is, through minimization of a residual error
function which formally agrees with that in (2)
of the 2D edge intersection approach. Note that
as in the 2D case the gradient magnitudes im-
plicitly weight the residual error function. We
thus obtain a system of normalrequations

Nx* =y, (4)

where x* denotes the estimated subvoxel posi-
tion of the tip,

Zi g)%i Zi g1i§yi Z;‘ Exi8z
Zigxigyi Zigyg Zigyszgm
Zi 8x;8z Zi 8yifz Zi 8z

N =
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and

Z gJngf + Z gxlg)’zyl + E gx,gZ|Zt
Z 8xi8yXi T Z gy,)’l e E gy.ngzt
ZL 8xi8zi%i + Z g)’lgzlyt + Zg gzl‘ZL

Detection of 3D Point Landmarks

The 3D edge intersection approach described
above requires the detection of point landmarks.
Recently, 3D differential operators for point
landmark detection have been introduced in
Rohr (1997) which are 3D extensions of exist-
ing 2D corner detectors (Forstner (1986), No-
ble (1987), Rohr (1987), Rohr (1992)). The
operators only employ first order partial deriva-
tives and therefore do not suffer from poten-
tial instabilities of computing high order par-
tial derivatives. By contrast, other approaches
employ partial derivatives of up to order two
or three (Thirion (1994), Beil er al. (1997)).
The 3D operators essentially exploit the ma-
trix N in (4) and read Op3(x) = det(N)/tr(N),
Op3'(x)=1/tr(N~
The operators Op3 and Op3' are 3D extensions
of the operator in (1) (see Forstner (1986)),
whereas Op4 is a 3D extension of the opera-
tor of Rohr (1987, 1992). Experiments with
3D MR and CT images of the human head have
yielded similar promising results for the differ-
ent operators (see also Hartkens er al. (1998)).
The operators can also be related to the local-
ization uncertainty of the position estimate re-
sulting from the 3D edge intersection approach.
The localization uncertainty is given through
the covariance matrix 2 = 02N~!, supposing
that the residuals ¢; are independently and nor-
mally distributed with zero mean and variance
o2. Hence, the responses of the differential
operators can also be understood as scalar mea-
sures for the localization (un-)certainty of the
position estimate resulting from ‘the 3D edge
intersection approach.

Two-Step and Three-Step Approaches for
the Localization of 3D Point Landmarks

Based on the 3D detection operators and the
3D edge intersection approach, we here pro-
pose three multi-step approaches for the refined
localization of 3D point landmarks.

1), as well as Op4(x)=det(N).

i) Two-step approach

First, points are detected with either Op3,
Op3', or Op4, where a large operator size
is chosen for reasons of robustness w.r.t.
noise in images. Second, to refine the po-
sitions, a small operator size is chosen, and
the respective differential operator is ap-
plied within a small neighborhood around
the detected points. A similar approach
for 2D point landmark localization was
proposed earlier (Dreschler (1981), Rohr
(1987)).

ii) Two-step approach with subvoxel local-
ization
First, points are detected with either Op3,
Op3', or Op4. Second, the positions are
refined through the 3D edge intersection
approach. This scheme essentially is the
3D extension of the two-step approach of
Forstner and Giilch (1987).

iii) Three-step approach with subvoxel lo-
calization
This approach is a combination of the ap-
proaches i) and ii) and is therefore a three-
step approach. The first two steps corre-
spond to the two-step approach i). In the
third step, the position estimates result-
ing from i) are further refined through the
3D edge intersection approach.

Experimental Results

We present results from experiments with 3D
synthetic images and 3D MR images of the hu-
man head. The experiments have been carried
out in the KHOROS environment. The par-
tial derivatives have been estimated with 3D ex-
tensions of the 2D filters of Beaudet (1978).
For the detection step we have used a filter
size of 5 x 5 x 5 voxels. For the refinement
steps of the approaches i) and iii) filters of size
3 x 3 x 3 voxels have been used. The compo-
nents of the matrix N and the vector y in (4) are
the averaged values of the products of the par-
tial derivatives within an observation window
of a certain spatial extent. To study the lo-
calization accuracy of the different approaches
in dependence on the width w of the obser-
vation window, we have investigated various
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Fig. 6. a and b Localization accuracy for tetrahedrons with 5 = 90° and 8 = 45°, resp. The Euclidean distances e
from the localized positions to the position of the tip are c!clepicted in dependence on the width w of the observation
window.

widths starting with w = 3 voxels. The size of
the observation window for the 3D edge inter-
section approach has been the same as that for
the detection operator. Maxima of the detec-
tion operator responses have been determined
by alocal maximum search in neighborhoods of
3 x 3 x 3 voxels. In the case of several maxima
within the image, we have selected the candi-
date with the largest operator response.

Synthetic Images

We have investigated the localization accuracy
of the approaches 1), ii), and iii) as well as of
a 3D detection operator alone for synthetically
generated tetrahedrons and ellipsoids. In the
experiments, we have used Op3' for both land-
mark detection and the refinement steps of the
approaches 1) and iii).

Results for the Tetrahedron This structure is
a 3D generalization of an L-corner with aperture
angle 8. To construct the 3D object in Fig. 5,
the symmetric axis of the L-corner is spread
into the direction of the z-axis such that it also
encloses the angle § with the x-axis. This gives

1 fx>20A 0Lz x5 A

142
2 !

I(x,B)= y| <xt—z

0 otherwise,

wheres = tan 8, = tan(f/2),and 0°<B<90°.
The shape of the such constructed binary tetra-
hedron is determined by the aperture angle 3.

For example, the choice f = 90° gives the cor-
ner of a cube, while a small value of 8 gives a
very tapered structure.

In Fig. 6a, for a tetrahedron with B = 90° the
Euclidean distances e from the localized posi-
tions to the position of the tip are depicted in
dependence on the width w (in voxels) of the
observation window. DET denotes the detec-
tion operator. We see that applying the detec-
tion operator alone yields the worst results. Ap-
proach i) is only for w = 5 better than DET.
The position estimates resulting from the ap-
proaches ii) and iii) are significantly more ac-
curate than those resulting from DET and ap-
proach i). The accuracy gets worse for DET
and approach i) if w increases. By contrast, the
accuracy for the approaches ii) and iii) gets bet-
ter if w increases. In Fig. 6b, the results for a
much more tapered tetrahedron with § = 45°
are shown. The results are comparable with
those for the tetrahdron with 8 = 90°. How-
ever, for the approaches ii) and iii) the local-
ization error slightly increases if w > 11 and
w > 7, resp. We suspect that discretization
errors give rise to this effect.

Results for the Ellipsoid A binary ellipsoid
can be defined through

i x2 y2 z2
Eg(x,a,b,c): { 1 lf;+.-£7—2+c_2 =1,
0 otherwise,
where a, b, and c are the lengths of the semi-
axes in x-, y-, and z-direction, resp. We consider
as point landmark the tip at (0, 0, ¢).
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Fig. 7. a d an b Localization accuracy for ellipsoids with semi-axesa = 8, b =8,c =40anda = 16, b = 8, ¢ = 40,
resp. The Euclidean distances e from the localized positions to the position of the tip at (0, 0, c) are depicted in
dependence on the width w of the observation window.

In Fig. 7a, for a rotationally symmetric ellip-
soid with a = 8 b = 8,¢ = 40 the Eu-
clidean distances e from the localized positions
to the position of the tip are depicted in depen-
dence on the width w of the observation win-
dow. In Fig. 7b, the results for an ellipsoid with
a = 16, b = 8, ¢ = 40are shown. It can be seen
that for the first ellipsoid the position estimates
resulting from DET can be improved with ap-
proach i). However, for the second ellipsoid
the localization error for approach i) is partly
higher in comparison to DET. The position esti-
mates resulting from the approaches ii) and iii)
generally are significantly more accurate than
those resulting from DET and i). Approach ii)
improves the cuacracy w.r.t. DET by about 2-
3vox (vox denotes spatial unity). Approach iii)
yields for the first ellipsoid comparable results
asii). For the second ellipsoid the position esti-
mates resulting from approach iii) are generally
worse than those resulting from ii). In gen-
eral, for DET and approach i) the localization
error increases if the width w of the observation
window increases. We also note for the ap-
proaches ii) and iii) a larger localization error
for small and large values of w. For small values
of w too little information for the 3D edge inter-
section approach is incorporated and for large
values of w the approximation of the surfaces
through tangent planes gets worse.

3D MR Images of the Human Head

We consider as 3D anatomical point landmarks
the tips of the frontal, occipital, and temporal

horns of the ventricular system of the human
head, abbreviated by MC6, MC7 and MC13,
resp. The tips are indicated in Fig. 8a through
black dots within dashed circles. The letters ‘1’
and ‘r’ denote the respective hemispheric part.
In Fig. 8b, axial slices of a 3D MR image with
the horns of the ventricular system are shown.
The positions of the tips in the depicted slices
are marked through white crosses.

We here report on experiments for these land-
marks in three T1-weighted MR images. MR
Image 1 consists of 235 sagittal slices of 256X
256 voxels (voxel resolutionis 1 x 1 x lexmm?),
MR image 2 consists of 192 axial slices of
150 x 200 voxels (voxel resolution is 1.075x
1.075x1.075 mm?), and MR image 3 consists
of 120 axial slices of 256x256 voxels (voxel
resolution is 0.86x0.86 x1.2mm>). We have
manually specified the positions of these land-
marks in the investigated data sets and have
taken them as ‘ground truth’ positions, although
we know that manual localization of 3D land-
marks generally is difficult and may be prone
to error. Note also that we have only deter-
mined voxel positions, while the multi-step ap-
proaches ii) and iii) use the 3D edge intersec-
tion approach and hence yield subvoxel posi-
tions. We have respectively chosen a region-of-
interest (ROI) around the ‘ground truth’ posi-
tions and then have applied the computational
approaches described above. The size of the
ROI has been set to 21 x 21 x 21 voxels.or F
landmark detection and the refinement steps of
the approaches i) and iii) we have used the oper-
ator Op3. We have used the same filter widths
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Fig. 8. a Anatomical preparate of the ventricular system of the human head (adapted from Sobotta, 1988) b Axial
slices of a 3D MR image with the frontal, oceipital, and temporal horns of the ventricular system. The tips of the
frontal and occipital horns (left) and the tips of the temporal horns (right) in the depicted slices are marked through
white crosses.

LM/w | DET| i) ii) i) LM/w | DET| i) ii) iii)

1,2,0/0,1,0{ 0.08, 1.50,0.85 | 0.79, 0.27, 0.36 1,2,0[1,1,0] 0.03,1.50,0.13 | 0.30, 0.21, 0.
MC6|/3 ) & ) Ly s t) s ) MCﬁr/B 3 s by 131 0.30,0.21, 0.52

2.24 | 1.00 1.73 091 224 | 141 1.51 0.63

1,2,0(1,1,0{0.91,0.43,1.16 | 0.91,0.59, 1.00 1,2,0[1,2,0]0.84,090,0.76 | 1.44,0.23,1.27
MC61/5 ' MC6r/5 :

224 | 141 1.54 147 224 | 2.24 1.45 1.93

4,5,113,6,1[2.52,6.19,1.12 | 0.82, 7.46,0.48 3,2,0[2,1,0]1.80,1.58,0.14 | 0.62, 0,52, 0.15
MC71/3 MC7r/3

6.48 | 678 6.78 7.52 3.61 | 2.24 2.40 0.82

3,2,2(2,1,1] 053,096, 1.51 | 0.52,0.15, 0.86 3,2,0(3,2,0]0.75,0.61,0.82 | 0.28, 0.03, 0.89
MC71/5 ' P MC7r/5

412 | 245 1.86 102 3.61 | 3.61 1.27 0.93

1,2,0{1,1,1{0.79,1.88, 0.86 | 0.56, 0.06,3.31 0,1,2]0,1,1[ 091,041, 0.87 | 0.72,0.61, 1.31
MC131/3 ' e MC13ry3 | 7T

224 | 1.73 2.21 .36 2.24 | 141 133 1.61

2,2,1]2,2,1 092,121,088 0.59,095,0.55 1,1,5[1,1,4] 0.60,0.30,5.67 ] 1.51,0.75, 2.68
mc13i/s |~ : MC13r/5 !

3.00 | 3.00 1.76 1.25 5.20 | 4.24 571 3.17

Table 1. Localized positions of the ventricle landmarks in MR image 1. LM denotes the landmark, w denotes the
width of the observation window for the 3D detection operator and the 3D edge intersection approach. The
following columns give the relative localized positions as well as the Euclidean distances to the manually specified
landmark positions.

for estimating the partial derivatives as in the
experiments with the 3D synthetic images. The
size of the observation window for the 3D edge
intersection approach has been the same as that
for the detection operator. To alleviate sub-
jectivity, we have not used any thresholds on
the detection operator responses. In the case
of several detected points within the ROI, we
have selected that point with the largest opera-

tor response. The thus selected candidates have
been visually inspected for validity according to
the semi-automatic procedure described in the
introduction. Note, however, that some land-
marks have required special attention.

In Tabs. 1-3, the results for the ventricle land-
marks are shown. The first column gives the
considered landmark (LM) and the width w (in
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LM/w | DET | i) ii) i) LM/w | DET| i) ii) iii}
2,2,0(2,2,0] 1.61,1.16,1.04| 1.58,1.18,1.74 1,2,2(1,2,1]0.43,0.88,1.87 | 0.39,0.92, 0.24
MC61/3 MC6r/3
2.83 | 2.83 2.24 2.63 3.00 | 245 211 1.03
2,2,1|2,2,0{1.03,0.17,1.25 | 1.39,0.23, 2.78 1,2,2(1,2,2]0.24,0.26,1.64 | 0.71,0.28,1.59
MC61/5 MC6r/5
3.00 | 2.83 1.63 3.12 3.00 | 3.00 1.68 1.76
0,4,1[0,3,0[0.10,3.20,0.08 | 0.05,2.49, 0.97 1,5,3|1,4,2] 0.50,3.06,1.77 | 0.04, 1.07, 0.05
MC71/3 : MCT7r/3 !
4.12 | 3.00 3.21 2.67 5.92 | 4.58 357 1.07
0,4,110,4,1| 0.45,1.81,046 | 0.31,1.00,0.55 2,6,4(1,5,3[1.39,1.08,1.22 0.09, 0.53, 0.42
MC71/5 MC7r/5
412 | 412 1.92 1.18 7.48 | 5.92 2.14 0.68
, 2,1,2(2,2,1|2.20,1.38,2.71 | 252,447, 1.84||, 6,3,2(6,3,1|6.22,3.00, 1.63 | 5.82,3.00,1.08
'MC131/3 MC13r/3
3.00 [ 3.00 3.76 5.45 7.00 | 6.78 7.10 6.64
, 2,1,2(2,1,2| 1.86,1.86,3.49  1.62,2.66,2.96 ||, 6,3,1|5,3,1|6.50,3.16, 0.87 | 5.94, 2.67, 1.09
"MC131/5 "MC13r/5
3.00 | 3.00 437 4.30 6.78 | 5.92 7.28 6.60

Table 2. Localized positions of the ventricle landmarks in MR image 2. LM denotes the landmark, w denotes the
width of the observation window for the 3D detection operator and the 3D edge intersection approach. The following
columns give the relative Jocalized positions as well as the Euclidean distances to the manually specified landmark

positions.

LM/w | DET| 1) ii) iii) LM/w | DET| i) ii) iif)

1,2,0|0,1,0| 0.52,0.90,0.64 | 0.59,0.17, 0.06 0,2,1(0,1,1]0.55,1.13,1.34 | 0.53,0.09, 1.24
MC6l/3 MC6r/3

224 | 1.00 1.23 0.62 224 | 141 1.84 1.35

1,2,0(1,2,0{0.07,0.14,1.71 | 0.27,0.57,1.58 0,2,0[0,2,1|0.80,0.12, 1.52 | 0.54,0.02, 2.56
MC61/5 MC6r/5

2.24 | 2.24 1.72 1.70 2.00 | 2.24 1.72 2.62

2,3,1|1,2,0{1.09,0.39,0.77 | 0.14, 0.12, 0.75 0,2,0|0,1,0]0.30,0.38,0.32 | 0.05,0.44, 0.52
MC71/3 MC7r/3

3.74 | 2.24 1.39 0.77 2.00 | 1.00 0.58 0.69

2,3,1{2,2,1]0.03,1.76, 0.37 | 0.03,1.85,0.22 0,2,0/0,2,010.69,1.42,042 | 0.44, 1.67, 0.88
MC71/5 MCT7r/5

3.74 | 3.00 1.80 1.86 2.00 | 2.00 1.63 1.94
, 2,5,2(3,6,2(2.41,2.16,1.75 [ 2.98,3.75,1.29 || . 1,2,110,1,112.33,0.87,0.29 | 0,31, 0.33, 0.52
"MC131/3 MC13r/3

5.74 | 7.00 3.68 4.96 245 | 141 2.50 0.69
) 6,6,6|7,6,7| 4.66,7.63,7.40| 7.33,6.59,7.55 ||, 0,2,110,2,1]1.14,0.39,0.14 [ 1.27,0,0.27
"MC131/5 MC13r/5

1039 11.58 11.61 12.42 224 | 224 1.21 1.30

1able 3. Localized positions of the ventricle landmarks in MR image 3. LM denotes the landmark, w denotes the
width of the observation window for the 3D detection operator and the 3D edge intersection afproach. The following
|

columns give the relative localized positions as well as the Euclidean distances to the manua

y specified landmark

positions.

voxels) of the observation window for the de-
tection operator and the 3D edge intersection
approach. Then follow the respectively local-
ized positions resulting from the detection oper-
ator alone (DET) and the approaches i), ii), and
iii). All positions are relative w.r.t. the man-
ually specified landmark positions (top row of
a box). The values below are the Euclidean
distances to the manually specified landmark
positions. It can be seen that, in general, the ap-
proaches ii) and iii) yield the most accurate po-
sitions. Also, approachi) generally yields better
positions than DET, although not as good as the
approaches ii) and iii). The visual inspection
of the detected candidates for the left and right
temporal horns MC13Lr in MR image 2 and
the left temporal horn in MR image 3 has been
very difficult, since in these images the tem-
poral horns are poorly pronounced. Therefore,
also the positions of these landmarks resulting

from manual localization are rather uncertain.
All detected points for MC131,r in MR image 2
and MC13] in MR image 3 have extremely low
operator responses indicating high localization
uncertainties. Therefore, we have labeled the
respective entries in the tables by a question-
mark ‘?” meaning that for these images the
respective landmarks have not been considered.
For the right temporal horn MC13r in MR im-
age 3 two points with extremely high operator
responses have been detected. Visual inspec-
tion has revealed that the respective candidates
with the highest operator responses are false
detections and has therefore caused us to select
the candidates with the second highest operator
responses. To indicate the different selection
criteria in this case, we have labeled the cor-
responding entries in Tab. 3 by an asterisk “x’.
For the left occipital horn MC71 in MR image 1
and the observation window width w = 3 we
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landmark
MC13

MCé MCT

a

T 3 ot MR image

b

Fig. 9. a and b Localization accuracy of the detection operator alone (DET) and the approaches i), ii), and iii) for the
ventricle landmarks in the investigated MR images. The mean values € for both w = 3 and w = 5 of the Euclidean
distances from the localized positions to the manually specified positions are depicted w.r.t. each landmark (a) and

w.r.t. each MR image (b).

note a relatively large localization error. Visual
inspection has actually revealed a ‘double horn’
giving rise to two candidates with extremely
high operator responses. For w = 3 the candi-
date with the highest operator response is further
away from the manually specified position.

In Figs. 9a and b, the mean values e for both
w = 3 and w = 5 of the Euclidean distances
from the localized positions to the manually
specified positions are depicted w.r.t. each land-
mark and w.r.t. each MR image, resp. The land-
marks which are labeled by a question-mark in
Tabs. 2 and 3 have not been taken into account
for the computation of the mean values. The
graphs exhibit the superior localization capabil-

a

ities of the approaches ii) and iii) in comparison
to approach i) and the detection operator alone.

All in all, for DET the mean of the Euclidean
distances from the localized positions to the
manually specified positions amounts to 3.27vox
(vox denotes spatial unity). The two-step ap-
proach i) improves the accuracy w.r.t. DET by
0.59vox. Additionally using the 3D edge inter-
section approach further improves the accuracy
w.r.t. i) by 0.93vox. Thus, the three-step ap-
proach iii) improves the accuracy w.r.t. DET by
1.52vox. The two-step approach ii) improves the
accuracy w.r.t. DET by 1.14vox.

To visualize the localization capabilities of the
different approaches, we also show in Fig. 10b

b

Fig. 10. a Off-sagittal slice of MR image 1. The manually specified position of the tip of the left frontal horn is
marked through a white cross. b The localized positions at the tip of the left frontal horn in MR image 1 (w = 5) are
shown for the detection operator alone and the multi-step approaches i), ii), and iii} (from left to right) in axial,
sagittal, and coronal views (from top to bottom).
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orthogonal image views at the respectively lo-
calized positions for the tip of the left frontal
horn in MR image 1 (w = 5). The loca-
tion of the landmark within the human head is
marked through a white cross in a sagittal view
in Fig. 10a. Note that, due to technical reasons,
the subvoxel coordinates resulting from the ap-
proaches ii) and iii) have been rounded to voxel
coordinates.

Conclusion

We have investigated multi-step differential ap-
proaches for the detection and refined local-
ization of 3D point landmarks. The promis-
ing results due to our analytical investigation of
the 2D edge intersection approach of Forstner
and Giilch (1987) have motivated a general-
ization to 3D. Based on the 3D extension of
this approach, we have proposed two two-step
approaches as well as one three-step approach
for subvoxel landmark localization. These ap-
proaches combine landmark detection by ap-
plying a 3D differential operator with refined
localization through the 3D edge intersection
approach. We have experimentally tested these
approaches on 3D synthetic images and 3D
MR images of the human head. The multi-step
approaches with the 3D edge intersection ap-
proach have yielded the most accurate position
estimates.
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