Journal of Computing and Information Technology - CIT 6, 1998, 1, 1-11 1

Gulliver — Guided Navigation inside

the Computer

Alfio Andronico!, Giuseppe Di Palma? and Pasquale Lo Schiavo’

! University of Siena, Department of Mathematics, Siena, Italy

2 Via Giotto, Livorno, ltaly
3 1.T.L.S. “T. Sarrocchi”, Siena, ltaly

Gulliver was born from the requirement for a tool able
to develop computers architecture projects primarily for
didactic purposes. Using Gulliver it is possible:

— to define computer architectures in an incremental way,
starting from a minimal structure building up to more
complex ones;

— to define symbolic program languages coherently with
the model of the architecture implemented;

— to simulate functionality of the architecture and the
language proposed for each stage of the development.

Such a system is of considerable utility both for the
teacher, who can strengthen the effect of a traditional
lesson by simple experiments directed at the topic to
be deepened, and for the student as an instrument of
study and/or for the autoevaluation of the learning level
acquired in the subject. Finally, Gulliver can be consid-
ered to be the nucleus of a development tool for system
architectural projects.

Keywords: assembly, simulation, education, interactiv-
ity, microprocessor, virtual machines

1. Introduction

The use of a symbolic language at Assembler
level is widely known as a good method for
computers architecture learning, because it al-
lows the student to interact with every device
without using digital logic (cfr. [Eriksson, Rei-
jonen 99]). However, the use of a real machine
of Assembler level results in practical problems
which often cause the teacher to abandon doing
lab experiments in favor of traditional lessons
which are exclusively verbal. The simulation
of a microprocessor work, accomplished with
the help of a computer, can avoid a lot of these
problems and permit the realization of simple

laboratory experiments with virtual machines
at the assembler level.

Taking advantage of the graphic capacities of
modern computers, it is possible to create sig-
nificant and effective models for process obser-
vation.

Gulliver permits visualization of a succession of
elementary steps actually followed by a typical
computer at the execution of a single instruction,
showing the flow of data through the devices
of the microprocessor and accenting “how” the
computer reaches certain result independently
of that same result.

The interactivity provided by the computer per-
mits a type of “constructive” approach that is
fundamental in many learning processes (cfr.
[Carlucci Aiello, 91]). Starting from a “base”
structure, Gulliver allows the defining of new
devices and new instructions. So the user takes
part in the definition of a more complex struc-
ture microprocessor in an incremental way.

Gulliver allows to define computer architectures
in an incremental way, starting from a minimal
strucuture building up to more complex one, to
define symbolic program languages coherently
with the model of the architecture implemented,
to simulate functionality of the architecture and
the language proposed for each stage of the de-
velopment.

In microprocessor simulators on the market ex-
amined by the authors, the importance of good
graphics is underestimated; moreover the sim-
ulated microprocessor, real or hypothetical, is
complete and not modifiable. Such examples

Guiliver — Guided Navigation inside the Computer

input memory

output

......................................

—— data flow

control
' signals

Fig. 1. Von Neumann’s model.

are found in [Diab, Demashkieh 91], [Eriksson,
Reijonen 90], [Forti, 93], [Hamblen, .. 90], [Lo
Schiavo, Forti 94], [Reid, 91], [Silvester, 91],
[Ciotfi, 94].

2. The created model

Real microprocessors, to satisfy the need for
minimization of costs and maximization of ef-
ficiency, are developed with very particular ar-
chitectures and even with very complicated spe-
cific solutions (cfr.[Preparata 85]). However, at
the base of its planning, there are principles and
ideas which are generally very simple and com-
mon to all microprocessors. Gulliver’s aim is to
demonstrate these core concepts.

The model of the proposed computer is similar
to Von Neumann’s model, shown in figure 1.
The control unit and the Arithmetic and Logic
Unit (ALU) can be considered “internal” to mi-
croprocessor; the input unit, the output unit and
the memory are to be considered “external” and
we are not interested in investigating their struc-
tures within this context.

Globally, the microprocessor is seen as only
one entity, communicating with the outside by
means of three buses: the data bus, bidirec-
tional, for data exchange between microproces-

sor and external devices, the address bus, uni-
directional, to transfer addresses to memory in
read and write operations and the control bus,
bidirectional, to coordinate data interchange be-
tween the processor and the external devices.
Such a scheme is visible in figure 2.

The devices inside the microprocessor are nu-
merous and different. Following common mod-
els (cfr. [De blasi, 90]) such devices are grouped
according to features and purposes in the fol-
lowing units: data unit, address unit, instruction
unit, bus unit, control unit, arithmetic & logic
unit.

— The data unit is composed of data registers
used by the processor as a “cache” memory to
speed microprocessor internal operations. The
Accumulator register belongs to the data unit.

— The address unit is composed of those regis-
ters and devices that make reference to memory
addresses. A register usually called Program
Counter belongs to the address unit. A regis-
ter’s adder and a register’s shifter can be a part
of the address unit, too (cfr. [De Blasi, 90]).

—The instruction unit is composed of all the reg-
isters aimed at instructions memorization and
decoding.

— The bus unit is composed of that set of signals
and registers which the microprocessor shares

ety

data bus

microprocessor

e

control bus

{} address bus

Fig. 2. Microprocessor seen in general.

Gulliver — Guided Navigation inside the Computer

read | write | mem. request I/0 request
memory reading 1 0 1 0
memory writing 0 1 1 0
I/0 reading 1 0 0 1
1/0 writing 0 1 0 1

Table 1. The control signals

with external devices. The register that inter-
faces the data bus and the one that interfaces the
address bus belong to the bus unit and are usu-
ally called Read & Write Register and Memory
Address Register.

— The control unit supervises the operation of
the whole microprocessor and is so connected to
all other internal devices. That function, in this
job, remains “understood” so as not to make
the graphics dull. Instead of the control sig-
nals that supervise the comunication protocol
between the microprocessor and the outside are
highlighted: read signal, write signal, memory
request signal, I/O request signal. Their be-
haviour is highlighted in the table 1, where “1”
means “active signal”.

The arithmetic and logic unit (A.L.U.) is here
seen as a simple calculus unit and for this reason
it contains only temporary registers, used in all
real microprocessors in order to memorize the
data waiting to carry out particular operations
on them. Next to the A.LL.U. there is the Flags
Register, reporting the logical state of the Ac-
cumulator after the last operation is completed.
There are four highlighted flags:

e carry flag: active if the operation has caused
a carry;
e overflow flag: active if the operation has sup-

plyed a non- representable result, producing an
overflow error;

e negative flag: active if the result is negative;
e zero flag: active if the result 1s null.

Units are connected with each other by the in-
ternal data bus, by the internal address bus and
by the internal control bus. The logical struc-
ture described above is shown in figure 3 (cfr.
[Tanenbaum, 91}).

3. Graphics and animation in Gulliver

The visual simulation of a system necessarily
involves graphic replication of its real com-
ponents. In this case the system to simulate
(the microprocessor) is not really visible. This
leaves us freedom in the choice of the graphic
to use. We decided to remain rather faithful to
the scheme suggested in figure 3.

To study a microprocessor thoroughly it 1s also
necessary to observe how it interacts with the

INTERNAL ADDRESS BUS > SB%)R.
BUS
INTERNAL DAT A BUS {> UNIT gﬁﬂs’A
} JL L } ‘ ; i CONTROL
' BUS

ADDR ALU DATA INSTR. CONTR.

UNIT Sl UNIT UNIT UNIT :
N
1~

I j

[

INTERNAL CONTROL BUS

Fig. 3. The internal structure of a microprocessor.

Gulliver — Guided Navigation inside the Computer

Pragan

architecturs

e e e
sexececsaie el
SEERTERE ek Tes

i mux x@ lc’m-
ot -@x S i B B ém %
B B S B

sl'a- .'.v.ﬁmvﬁvwf.v

Bl
il S B e S
BRISE e e mﬁ-ﬁ-&x-w
A R

vamvavavvawvhwa@

2 3&5{ e @ﬁﬁ
2 ‘nzlmx' S

[mgque program execution gsterr

e S R R
4 ;,c-n'i%x’é 16 By B i S B 1
e yarod SIEEIEERIIEY

i 3

G G R

”éK#iHQ%@#K i

Fig. 4. The scheme of a microprocessor simulated by Gulliver.

external devices, that is, with the memory and
with the input and output devices. Therefore it
has also been taken necessary to simulate those
devices and their connections with the micro-
processor, constituited by the data bus, by the
address bus and by the control signals.

The previous considerations and the problems
of space utilization on the screen have led to
definition of the graphic shown in figure 4.

In the simulation phase of a program execu-
tion, Gulliver shows every micro-operation of
the processor, highlighting the devices and the
bus involved in the data transfer. The system
also shows, with a suitable coloring, the control
signals and the active flags, the memory cell in-
volved and the window that shows the program
list and the instruction in execution. Finally a
button with the “continue” sign enables the tim-
ing of the simulation process according to the
user’s need. A step of the execution of program
simulation is visible in figure 8.

The simulation program is formed using a
Windows-like user interface easy to use even

for those who have no experience with Win-
dows systems.

The whole system has been realized in Object
Pascal for Windows.

4. Using Gulliver

In order to show the functions and the capa-
bilities of Gulliver it is useful to take as an
example one of its possible uses in a didactic
environment. For example, to demonstrate the
behaviour of a microprocessor in comparison
with different ways of addressing, with partic-
ular reference to direct by register addressing
and direct by memory addressing.

In a traditional verbal lesson it is difficult to ap-
preciate the functional difference between these
two methods, because the two methods are con-
ceptually very similar. In both cases the instruc-
tion specifies the data address. Use of common
simulators of microprocessors do not improve

Gulliver — Guided Navigation inside the Computer

4 Home file: e

Directory: e \tpw2ibep

esempiod. arc
esempiob._arc
minima_arc

T FHile: Directary:
- esempiol.arc [..]

+# lesempio2 arc [-a-]

: iesempiod.arc [-c]

Fig. 5. Architecture’s loading window.

the situation: they always underline the final
result of each instruction and not the process
followed by the microprocessor to execute that
instruction.

Outlined below is the utilization of Gulliver to
simulate this process. The system allows us to
define the physical structure necessary for the
experiment (the architecture), the language, the
program, and at last to simulate the execution
of the program.

4.1. The architecture

The first thing to define is the physical structure
of the microprocessor to be used. The minimal
physical working structure includes the Accu-
mulator in the data unit, the Program Counter
in the address unit, the Read and Write Register
and the Memory Address Register in the bus
unit, an Instrucion Register, the control unit, the
A.L.U., and the Flags Register. A better look
at the definition of the minimal architecture is
given in [Di Palma, 94]. To prepare the exper-
iment above described, starting from that min-
imal working structure, it is necessary to insert
only one more register in the data unit, which
will contain the data in the case of direct regis-
ter addressing. Because of this we have to load
up the minimal structure existing in Gulliver
system and modify it by adding a data type reg-
ister inside the data unit. From the main menu
(pop-up style) we select “architecture” and af-
terwards the option “load”. At this point the
system shows the list of available architectures,
which could contain those previously created

and saved by the user. Amongst these there
is always an architecture called “minima.arc”.
When selected, the system shows its structure.
At this point we can select the options in the fol-
lowing order “architecture”, “modifies”, “add
register”, and “data type”. The system will ask
to insert the name of the new register. In this
instance REG1.

The system shows in real time all modifications
to the architecture. The physical structure just
defined is sufficient for the appointed purposes.
The modified architecture may be saved and
given a name e.g. ARC1 as in figure 5.

4.2. The language

Via a guided pop-up menu the system allows
the user to define the most appropriate sym-
bolic language for the user’s purposes. Real
microprocessors and microprocessor simulators
on the market have languages with a complete
and static set of instructions. However, Gulliver
allows the definition of languages with open in-
struction sets, a feature that forms a useful be-
ginning for other types of exercises. However
in the case of this example it is sufficient to use a
minimal language. Under “minimal language”
we mean the smallest set of instructions allow-
ing the calculation of any computable numerical
function. A better look at the definition of the
minimal language is in [Di Palma, 94]. The
system provides the minimal language that can
be loaded in the same way as the architecture is
loaded.

Gulliver — Guided Navigation inside the Computer

Name Type Semantics
INC X arithmetic Acc:=(X)+1
NOT X logic Acc:=not{X)
AND X logic Acc:=(Acc) and (X)
LOAD X data movement [Acc:=(X)
STORE X data movement [X:=(Acc)
JUMP-ZERO X prog. control jumps to X if fl.zero=]
JUMP-NEG X prog. control jumps to X if fl.neg=1I
READ X I/0 X:=(input)
WRITE X /O output:=(X)
ALT pseudo-istr. stops execution

Table 2. An example of minimal language.

A teacher that has created exercises with a dis-
tinctive language, real or hypothetical, could
however decide to alter the associated names
of the instruction set in such a way as to avoid
the students having to learn another language,
thus maintaining a close focus on the exercise
at hand. In this case a set of pop-up menus al-
lows modifications of the language instructions
with the desired names, removal of instructions,
and saving of the language thus modified. For
example the language defined in table 2 may be
saved as LANGI.

4.3. The program

After the definitions of the architecture and of
the language, the next step is drafting of the
program. This level of the system is reached by
selecting “edit” from the main menu.

During the editing phase the system shows a
window containing the list of the language in-
structions and their meaning. Moreover the sys-
tem provides a set of keys that enables a quick
use of normal editing functions (i.e.: cut, copy,

Button for the franlaction

Editing page

in machine language

_Command buttons

PROGRAM Prova

inizie: LOAD #6 : Acc=6
STORE CX ; C¥=Ace
INCR CX s Acc=CX1
STORE @Cx ; [CX]):=Acc
ALT inizio
ENDPRG Prova

I

ALT Pseudo-istr. Ferma esecuzione
ENDPRG Pseudo-istr. Fine istruzioni
INCR Arimetflogica Acc:=[x]+1

JP Salto incond. saltaa X |
JP-POS Salto cond. se Flag Negative=0 &

Window showing the set of inshucfions

Fig. 6. The editing window.

Eciting buttons

Gulliver — Guided Navigation inside the Computer

paste, erase) and system functions (load, new,
save, ...).

In the editor window there is a button that calls
the assembler translator. A current program
conceived for certain architecture and certain
language may generate errors if assembled with
a different kind of language or architecture. In
the case of an assembling mistake, the system
shows a window containing the row in question
and indicate the kind of error.

The program in figure 7, written in LINGI lan-
guage, for ARC1 architecture, is adequate for
this didactic purpose:

As we can see, the program is extremely con-
cise, in fact it has no directives or pseudo-
instructions which complicate its reading. In
this way the student can concentrate on the sub-
ject observed during the exercise without being
distracted by other problems.

At the end of drafting and after a correct assem-
bly phase, the program can be saved with “save
as...”. E.g.: PROGI.

4.4. The simulation of the program
execution

When the phases of definition of architecture,
language and program have been completed, the
system is ready to simulate the execution. If the
focus is on the simulation the previous archi-
tecture, language and program will be loaded
without modifcation. Once these elements are
loaded, the system will be ready for the simula-
tion phase.

Choosing the execution option “step by step”
the system scans the execution of each instruc-
tion in order to have the succession of elemen-
tary steps. It is possible to alter the time al-
loted to each execution step in order to suit the
teaching needs best. In the simulation phase,
besides showing the devices involved, Gulliver

also shows a window in which the phase in ex-
ecution is briefly described; in this way the stu-
dent can also use the system in an automonous
manner for passing over or deepening the exer-
cise done with the teacher.

In the case of the current example, once the sys-
tem is started, the teacher loads ARC1 archi-
tecture, the LING1 language and the PROGI
program previously saved and orders the pro-
gram assembly. At this point the teacher can
select the option “execution step by step” from
the main menu.

The system will graphically show the structure
of the ARC1 architecture; in the window a part
of the program written in the language LINGI
appears. The hexadecimal code created by the
assembler appears in the memory.

At this point the teacher has the possibility to
show the phases of the execution of each instruc-
tion in a dynamic way and the student observes
the flow of the data among the devices.

In the “execution step by step” mode the sys-
tem also simulates the fetch phase of each in-
struction; the teacher can decide to remove this
phase (equal for each instruction) by selecting
the “execution without fetch” modality.

In this example the teacher will note how the ex-
ecution of an instruction with a direct-through
registers addressing is quite different from the
execution with a direct-through memory ad-
dressing, even if these two methods are con-
ceptually equal.

Making reference to the program shown in fig-
ure 7, in the case of the instruction STORE
REG]1, that uses a direct-through registers ad-
dressing, after the fetch and decoding phases,
the real execution consists of only one passage
of data between the accumulator and the register
REGI.

begin: LOAD #10

STORE REGI

STORE LABEL
end: ALT begin
LABEL:

5 Ace:=10 4

2

; REG1:=(Acc)

: LABEL:=(Acc)

. interrupt the execution

. defines the label LABEL

Fig. 7. The program PROG1

Gulliver — Guided Navigation inside the Computer

In the case of the instruction STORE LABEL,
that uses a direct-through memory addressing,
the microprocessor has to:

- recover memory cell address labelled LABEL;
- copy the memory cell in the Address Register;

- copy the accumulator’s contents in the Read
& Write Register;

- effect a write operation in the memory.

Gulliver points out this difference in an easy
and effective way; other simulators, showing in
every instruction only the starting and finishing
states of the microprocessor, don’t permit such
underlining of the essential difference between
these two addressing methods.

5. Didact trials with Gulliver

To verify the didact validity of Gulliver we
tested the system within a university environ-
ment. Below are the results of the tests carried

out with the students at 1. T.I.S. “Tito Sarrocchi”
In Siena.

The students first study these subjects (assem-
bler languages, microprocessor and architec-
tures) at the end of the third year. The trials took
place at the beginning of the fourth scholastic
year.

5.1. First trial

For the first experience, the students of the class
were divided at random into two groups, A and
B, in equal number. Group A followed a tra-
ditional lesson for about twenty minutes, con-
ducted by a teacher. Simultaenously group B
set out to learn the same concepts with a com-
puter’s and Gulliver’s help.

Later on all the student undertook a test com-
posed of eight questions to which they had to
answer in a discorsive manner. In order to pro-
vide a control measure, two of these questions
concerned topics covered neither during the tra-
ditional lesson nor in that using Gulliver. This

Memory cell Executing Program Desaription
involved instruction list of the phase
B 1| ol 5.1 GULLIVER

EeRrsCt R Ot
e

LOAD #135
STORE (@label
ALT imit

{Executing instr.| |
Number in Acc

"continue" button

frisetinity

RO >
BRI e

T

SRR

internal bus involvec

Fig. 8. A step of the program execution simulation.

Gulliver — Guided Navigation inside the Computer

was done to compare in a significant way the
test results obtained from the students of group
A to those obtained from the group B.

1) Which physical devices are necessary for the
operating of a microprocessor?

2) Describe minutely the fetch phase of an in-
Struction.

3) What is the functional difference between
direct-through register addressing and indirect-
through registers addressing?

4) In terms of efficency (velocity of execution)
which between the two previous addressings is
preferable and why?

5) Which are the instructions that check the state
of the flags?

6) Which micro-operations are done by the mi-
croprocessor during a jump instruction?

7) Which control signals are involved in a mem-
ory reading operation? And in one of writing?

8) Which devices, besides the essentials, are
necessary to develop a relative to the program
counter addressing ?

Looking first at the two control questions it was
expected that the responses of the two groups
should have given similar results, because the
topics in question hadn’t been treated that day.
The general results obtained in relation to these
two questions are shown below in table 3.

Answer group A group B
Correct/complete 15 14
General /partial 4 2
Lacking/wrong 5 8

Table 3. Results of the general character questions.

The results of other questions, whose topics had
been treated during the traditional type lesson
and during the lesson using Gulliver, are shown
in table 4.

Answer group A group B
Correct /complete 5 39
General /partial 44 30
Lacking/wrong 23 3

Table 4. Summary results of the first trial.

The results summarized in table 3 indicate that
preparation of the students in the two groups was
similar. However, table 4 shows a big difference
in the results obtained in the test. The students
who worked with Gulliver’s help have generally
furnished more detailed responses, but above
all, these were complete explanations. The use
of Gulliver was effective in particular to un-
derstand the fetch phase, the difference among
the various addressing methods, and the main
devices for a micoprocessor. Moreover, using
Gulliver the students seemed able to generalize
some basic concepts.

5.2. Second trial

In the second trial the class were divided in eight
group of three students. In the first phase they
were asked to write a program that could calcu-
late the sum of two numbers using various ad-
dressing methods allowed by Gulliver. Gulliver
provided all students with a minimal language
and an architecture including minimal devices
and with two registers of general use.

The aim of the first phase of this trial was to
clarify the running of a standard microproces-
sor and to make the differences between various
addressing methods appreciated. The students
had no major difficulty in writing programs that
would add two numbers using the various ad-
dressing methods provided by the system and
in the simulation phase of the various programs
excution they spontaneously commented on the
conceptual and, above all, functional differ-
ences between various methods.

In the second phase of the second trial the stu-
dents were asked to write a program that would
calculate the product of two numbers through
sum operations. Besides the minimal language,
this time the students were provided with the
minimal architecture and they were allowed to
add the devices that they considered handy.

The aim of that particular phase of experience
was to make the students interact more with
the system enabling them to modify the micro-
processor structure to work on. In fact, the
students, some immediately, and others after a

10

Gulliver — Guided Navigation inside the Computer

short discussion, decided to insert into the sim-
ulated microprocessor a general use register to
use like a counter. Several students underlined
how introduction of the counter register instead
of the use of the memory provided the possibil-
ity of both writing and executing the program
more briefly. At the end of the experience, 5
groups were able to obtain a correct program
and 3 groups not.

The lesson effected with the use of Gulliver had,
in comparison to a traditional lesson, an indis-
putabily more active participation of the stu-
dents. In particular graphic description of the
processes seems to have been didactically valu-
able. Many students appreciated the possibility
to modify the microprocessor structure, under-
lining the difference between this simulator and
a normal debugger.

6. Possible developments

Gulliver has been developed in such a way as to
work in Windows and it offers a user interface
similar to any application of this system. It has
also been designed in a way as to be able to be
enlarged without excessive difficulty, because
of its highly structured nature.

A possible evolution would be the simulation
of the model of microprocessors with two ad-
dresses instructions, not because this is of didac-
tic importance but rather to provide the system
with the possibility of emulating a larger range
of microprocessors. A further development is
the possible introduction in Gulliver of a grading
tool to measure the efficiency and complexity
of the algorithms. In assisted didactics an im-
portant step could be the addition of a verifying
section with the introduction of an interactive
problem generator.

References

CARLUCCI ATELLO L., Intelligenza artificiale e formazione,
in GOLEM Anno III, n. 1/2, Gennaio/Febbraio
1991;

CIOFFI G. AND JORNO A., VILLANI T., Il processore
PD32: architettura assembler e simulatore, Mas-
son S.p.a., ed. ESA, Milano, 1994;

DE BLASI M., Computer architecture, Addison-Wesley
Publishing Company, 1990;

D1 PALMA G., S.1. Gulliver: un sistema interattivo per lo
studio di microprocessori, Thesis, Universita degli
Studi di Siena, A.A. 1993/94,

DiaB H.B. AND DEMASHKIEH I, A Computer-Aided Teach-
ing Package for Microprocessor Systems Educa-
tion, in IEEE Trans. Education,n.2, May 1991,

ERIKSSON I. AND REUJONEN P., Training computer-sup-
ported work by simulation, in Education & Com-
puting, n.1,2, July 1990;

FORTI G., Un sistema per la progettazione e la sim-
ulazione di microprocessori, Thesis, Univer-
sita degli Studi di Siena, A.A. 1992/93;

HAMBLEN J.O., PARKER A. AND ROHLING G.A., An
Istructional Laboratory to Support Microprogram-
ming, in IEEE Trans. Education, n.4, Nov. 1990;

Lo ScHiavo P. AND FORTI G., Un sistema interattivo per
la definizione e la simulazione di microproces-
sori, in Didamatica *94 — Atti (A. Andronico, G.
Casadei and G. Saceroti editors), Cesena;

PREPARATA F.P., Introduzione alla organizzazione e alla
progettazione di un elaboratore elettronico, Franco
Angeli Libri s.r.l.,, Milano, 1985;

REeID R.J., Computer-Aided Engineering for Computer
Architecture Laboratories, in IEEE Trans. Educa-
tion, n.2, May 1991,

SILVESTER P.P.,, Introducing Computer Structure by Ma-
chine Simulation, in IEEE Trans. Education, n.1,
Feb. 1991,

TANEMBAUM A.S., Computerarchitecture, Milano, Grup-
po Editoriale Jackson, 1991.

Received: September, 1997
Accepted: January, 1998

Contact address:

Alfio Andronico

University of Siena
Department of Mathematics
Via del Capitano 15

53 100 Siena

Italy

phone: 0577-263742

Giuseppe D1 Palma
Via Giotto, 20

57 100 Livorno

Ttaly

phone: 0586-859056
Pasquale Lo Schiavo
LTLS. “T. Sarrocchi”
Via C. Pisascane
53100 Siena

Italy

phone: 0577-49080

Gulliver — Guided Navigation inside the Computer

11

Alfie Andronico is full professor of foundations of computer science at
the Engineering faculty of the University of Siena. Heis head of steering
committee for engineering diplomas in Informatics and Telecommuni-
cations. He has published approximately 100 works including books
edited and coedited, technical reports in computer science research,
methodology, applications in different fields, operational research and
education. He is scientific coordinator for an Italian National Confer-
ence named DIDAMATIC.a and head of the AICA’s (Italian Association
for Information Processin) Working Group dealing with the Computer
in Education.

Giuseppe Di Palma obtained his degree in Mathematics at Siena Univer-
sity in 1994. He has interests in educational technology and informatics.
He is presently teaching informatics at the Livorno Naval Academy. He
is developing a project regarding computer aided teaching in scientific
field.

Pasquale Lo Schiavo has a degree in physics and is a systems teacher
at a secondary school in Siena. He has been working for years in ed-
ucational technology and informatics at the University of Siena where
he has contributed to publications on these subjects. In recent years, he
has devoted himself to the planning, construction and experimentation
of educational software, and in the “Gulliver System” described in this

paper.

