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3D shape modeling is a key issue in the resolution of
major medical imaging problems. In this paper we
address the problem of the modeling of closed free
form anatomical shapes with spherical harmonics. We
define the basis of an ongoing project by illustrating,
through two preliminary applications, the interest of such
a modeling. After the presentation of spherical har-
monics, both for static modeling and for time-dependent
modeling, applications to the modeling and deformation
analysis of the vertebra shape from CT data, and to the
modeling of the endocardial surface from SPECT data
are successively depicted.
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Introduction

The two last decades have brought major ad-
vances in medical imaging. Today, the emer-
gence and constant improvement of computed
tomography, magnetic resonance imaging, nu-
clear imaging and other observation techniques,
allow us to image structures and functions in
three dimensions (3D). These new resources
convey new obligations: the concern is less to
produce aesthetic pictures of the anatomy (as it
has been seen in visualization) than to design
efficient health care procedures [Coatrieux, 96].
Some of the major issues in medical imaging are
generic and can be seen as belonging to com-
puter vision and graphics, others specifically
feature the medical field and the requirements
to deal with: image sensing, free form objects,
low contrast tissues, time varying properties
and moving (deformable) structures on the one
hand, and reliability and real time constraints

inherent to diagnosis and therapy objectives on
the other. Diagnosis is the first objective. In ad-
dition to the availability of observations, it relies
on our capability to extract, quantify and inter-
pret the underlying information to discriminate
the diseases.

In this context, 3D shape modeling has to deal
with specific features such as: free form sur-
faces that cannot easily be decomposed into
simple geometric primitives (they range from
smooth surfaces to complex shaped topologies);
significant inter-individual variations with time-
varying properties at local as well as global lev-
els; large spectrum of abnormal states (or dis-
eases) that can greatly modify tissue properties
and shapes or produce large deformations of
organ subparts; complex motions and deforma-
tions, on both normal and abnormal cases, on
which little prior knowledge is available. In re-
turn, 3D shape modeling is a key issue in the
resolution of major medical imaging problems
such as: the characterization and quantifica-
tion of anatomical shape features; the 3D re-
construction when the clinical protocols require
the acquisition of only a few of 2D images; the
registration of multiple views of the objects, or
multimodal observations, each corresponding to
a given parameter describing structural proper-
ties or functional behaviors; the materialization
of anatomical structures of interest in surgical
procedures assuming that the basic rule consists
in avoiding any damage to other structures.

This paper addresses the problem of the model-
ing of closed free form anatomical shapes with
spherical harmonics. Spherical harmonics are
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global functions that belong to the class of sur-
face harmonics, they have interesting features
for medical applications. Spherical harmonics
constitute a basis of orthogonal functions, on
which any finite energy and differentiable func-
tion can be expressed as a linear combination of
the basis functions. Moreover, the accuracy of
the modeling is arbitrarily defined by the level
of decomposition. In other words, the details
of a given shape are obtained by the highest
level harmonics. This paper defines the basis of
an ongoing project by illustrating, through two
preliminary applications, the interest of such
a modeling. After the presentation of spheri-
cal harmonics, both for static modeling and for
time-dependent modeling, applications to the
modeling and deformation analysis of the verte-
bra shape, and to the modeling of the heart left
ventricle (from clinical data) are successively
depicted.

3D Shape Modeling with Spherical
Harmonics

Techniques of shape modeling have been greatly
studied. A good review is given in [Bolle, 91].
The distinction between all the approaches can
be established according to some key criteria,
such as shape visualization, deformation, regis-
tration, characterization and classification. The
data describing the shape can be object-centered
or viewer-centered, and expressed in a cartesian,
spherical or other coordinate systems. Regular-
ity and sparseness of shape sampling depends
on the acquisition device and on the efficiency
of segmentation algorithms. One can also dis-
tinguish volume from surface models, both of
which can be expressed in discrete or analyti-
cal forms. For instance, shape models based on
voxels or octree constitute discrete volume rep-
resentations. When it comes to analytical sur-
face modeling, three kinds of representation are
formally considered, i.e., parametric, implicit
and explicit forms. Global representation uses a
single functional form to describe the surface as
a whole, whereas a piecewise representation is
based on locally defined functions that are given
in a parametric form. An example of piecewise
representation can be found in [Sequeira, 92,
where free form patches with polynomial func-
tions are used to model vascular shapes. Global
explicit representation forms can be illustrated

by thin plate splines [Bookstein, 89]. Concern-
ing global implicit functions, one can mention
quadric surfaces, that are widely used for ob-
ject representation purposes, and superquadrics
[Solina, 90][Bardinet, 96] which can be de-
formed in different ways, including tapering,
bending and making cavities. Nevertheless, su-
perquadrics meet some difficulties in modeling
complex shapes. Deformable models based on
superquadrics [Mclnerney, 96] have been used
to model and to characterize the shape and mo-
tion of the cardiac left ventricle [Pentland, 91].
Furthermore, hierarchical representations have
been presented in the literature to model sur-
faces in a multiresolution scheme. Significant
examples include: the multiresolution analysis
used, both for data compression and for data vi-
sualization with radiosity techniques [DeRose,
95]; the spherical wavelets in geophysics prob-
lems [Freeden, 95]; and also surface harmonics
which have recently been used in medical appli-
cations such as heart ventricle modeling [Ma-
theny, 95][Chen, 94], anatomical shape regis-
tration and characterization [Burel, 95a][Burel,
95b]. Hierarchical approaches also combine
several types of representations such as spher-
ical harmonics and superquadrics or spherical
wavelets and spherical harmonics.

Although, below, we consider the particular
case of spherical harmonics, other coordinate
systems can be employed depending on the
shape to be modeled. Harmonic functions thus
have been expressed in cylindrical, spheroidal,
hyperspherical, spheroconal and spherical coor-
dinate systems. Spherical harmonics are solu-
tions of Laplace’s equation expressed in a spher-
ical coordinate system (Figure 1). These solu-
tions are noted Y;" and are related to associated
Legendre polynomials (appendix a.1 and a.2).
This definition excludes the possibility of the
radius r, from the center O to a surface point
M, being multiple-valued [Max, 88]. The case
of an object surface described by a non-starlike
set of points will be discussed below, with the
vertebra shape modeling. Furthermore, r is a
function #(0, @) of 6 and @ that is not necessar-
ily continuous.

Spherical harmonics, belonging to the class of
surface harmonics, have interesting properties
for surface modeling [Matheny, 95], such as:
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x=r-sin@-cosg,
y=r-sinf-sing,
z=r-cosé,

with 0<8<7,
and O0<@<2r.
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Fig. 1. Convention used for the spherical coordinate system.

e Orthogonality. The Y}" constitute the basis
of orthogonal functions. This property as-
sures uniqueness of the decomposition with
respect to the integration over the sphere.

e Ordered in spatial frequency. This notion ex-
presses a hierarchical decomposition of the
shape. The accuracy of the modeling is arbi-
trarily defined by the level of decomposition
L, i.e., the details of a given shape are ob-
tained by the highest level harmonics.

e Completeness. Any finite energy and differ-
entiable function defined on the sphere can
be approximated by a linear combination of
spherical harmonics:

00 l
LP(Ba CP) = Z Z C;n ' Ylm(e} qg): (1)

1=0 m=—1

where W(6, ¢) is the surface and C'" are the
coordinates of the shape on the spherical har-
monics basis. The C}" coefficients are ob-
tained by the projection of the shape onto the
basis of the Y;":

=(¥7 |y

:fdcpjsinB-Yl’”(Q, 9)W(0, p)-do. (2)
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Moreover, the coordinate system being object-
centered, the decomposition of an object is al-
most invariant in translation. The effect of the
rotation R(«, B, y), where «, B and y are the
Euler angles, on the C" coefficients, can be ex-
pressed by the relationship:

Z Dmn a, ﬁa

n=-—1

Cl'(a, B,y) =

where C7" and C} respectively are the coeffi-
cients before and after the rotation of the shape,
and D!, is an explicit function of a, B and

[Burel 95a]. Burel used these properties in
order to register 3D rigid shapes in a direct way.

The computation of the C* coefficients can be
performed in two different ways depending on
the regularity of the sampling of the surface.
The expression of equation (2) in a discrete
sum over the sphere allows to compute the co-
efficients in a simple way. Because the rep-
resentation is in the form of a linear combina-
tion of fixed basis functions, the C /" coefficients
can also be computed by a conventional least-
squares algorithm [Chen, 94] in order to take
sparse data into account.

Equation (1) gives the expression of a real func-
tion W(0, @) in the form of a linear combination
of complex spherical harmonics. Nevertheless,
can be decomposed into a sum of real functions

(0]
Y0, ¢ :Z(UO PY(cos 6)
1=0
!
+ Z(U}’” - P'(cos 8) - cos ¢

+ V" - P{"(cos 0) - sin (i))) (3)

The total number of coefficients Ul" and V7,
which is the same as the number of C* co-
efficients (appendix a.3), equals to (1 + L)?,
where L is the spatial level of decomposition
(0<I<L).
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When it comes to the modeling of moving (de-
formable) non-rigid shapes, the time compo-
nent has to be introduced. A multiresolution,
time-dependent representation is then consid-
ered. Time-dependent spherical harmonics are
solutions of the wave propagation equation in
spherical coordinates. The differential equa-
tions in O and ¢ are equivalent to those ex-
pressed in the static case. Details about the
separation of the variables are given in [Arfken,
85]. The time dependence is simply achieved
by introducing sinusoidal components in equa-
tion (3). The time-dependent model is then
expressed as follows:

o0 o0
w(0, 9,0)> Y (UchPi(cos 0) cos (224)

=0 k=0
+Usﬁ-P?(cos 6)- sm(znkf) (1—640)

+ Z (veg-py

m=1

+Usy-P]!(cos 8)- cos @- sm(z”kf) (1—8k0)

m_pim 2kt
+ VPl (cos 0)- sin - cos( = )

(cos ) cos @- COS(ZET]“)

+Vsi-Py'(cos 0)- sin ¢- 51n(2”kf) (1—6k0))),

where 8 is the Kronecker symbol (8 = 1
for k = 0, and 8 = 0 for k # 0), 7 is the
period of a temporal sequence of surface data
and k is a wave number [Matheny, 95]. The
maximum value of k (noted K) sets the cut off
frequency of the possible motions of the surface
in the radial direction. If K is the maximum
wave number that we call the temporal level
- of decomposition, the number of coefficients of
this multiresolution and time-dependent model

is (L + 1)%(1 + 2K).

Since the time-dependent model is equivalent
to decomposition in the Fourier series of spa-
tial spherical harmonics coefficients, we chose
to estimate the coefficients in a two-step algo-
rithm:

1) estimation of the spatial coefficients UJ*(t;)
and V}'(¢;) at each acquisition instant ¢; with
a classical least-squares algorithm,

2) estimation of the spatio-temporal coefficients
from the sets of spatial coefficients computed
in step 1,

fork € [0, K]:

T

Uck!_— /(U}”( ): cos(zzkf)) dt

0

T

and Vck[—— /(V’”( ) cos(zzkt)) dt,

0

fork € [1,K]:

T

Uspy = ’% : /(U}"(f) sm(zikt)) - dt

0
T

= ‘% . /(V[’"(r) Sm(znkt)) - dt,

0

withA =1fork=0,andA =2 fork > 1.

Relations between the spatial coefficients Uj* (¢)
and V[*(¢) at instant ¢ € [O 7| and the time-
dependent coefficients Ucy), Vcj, Us}; and V)
are given in appendix a.4. The results obtained
by this method are on the same order of accu-
racy as those obtained by a global estimation
of the time-dependent coefficients with a least-
squares algorithm. Nevertheless, the computa-
tion time is drastically reduced since it is of the
order of the time needed for the inversion of N
square matrices of dimension (L + 1)? where N
is the number of sample instants ¢; in the tem-
poral sequence of period © (the computation
time of the Fourier decomposition being negli-
gible). Moreover, this two-step method allows
us to keep the relationship between the spatial
characterization of the shape and the spherical
harmonics vectors. Below, quantitative results
are given in the modeling of the heart left ven-
tricle.

and Vs

First Application: Modeling and
Deformation Analysis of the Vertebra

The diagnosis of scoliotic spine is actually based
on measurements (Cobb’s Angle) performed
from 2D X-ray images. The use of optical im-
ages and Moiré techniques could offer some in-
teresting perspectives for the non-invasive de-
tection of scoliosis, but it is still under study
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and evaluation [Chalupova, 96]. Digital X-ray’s
ability to image the complete spine in a natural
position [Van Eeuwijk, 97|, its low cost, ease
of use, and, above all, its low patient irradiation
when compared with CT, make it the best suited
and standard acquisition device in the examina-
tion of scoliosis. Nevertheless, it provides only
a 2D projection image of the structure of inter-
est. The 3D information required for an accu-
rate diagnosis of a scoliosis has to be deduced
from at least two images, taken under different
projection angles, and showing superimposed
anatomical shapes. The consideration of an a
priori geometrical knowledge can be integrated
in order to:

i) solve the 3D reconstruction problem from
2D images by increasing the realism and the
accuracy of the recovered shape while re-
ducing the interactive process,

ii) improve the reliability of the diagnosis by
comparing custom shapes based parameters
with reference parameters,

iii) simulate and guide surgical procedures.

Hence, in a three dimensional approach [Lavaste,
94][Dansereau, 91|, the constitution of an elabo-
rate and precise geometrical model of the spine
structure is of primary importance for the di-
agnosis, the understanding and characterization
of scoliosis phenomena and the correction of
spine disorders. The actual knowledge and clas-
sification of non pathological vertebrae allow
the constitution of a set of reference shapes, by
means of surface models obtained from in-vitro
data. The differences between real shapes and
reference shapes are mainly given by scale pa-
rameters. When it comes to pathological cases,
the shape of a vertebra can be seen as the re-
sult of different deformations, such as torsion
or flexion, applied to a reference shape. In the
following section we address the problem of
geometrical modeling of the spine, by focus-
ing on the modeling and deformation analysis
of the shape of an isolated vertebra described
by CT data. We first present the application of
spherical harmonics to the modeling of the ver-
tebra surface, then we study the behavior of the
model under particular deformations. We es-
pecially establish a relationship between some
surface coefficients and the deformation param-
eters. We propose a general framework for the
analysis of the deformations or shape charac-
teristics and we show how real deformations

encountered in scoliotic phenomena (scale fac-

tors, torsion) can be recovered from certain co-

efficients of the deformed surface model. This

framework is a part of the three dimensional ap-

proach aimed at a computer aided diagnosis of

the scoliotic spine. Our objective at end should

be to include, in this scheme, a 3D reconstruc-

tion process based on the computation of spher-

ical harmonics coefficients from the patient 2D
images.

Vertebra shape modeling

In order to determine the best sampling rate
for each shape we analyze the values taken by
CJ. This coefficient corresponds to the sum
of different surface patches resulting from the
sampling of the shape. A gradually increasing
sampling of the shape provides surface patches
of decreasing sizes, hence a convergence of Cg
towards an optimal magnitude. The surface
points are detected along the rays expressed in a
spherical coordinate system. The vertebra being
acquired in-vitro, a sub-voxel precision is sim-
ply obtained with a trilinear interpolation and a
thresholding of the gray level values. In order
to be accurately modeled, the input surface has
to be star-shaped, that means there is an explicit
relationship between the surface and the sphere.
Unfortunately, if we consider the highest level
of accuracy in the description of the vertebra
shape, including the finest details of the verte-
bral body, pedicles and articular facets, this is
not the case.

One solution, when the radius is multiple-valued,
is to consider the farthest point from the cen-
ter of the spherical coordinate system. Since
the object surface is approximated by its star-
shaped envelope, shape features such as cav-
ities, tunnels or overhangs can be lost. The
problem of modeling non star- shaped objects
with spherical harmonics, by a parametrization
that establishes a one to one mapping from the
original object surface to the unit sphere, has
been addressed in [Brechbiiler, 95]. Here we
adopt an alternative solution, and that is to par-
tition the initial volume image with respect to
anatomical features, such as pedicles, in order to
decompose the original object into star-shaped
sub-objects. Figure 2 shows a shaded polygons
representation of the original data as well as
the modeling of the vertebral body and articular
facets with spherical harmonics at various res-
olution levels. The surface data was obtained
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original shape

L=3

=10

Fig. 2. Modeling of a complete lumbar vertebra with spherical harmonics.

from a 102 x 256 x 256 CT image of an in-vitro
lumbar vertebra. The volume image was previ-
ously partitioned by means of separating planes,
empirically defined, and processed (surface de-
tection) in order to constitute four sets of 3280
surface points. The mean error between the sur-
face model and the sampling points is about 1.27
per cent (mean error of 0.64 voxel for a mean
radius value of 50 voxels) at the decomposition
level L = 20 (441 coefficients).

Deformation analysis

‘We study the behavior of the model with respect
to particular deformations. If we consider a ref-
erence shape (a priori knowledge) on which
deformations have been applied, we can show
how it is possible to estimate these deforma-
tions from spherical harmonics coefficients of
the deformed surface (a pathological shape for
instance). This process is based on a prelimi-
nary deformation of the reference shape and the
estimation of the variation laws of some coef-
ficients of the model under deformations (Fig-
ure 3). The variation laws are estimated only
once in the analysis step to complete the a priori
knowledge on the shape. Three scale deforma-
tions along the cartesian axes and the torsion

along one axis are considered. It is then pos-
sible to compute the deformations (scale and
torsion), between an unknown shape S, and the
reference shape S,, from the deformation laws
associated with particular C7* coefficients. The
consideration of the other C7* coefficients al-
lows us to determine whether the two shapes
are different in terms of the considered defor-
mations.

Deformations are applied during the detection
of the 3D surface points of the reference shape.
The scale deformations are defined as scale fac-
tors applied along the three axes of the cartesian
coordinate system R*(X, ¥; Z) of the shape:

x=ay R -sinf - cos g,
y=ay-R-sin0 -sing,
z=a, -R-cosB,

where a, (respectively a,, a,) corresponds to a
deformation along the X axis (respectively Y,
Z axis) and 6, @, R are the coordinates of the
3D surface points in the spherical coordinate
system. In the same way, a torsion along the
Z axis has been considered. The coordinates
(x,y, z) of the reference shape are transformed
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Fig. 3. Deformation analysis flowchart.

as follows:
X =x:0082; — 9« ity
y =x:.sint, +ycost,
2 =z

The angle 7, is expressed with respect to the z
coordinate:

Z — Zmin
N S
Zmax - Zmll'l

where zpyi, and zpay are the limit values of z and
? is a constant torsion angle between zy;, and

Zmax-

Different values of the scale parameters a and
the torsion parameter ¢ have been applied to the
reference shape in the following way:

ay = variable a, = 1.0 a, = 1.0 t = 0,
ax = 1.0 a, = variable a,=1.0 t =0,
ax = 1.0 ay = 1.0 a, = variable = 0,
a,=1.0 a,=1.0 a, = 1.0 ¢t = variable.

a = 1 means that there is no deformation,
whereas @ < 1 corresponds to an expansion
of the shape, and @ > 1 to a compression of
the shape. For each of these deformations the

coefficients have been computed up to the or-
der L = 4. Figure 4 gives two examples of the
deformation curves C}" = f(a) obtained on C{)

and Cg respectively, for a variation of the scale
parameter a,(0.6 < a, < 1.4) and a variation
of the scale parameter a,(0.6 < a, < 1.4).

A linear approximation being insufficient to
take into account the stronger deformations, the
deformation curves C" = f(8), where 8 is the
deformation parameter, are estimated with poly-
nomial equations. We can thus write:

Cl'(8) =a-(86—80)>+b-(8—8)) +c,

where a, b, c are the parameters of the deforma-
tion curves and ¢ = Cr{" is the coefficient of the
reference shape obtained for 8 = &y (the null
deformation).

The correction to apply to a coefficient Cuj of
an unknown shape, in order to recover the coef-
ficient Cr]" of the reference shape, is given by
the following equation:

— A(8) = Cuf’(8) — Cr"
=a(é — 8)* + b(6 — &),

where § is the unknown parameter (ay, or ay,
oI az, or t), This non-linear equation can be
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Fig. 4. Examples of deformation curves.

solved with a standard Newton—Raphson algo-
rithm. When different types of deformations
are considered, the deformation parameters are
estimated from several couples of coefficients
(Cult, Cr"). First, four coefficients CO, 3, Cg,

C 2 (independent of the torsion) are used in order
to form the following set of equations:

Cuf — Crg = A(ax) + Aay) + Aaz),
Cu — Cr) = A(ax) + Aay) + Alaz),
Cug — Cr9 = Aax) + Alay) + A(az),
Cuy — Crg = Aax) + Alay) + Alaz),

where ay, ay, and a, are the unknown scale pa-
rameters. The torsion parameter ¢ is then com-
puted by considering the equation given by the
imaginary part of coefficient C4

Cuj — Cry = Max) + Alay) + Aaz) + A(2).

The results obtained on the vertebral body of the
lumbar vertebra, deformed with the three scale
parameters and a torsion parameter, are reported

[ T a [a | ¢t |
test 1 JADT 0.8 | 0.8 | 1.2 0°
RD [0.8210.78 | 1.21 | —0.374°
test2 [ AD [l 1.2 | 0.8 1.2 4°
_ RD ([1.1710.86 | 1.18 4.15°
test3AD || 0.8 | 1.2 | 1.2 4°
RD (080123 | 1.19| 4.02°
test4 || AD || 0.8 1.2 | 0.8 16°
RD || 0.8 | 1.2210.79 15.1°

Table 1. Deformation tests

in Table 1. The deformations applied to the ref-
erence shape are noted AD and the recovered
deformations are noted RD.

By analyzing the coefficients of the modeling,
particular deformations between two shapes can
be recovered with a relatively good accuracy.
Moreover, different shapes can be discriminated
in terms of the considered deformations. Other
types of deformations such as flexion as well
as rigid transformations (rotation, translation)
have now to be introduced into the equations,
in order to improve the discrimination and the
characterization of the shapes. Furthermore,
we intend to constitute a complete model of
the spine in order to provide an a priori geo-
metrical knowledge for the diagnosis of spine
scoliosis in a three-dimensional approach (re-
construction from 2D images). Consideration
of the complete spine structure should be of pri-
mary interest understanding and analyzing the
evolution of vertebra shapes along the spine.

Second Application: Dynamic Modeling
of the Left Ventricle Cavity

The characterization of the left ventricle shape
and motion is of main concern in the diagnosis
of heart diseases. We present here an applica-
tion of spherical harmonics to the modeling of
a clinical SPECT data sequence.

The temporal sequence is composed of SPECT
data sets (64 x 64 x 64) acquired at different in-
stants of the cardiac cycle. The acquisition was
synchronized on the ECG signal (end systole).

The data sets have been reconstructed with a
filtered backprojection algorithm (Hahn filter).

In the clinical procedure, the data is oriented in
the volume image so that the principal axis of
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Fig. 5. Effect of the surface sampling on the model accuracy for different values of L.

the cavity is parallel to one axis of the volume
image at instant t = 0. The segmentation of
SPECT volumes of the temporal sequence pro-
vides the input data. The 3D surface points of
the ventricle cavity are detected along the rays
expressed in a spherical coordinate system, the
detection is based on a trilinear interpolation
and a thresholding. In order to take into account
temporal dependence between the data sets, the
threshold at instant ¢ is fixed at a percentage P
of the mean value of the maxima of smoothed
histograms at instants — 1 and ¢+ 1. P has been
determined according to subjective criteria and
has been fixed at 50 percent. In order to get a
closed surface of the ventricle cavity, a separa-
tion plane between the ventricle cavity and the
aorta is arbitrarily defined.

A classical sampling of smoothed closed sur-
faces is obtained by a description of the defi-
nition domain of angular spherical coordinates
(6, @) by constant steps A0, Ap. This type of
sampling leads to significant differences on the
patch surfaces between the regions close to the
equator and the regions close to the poles of
the sphere. For this reason, we have tested a
more uniform sampling [Foley, 90] based on the
subdivision of the triangular faces of the tetrahe-
dron with vertices on the unit sphere. Accuracy
of the modeling of the left ventricle at instant
t = 0 is given in Figure 5 for the two types
of sampling, i.e., spherical and almost uniform
sampling. The mean error between the origi-
nal data and the spatial model is slighter with
the sampling almost uniform, and obviously de-
creases, in both cases, with the spatial level of
decomposition L.

As mentioned before, spatial coefficient vectors
are first estimated independently, by a least-
squares algorithm, from the sets of 3D surface
points. The time-dependent coefficients of the
model are then computed by the decomposition
in the Fourier series of each component of the
static spherical harmonics vectors. The influ-
ence of the temporal order of decomposition K
on the accuracy of a time-dependent modeling
based on spherical harmonics as well as on a
modeling based on the spheroidal harmonics is
shown in Figure 6. One can note that the results
obtained with spheroidal harmonics are on the
same order of magnitude as those obtained with
spherical harmonics.

With a spatial level of decomposition L = 10
and a temporal level of decomposition K = 5,
the mean error between the original data and the
time-dependent model is around 0.15 voxel. A
shaded polygon representation (Figure 7) illus-
trates the results of the modeling at 16 different
instants of the cardiac cycle. The computation
time on a Pentium PC 100 MHz of each spher-
ical harmonics vector is less than 1 s for L = 2
(9 parameters) and 16 s for L = 10 (121 pa-
rameters). Thus, the computation time with the
two-steps algorithm is of the order of the com-
putation time of 16 spatial spherical harmonics
vectors, i.e., 256 s for L = 10 and K = 5,
whereas the time needed for a global computa-
tion of the time-dependent spherical harmonics
vector for L = 5 and K = 3 is of 1200 s.

The ejection fraction is an important parameter
for the actual characterization of the left ven-
tricle function. The temporal evolution of the
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Fig. 6. Comparison of spherical harmonics and spheroidal harmonics for different values of K.

ejection fraction is defined as follows:

V(t) — Vis

EF(t) = Ven

where V(¢) is the volume of the left ventricle
cavity at instant ¢, Vgg is the minimum volume
of the left cavity (end systole, t; = 5), and Vgp
is the maximum volume of the left cavity (end
diastole). The behavior of the ejection fraction
EF(t) for a static modeling of the 16 indepen-
dent volume images and for a time-dependent
modeling with two levels of temporal decom-
position (K = 4, K = 5) is given in Figure 8.

The modeling of 3D SPECT data with spherical
harmonics provides instantaneous values of the
cavity volume, and thus, an accurate quantifica-
tion of the ejection fraction. The result obtained
is consistent with the one expected in a healthy
patient. It still has to be validated in several
pathological and non pathological cases. More-
over, it is interesting to compare evolution of the
ejection fraction with the evolution of the first
coefficient of the time-dependent model UJ(¢)
(Figure 9).

Beyond the computation of features such as the
ejection fraction, the properties of this accurate
time-dependent model offer some interesting
perspectives to characterize the ventricle shape
and motion, and to register and reconstruct vol-
ume data sets.

Conclusion

We have accurately depicted a multiresolution
representation based on spherical harmonics
for the modeling of complex static anatomical

shapes, illustrated by the vertebra, and of non-
rigid moving (deformable) shapes, illustrated
by the endocardial surface. We have shown that
some spatial and time- varying features of the
shapes could be quantified from the model co-
efficients with a relatively good accuracy. For
diagnostic purposes, more elaborate relation-
ships between the shape features and the model
coefficients still have to be brought out and in-
troduced in this analysis, in order to improve
the discrimination and the characterization of
anatomical shapes. Furthermore, spherical har-
monics offer some interesting perspectives in
helping to register and reconstruct 3D anatom-
ical shapes. Thus, spherical harmonics can be
appropriate for the analysis and the computa-
tion of transformations between 3D surfaces.
Nevertheless, even if particular transformations
can be deduced from some coefficients of the
model, the inverse problem, i.e. computing the
effect of a given transformation on all the model
coefficients (in order to fit the data) still remains
a problem that needs to be solved.

Appendix

a.l. Laplace’s equation

The Laplace’s equation in a spherical coordi-
nate system (where r, 6 and ¢ are the spherical
coordinates) is:

9 ( ,0F 1 9 ¢, OF
Il il i el
or (r Br) sin 6 96 (sm 89)
1 9*F
sin? 0 8g?
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Fig. 7. Time-dependent modeling of the left ventricle cavity (L = 10, K = 5).

a.2. Spherical Harmonics real coefficients in the following way:
Spherical harmonics are the solutions of Lapla- o + (I—m)
ce’s equation in spherical coordinates: UY=Re (C?).N?, NJ'=4/ 0
m
Y76, @) = (—1)™ - NI . P'(cos B)e™? Uj'=2Re (C")-(—1)™.NT"* for 1<m<I,
for/>0and 0 <m <1, V{'==2Im (C/")-(— 1)’” N} for 1<m<l.
i *
Y70, @) = (=1)" (Y,"(0, 9))
for/>0and — /< m <0, a.4. Relations between spatial coefficients

and time-dependent coefficients

“ ;
where:* denotes the complexrconfugate; The spatial components of a spherical harmon-

ics vector at instant ¢ € [0, 7| are:
2+1 (1= m)! are normaliza o

' fmatiza- K 2mkt 2kt
_ .\ (L4 m)! Up(0)3 (veg cos () +Uspy sin (<25
tion constants, =0 T T
-(1—6k0)) ¥m, an integer such as 0<m</,

N/ =

m

Plu) = (=1)"- (1 - u?)z - i—in(u) are

i ' .3 2kt
the associated Legendre Polynomials, OS> (V o Cos( ) + Vs
1 d 2\ 2k,
and Py(u) = T a{‘l(l —u”)" arethe ‘sin(—E_) (1-— 6k0)) ¥m, an integer such
Legendre polynomials. as 0 < ;1 <l

a.3. Coefficients of the spherical harmonics  where ;g is the Kronecker symbol.
decomposition

The C}" coefficients are related to U/ and v
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