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This paper presents a global optimisation method for
the registration of 3D medical images. A novel cost
function is defined and it is optimised with the help
of local non-linear elastic deformations. The terms of
the cost function may be used as measurements of the
degree of deformation, necessary to bring two images in
registration, and also as quantifiers of the evolution of
various pathologies.

1. Introduction

Registration of 3D volume medical data is im-
portant for two reasons. First, it allows the
registration of images that refer to different in-
dividuals with the same reference image, for
example the human atlas. If the reference im-
age is already labelled and annotated, then the
image under consideration is automatically la-
belled and annotated too (eg Christensen et al
(1994) and Cuisenaire et al (1996)). Second,
3D registration of a succession of images that
refer to the same individual may allow the mon-
itoring of growth of various pathological lesions
and the quantification of that growth as a func-
tion of time for regulating treatment, the co-
registration of images of different modalities
for improved diagnosis, etc.

For the above reasons, 3D volume registration
has attracted a lot of attention in the recent years.
For a review on these methods see Maurer and
Fitzpatrick (1993). One characteristic of some
medical tomographic images is the anisotropic
resolution along the three axes directions. Thus,
a volume medical image is often considered as

a collection of 2D slices with spacing between
them much larger than the size of pixels on
each slice. This, plus the enormous amount
of literature on the subject of rigid and non-
rigid registration of 2D images, has led to the
approaches of registration of volume data on
the slice-by-slice basis (eg Kim et al (1997)).
Such approaches, however, are not benefited by
the correlation which obviously exists between
successive slices. Methods specifically devel-
oped for 3D registration, take into considera-
tion this correlation and thus belong to the class
of genuine 3D methods. Most of these meth-
ods fall into two categories: surface registration
and volume registration. Surface registration
methods may rely on the identification of some
landmarks on the surfaces to be registered, used
to aid the process of registration (eg Thomp-
son and Toga (1996)) or on the calculation of
moments. In this group of methods one should
perhaps also include the methods that attempt to
perform segmentation and matching in one go,
by using, for example, flexible shape objects
identified within the image with the help of ac-
tive “bubbles” (as opposed to active “snakes” in
2D) (Tek and Kimia (1997)). Once the surfaces
have been registered, the registration of the vol-
umes they enclose is implicitly also defined.
This, however, means that volume characteris-
tics are ignored by not being explicitly included
in the process. Volume based methods tend to
be computationally very slow, but they register
volumes with volumes, making explicit use of
all the data. Several of these methods are solid
body registrations (Friston et al (1995), Woods
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etal (1993), Kiebel et al (1997)) assuming that
non-linear inhomogeneous and anisotropic de-
formations are of negligible size. The most ad-
vanced methods are non-rigid volume matching
approaches (Christensen et al (1994)). These
methods effectively calculate the Maximum A
Posteriori (MAP) solution of the problem, i.e.
they find the most probable deformation that
could lead from one volume to the other, given
the data and a material model imposed on them.
They are similar to the optic flow estimation
methods where each voxel is assigned a vec-
tor indicating the way its position changes from
one image to the next. The optimal config-
uration of assigned vectors is identified with
the help of stochastic global optimisation of the
cost function that incorporates smoothness con-
straints for the assigned vectors and a faithful-
ness to the data term. These methods produce
excellent results, but they tend to be impossibly
slow. The more powerful a method is, the more
computationally expensive it becomes. Even
rigid body methods are quite slow and attempts
have been made to accelerate them (Alpert et al
(1996)).

This is even more so for the 3D non-linear
approaches involving stochastic optimisation.
These methods require parallel implementation
on special computer architectures if they are to
be used at all (Christensen et al (1996)).

Because of this, several compromise approaches
have been proposed. These approaches do not
guarantee finding the optimal solution in the
MAP sense. They simply find good sub-optimal
solutions. Several of them use correlation meth-
ods and, for example, they identify the flow vec-
tor of a voxel guided by a local block correlation
estimate (Richardson and Bury (1996), Gee and
Haynor (1996)). However, in all cases, even if
the optimisation approach used is guaranteed
to find the optimal solution, the solution will
be only as good as the model adopted allows it
to be. For example, if surface processes (cor-
responding to “line processes” in 2D) are not
incorporated in the cost function, the boundary
surfaces between different components in the
images may be blurred. If the smoothness con-
straint imposed corresponds to that of the thin
plate in 2D, as opposed to that of the membrane,
a different solution may be found.

The method we propose here differs from all the
above methods in the following ways:

e The global constraint imposed by it is not
one of arbitrarily defined local smooth-
ness. It rather requires that the overall
distortion one of the objects suffers to fit
the other is the minimum possible, no mat-
ter how inhomogeneous it might be. This
allows the distortion to be as un-smooth as
it is locally required, so that it may model,
for example, more accurately the growth
of a localised tumour.

e It updates the displacement vectors of all
the voxels in one go, rather than updating
the displacement vector of one or a few
voxels at a time. This allows faster con-
vergence, and at the same time it implic-
itly incorporates a smoothness constraint
which imitates the properties of an elastic
medium better than thin plate or membrane
models do.

In section 2 we shall formulate the problem and
define our notation. In section 3 we shall de-
scribe the preprocessing stage of our approach,
that results in the gross registration of the im-
ages, and in section 4 we shall describe the re-
finement of this gross registration using local
non-rigid deformations and global optimisation.
We present our experimental results in section
5 and our conclusions in section 6.

2. Problem Formulation

We assume that we have two images, I; and I,.
We shall use image /; as the reference image
while image /> has to be deformed to come into
registration with ;. First, we preprocess the
images, in the way described in the next sec-
tion, so that the coordinate systems with respect
to which the positions of the voxels in the two
images are referred, are in registration. Thus,
a voxel i at location (x;, y;, z;), is supposed to
have grey value p! in the first image and p[2 in
the second image. To register the two images,
we create a sequence of gradually deformed im-
ages, starting from /5, and denoted by I3, I4,....
The grey value, pf, of each voxel i in /; has to be
chosen with the help of image I;_; so that the
similarity of image /; with I; is greater than the
similarity of image I;_; with I,.

We need, therefore, to establish two things:
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e A way that allows the generation of image
I; from image I;_1.

o A measure of similarity between two im-
ages.

When the measure of similarity between the last
image in the sequence created and image I; has
not shown any significant improvement for the
last few images in the sequence, the process
may be terminated.

3. Pre-registration

We assume that the objects that are to be regis-
tered have been segmented and the voxels that
belong to them in each image are suitably la-
belled. This is not necessary, as the algorithm
can register whole images, but as we demon-
strate it on the registration of brain data, we as-
sume that the brain voxels for registration have
been identified. First, we bring the two images
in rough registration, using rigid body transla-
tion and scaling. We distinguish two types of
scaling: that which is necessary because of the
different sampling rates used to create differ-
ent images, and the scaling that is required so
that the objects depicted in the two images are
made to have roughly the same size. The im-
ages are usually represented in terms of triplets
of integer pixel indices, with the sampling rate
given as extra information. To make sure that
distances in both images are measured in the
same units, we convert all pixel locations into
real numbers, multiplying each pixel index with
the corresponding inter-voxel distance in mm.
Next, the centre of gravity of each of the two
objects to be registered is found, and the two
coordinate systems are shifted relative to each
other, so that the two co-ordinate systems are
in complete registration with each other and the
two objects have coincident centres of gravity,
the common origin of the coordinate systems.
We do not use any rotation, although that could
be also incorporated in this preliminary stage,
because it was not deemed necessary: the brain
images we had for our experimentation were
not significantly rotated with respect to each
other. The centre of gravity is calculated from
the binary (labelled) images, and it is adequate
for calculating the initial coarse registration of
more or less convex objects. For irregularly

shaped objects like ventricles in the brain, this
simple approach may not be adequate.

Once the locations of the voxels in the two im-
ages refer to axes with the same origin and with
identical units, we have to deal with the prob-
lem of different size of the objects that are to
be registered. To deal with this, one of the two
images is stretched isotropically, away from (or
towards) the common centre of gravity of the
two objects: Every voxel i at distance d; from
the origin is moved to a new location along
the same radial direction from the origin and
at distance from it ¢d;, where ¢ is a stretching
parameter. Then the image is re-sampled so
that the locations for which we have values are
the same for both images. This implies some
interpolation, and for the sake of simplicity in
computation we use the nearest neighbour inter-
polation rule. Then we calculate the correlation
coefficient between the two images, defined as:

R/(I}, )
%(ﬁﬁﬂﬁ—ﬁ)
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— 12 = = (1)
> -7 Y (B-7)
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where A, represents the union set of the voxels
of the two objects, p' is the mean grey value of

the object in the first image, and p? is the grey
value of the object in the second image.

This is repeated for several values of ¢, both
smaller than 1 (implying shrinkage) and larger
than 1 (implying expansion) of the scaled im-
age. The correlation coefficient is plotted as
function of ¢ and the value of ¢ that maximises
it is selected, as the necessary scaling parame-
ter, for registering the two objects preliminarily.
R(I}, I) as a function of ¢ is a well behaved
function, usually having a single, well defined
maximum, if the label used for the background
voxels is 0. (The background voxels enter the
calculation through the parts which belong to
the object in one image but they are not covered
by the object in the other image, since we are
computing the correlation over the union of the
sets of voxels of the two objects.) This allows
us to sample the range of values ¢ may take quite
grossly originally, and then to restrict the range
and re-sample it more finely so that a more ac-
curate value of ¢ is identified. A typical range
of values of ¢ explored is [0.75, 1.25].
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Fig. 1. Effects of the three deformation operators used on a regular 128 x 128 x 64 lattice: (a) Exponential growth
(b) Exponential shrinkage (c) Exponential shift.

The gross registration of the two objects ob-
tained in this way is subsequently refined by
the proposed non-rigid registration method de-
scribed in the next section.

4. The Proposed Global Optimisation
Approach

In order to distort image I;_; we adopt the
following process: We define three deforma-
tion operators: Exponential growth, Exponen-
tial shrinkage and Exponential translation. At
each iteration step we choose at random one of
the three operators to apply to the grid of the
image. If the exponential growth (shrinkage)
operator is chosen, then an arbitrary voxel i is
chosen at random, and all other voxels k are
shifted radially away (towards) voxel i by dis-
tance dy given by equation dy = re 8% where r
and g are some parameters and d; is the distance
of voxel k from i. The values of the parameters
are chosen so that the spatial order of the voxels
is preserved. If the translation operator is cho-
sen we proceed (o choose at random a pair of
voxel positions (x;, y;, z;) and (x;, yj, z;), within
a certain distance d from each other. All the
remaining voxels of image /;_; will shift in lo-
cation according to the following law: A voxel
k will move in the direction of the vector de-
fined from i to j, and by a distance given by

di = dije™ "%, where d;; is the distance between
Jand i, dy is the distance between k and 7, and s
is the “springiness™ parameter that controls the
severity of distortion. Figure 1 demonstrates
the effect on the lattice of the image of each
distortion operator used.

The grey values at the integer positions of the
image grid are calculated using the nearest neigh-
bour interpolation rule. These interpolated val-
ues are only used for the comparison of the dis-
torted image with the target image. Once this
comparison is made, these values are discarded,
and the next image in the sequence is formed
from the non-integer positions of voxels in grid
1.

The deformed grid is accepted as the next grid
I in the sequence, provided that it reduces the
cost function of the quality of registration with
image [;. If it does not, grid [; in the sequence
is chosen to be the same as grid J;_;.

The cost function expressing the quality of reg-
istration between images /1 and I; is defined as
follows:

U=alU, + pU, +yUs. (2)
In this expression, ¢, 8 and y are parameters
controlling the relative importance of each term.
The three terms combined are the following:

h=1—RihL. L), (3)
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where R(Iy, I}) is the correlation coefficient be-
tween the two images, defined in a similar way
as in equation 1, except that now only the over-
lapping parts of the objects to be matched are
used instead of their union. We denote the set of
common voxels between the objects in images
Il and 11 by Bu.

The next term expresses the desire for image [
to be distorted as little as possible to fit image
I;. It is a purely geometric term that does not
involve any grey values:

1
Vg Z (|xk+1 — X~ x|+ [V 1 —Yk—dxy|

LI kEBI’g
2kt 12k — G|+ Xt n, =Xk~
Y ran, =Yk — d)’y1+|zk+Nx_Zk_dyz|
+ka-&-NxNy"“xk*dle'+“|yk+NxNy —Yi—dyy|

+ }Zk%’NxNy —2k—dy; [)

where N, and N, is the size of the image along
the x and the y axes respectively, and Ny ; is
the number of voxels in By ;. dgp is the differ-
ence in coordinate values along the 8 axis, of
two neighbouring voxels “aligned” along the «
axis. In a regular grid, dyy = dyy = dpz = 1
and dyy = dy; = dyy = dy; = dpy = dyy = 0.
Here, we have values different from these due
to the scaling we had to do to account for the
anisotropic sampling of the images and the dif-
ferent object size. Note that k scans the image in
araster fashion, along the x axis on each succes-
sive slice corresponding to fixed z. More explic-
itly, the meaning of the first term, for example,
in this function, is the following: x;,; and x;
are the coordinate positions along the x axis of
the two neighbouring voxels with indices &k + 1
and k respectively. At the beginning of the iter-
ative process, the difference between these two
coordinates is d,,, since these voxels are next to
each other along the x axis. After an iteration
takes place, the two voxels may shift with re-
spect to each other, so their distance along the
x axis may have changed. The difference be-
tween this distance and the original value d,,,
expresses the distortion of the rigid grid. In a
similar way, term |xg4y, — Xk — dy.| expresses
the distortion of the grid away from the rigid
one, due to the shifting in relative position of
two neighbouring voxels along the y axis (in-
dices k + N, and k identify neighbouring voxels
along the y axis in a raster indexing format).

Finally, the third term of the cost function ex-
presses the desire for maximum overlap be-
tween images I; and [

Uz=1—— 4
3 N (4)
where N is the maximum number of voxels in
an image.

5. Experimentation

The preregistration of the images used in the
experiments described below was done with
isotropic stretching parameter ¢ in the range
[0.9,1.1]. The search for the right value of ¢
was conducted with step 0.33 of the size of a
voxel.

Parameter r appearing in the exponential growth
(shrinkage) operator was fixed for all experi-
ments tor = 1. The value of the growth /shrink-
age parameter g was chosen from a uniform dis-
tribution in the range [0.1, 6], while parameters
d and s for the exponential translation were cho-
sen from the uniform distributions [0.2, 6] and
[2, 5] respectively. Note that these values are in
mm. After some trial and error the cost function
parameters were fixed to ¢ = 0.9, B = 0.005
and y = 0.095.

Figure 2 shows typical slices from two SPECT
images of an AIDS patient. The brain compo-
nent from the first image was registered with the
brain component from the second image taken
8 months later from the same patient, after ther-
apy with AZT. We also show the 3D “flow”
vectors that indicate the deformation pattern of
one slice.

Figure 3 presents two typical slices from two 3D
MRI (T2) images of a patient with cavernous
hemangioma in the hemisphere depicted on the
left. The two images are taken with 4 months
difference. From each image we extracted two
volumes of interest (VOI), as marked on the
figure, and in each volume the brain compo-
nent was isolated manually. Our method was
used to register the brain components (not the
whole images) from the first image with their
corresponding counterparts in the second im-
age. Figure 4 shows how a typical slice from
VOII1 in image 3a was deformed as a result of
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Fig. 2. Two original slices (b) and (c) of two 3D SPECT images of the brain of an AIDS patient taken with 8 months
time difference, and the deformation field of the voxels of a slice (shown in 3D) when the two images are matched. In
(a) we show the whole head image slice, before the segmentation of the brain.

Fig. 3. Two corresponding original slices of two images from a patient with cavernous hemangioma taken 4 months
apart. The rectangles mark the volumes of interest (VOI) that we match. Note that we use only the brain component
present inside each 3D VOL

the 3D registration of the VOI1 sub-images, and
how little deformation the corresponding slice
from VOI2 suffered as a result of the 3D regis-
tration of the VOI2 sub-images.

Figure 5 shows how the various components of
the cost function change from one iteration step
to the next for the two matchings performed.
From this figure, it can be seen that the value of
the deformity component, for example, can be
used to quantify the degree of deformation due
to the evolution of the pathological lesion (the
value of the deformity converges to U; = 0.760

for VOII and to U = 0.316 for VOI2). Notice
that although we run 200,000 iterations, there is
very little change in the values of the cost func-
tion after about 75,000 iterations. This number
can be further reduced if the deformation oper-
ators are not applied entirely blindly. For exam-
ple, figure 6a shows the number of times each of
the three operators was used for an accepted de-
formation, at various stages of the registration
of sub-images VOI1. To produce this graph,
the total number of iterations used was divided
into 30 bins of 6667 successive iterations each.
The frequency of acceptance of each operator
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Fig. 4. (a) The deformed grid of a slice from VOI1 in figure 3a, after VOII of 3a was deformed to match VOII of 3b,
(b) The deformed grid of a slice from VOI2 in figure 3a, after VOI2 of 3a was deformed to match VOI2 of 3b.

during the iterations that belong to the same
bin was calculated and plotted. Note that these
frequencies do not add up to 1 because there
are many iteration steps when the deformation
is not accepted and the image is not modified.
It can be seen immediately that the exponen-
tial translation operator stopped being relevant
after roughly the first 7,000 iterations. In the
remaining 190,000 iteration steps it was picked
up, tried, but the change it implied was not ac-
cepted. Given that the operators were picked
at random, roughly 33% of the time taken by
these iteration step was wasted. In figure 6b
we plot the histogram of the accepted values
of the growth/shrinkage parameter g. Again,
it can be seen that, although all values in the
range [0.1, 6] were uniformly tried, the really
relevant values were in the much smaller range
of [0.1, 2.5]. It appears then that one can gain
in efficiency by having a trial run of the reg-
istration process first, consisting of say 5,000
iterations, from which the acceptable range of
parameters can be determined, as well as the rel-
evance of the various operators. Once this has
been established, the full registration can take
place, with the parameters and operators cho-
sen more effectively. The efficiency of a single

run can be measured as the ratio of the num-
ber of iterations during which an operator was
applied and its outcome was accepted, over the
total number of iterations used. We repeated
the experiment of matching sub-images VOI1
with an efficiency drive based on the use of the
knowledge gained from a trial run. The effi-
ciency of the run increased from 0.119 to 0.298.
Figure 7 shows the cost function obtained from
the efficient run, plotted with the cost function
of the blind original run, as a function of the
iteration step.

The algorithm requires 44 additions/subtract-
ions per voxel, 14 multiplications/divisions, 1
exponential operation and 1 square root. In a
Pentium 133 MHz PC machine it takes 1.88
secs per iteration on a 100,000 voxel object. In
this time we also include the time to convert
the numbers from the 4 bytes with which they
are stored to save memory, to 8 bytes which are
needed for performing the calculations. Typ-
ically about 50,000 iterations were needed for
two volumes to be registered. This means that
registration of two volumes using our PC took
several hours. However, on a 0.8 GigaFLOPS
machine, on which other flexible volume regis-
tration methods are reputed to require 9 hours,
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the proposed method would need only minutes
(Christensen et al (1994), Thompson and Toga
(1996)). :

6. Conclusions

We have presented a method for flexible volume
registration of medical 3D images. The method
is based on the global optimisation of a cost
function that allows incorporation of various
constraints, measurements and items of prior
knowledge concerning the problem, and the use
of three types of non-linear exponential mod-
els of distortion. As such, it is a purely data
and geometry driven method, with no reference
to the underlying physical processes that take
place which may or may not always be well
understood. Our algorithm performs determin-
istic optimisation which accumulates the effect
of stochastically chosen global non-linear de-
formations. Because of this the algorithm is
considerably faster than stochastic optimisation
algorithms: it may take minutes for a task that
may require hours to be completed by a stochas-
tic method. Of course, there is a penalty to

be paid for not using a stochastic optimisation
approach: there is no guarantee that the algo-
rithm will converge to the global optimum. The
solution reached may be a local minimum of
the cost function. This is the case with all de-
terministic optimisation approaches, and even
with stochastic ones when the strict slow cool-
ing schedule necessary for convergence is not
adhered to.

We showed that careful choice of the parameters
and the operators used may lead to significant
gains in efficiency. It is not possible to give
here recipes on these choices. How efficiently
a matching is performed depends very much on
the type of images to be matched. Smooth im-
ages, which match well, can be matched much
faster than severely deformed images. For ex-
ample, the registration of sub-images VOI1 of
figure 3, that contain the tumour, took much
longer than the registration of sub-image VOI2,
for the same parameter values.

Our method allows the mapping of any volume
onto any other. For some researchers this may
be considered as a drawback of the approach.
However, as long as the topology is the same,
it is true that any topology preserving algorithm
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must have this property. Our algorithm is topol-
ogy preserving, because the sequence of voxels
18 not changed when an exponential distortions
is imposed. This does not mean, however, that
our algorithm is appropriate only for small size
deformations. Larger deformations are created
as the accumulations of several small, topology
preserving ones. On the other hand, since it
1s a correlation-based method, it is not suitable
for the registration of volume raw data of dif-
ferent modalities. The method can be used for
inter-modality registration, only if an appropri-
ate transformation takes place first, to make the
data of the two modalities compatible. This
will involve careful analysis of the underlying
physics of image formation. Whether a match-
ing between two objects is acceptable or not,
can be judged by the value of the deformation
term of the cost function. This term expresses
the geometric distortion an object has to suf-
fer in order to match another one. Therefore,
we propose it as a measure of the deformation
caused by the growth of tumours, for example,
and as a measure quantifying the similarity of

the two objects in the first place.
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