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A Fast Algorithm to Calculate the Exact
Radiological Path through a Pixel

or Voxel Space
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Calculating the exact radiological path through a pixel
or voxel space is a frequently encountered problem
in medical image reconstruction from projections and
greatly influences the reconstruction time. Currently,
one of the fastest algorithms designed for this purpose
was published in 1985 by Robert L. Siddon [1]. In
this paper, we propose an improved version of Siddon’s
algorithm, resulting in a considerable speedup.
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Introduction

In image reconstruction from projections we
calculate an image from a given set of measure-
ments which are related to line-integrals over
the image [3, 4]. Examples of such images can
be found in PET, CT and MRI studies where
the images represent the distribution of an ad-
ministered radio-active tracer, the distribution
of the linear attenuation coefficients of tissue
and the distribution of protons, respectively, in
cross-sections of a patient.

In order to simplify the notations, we will re-
strict ourselves to a 2D-description of the algo-
rithms. The theory can easily be extended to
rays lying in a 3D space. The results presented
in the last section of this paper, however, are
based upon both a2D- and a 3D-implementation
of the algorithms.

Prior to the reconstruction, the image is dis-
cretized into pixels and the line-integrals into
weighted sums. The weighting factor for the
value p(i,j) of pixel (i,j) is denoted by (i, )

and equals the intersection length of the ray with
pixel (i,j). Hence, the line-integral from point
p(P1x,P1y) to p(pax, pay). over the discretized
image, can be approximated by the following
weighted sum:

diy =) Ui, ))p(i))- (1)
(i)

Because of the huge amount of measurements
given by a medical scanner and the large number
of pixels, it is impossible to store all weighting
factors I(i,j) in a file prior to the reconstruc-
tion. Therefore, they have to be calculated on
the fly, which greatly limits the reconstruction
time. A fast algorithm to evaluate equation (1)
is a necessity to obtain acceptable reconstruc-
tion times.

Currently, one of the fastest algorithms de-
signed for this purpose was published in 1985
by Robert L. Siddon [1]. We have improved his
algorithm in a way that the time spent in the
inner loop is reduced considerably, and the re-
construction time accordingly (also see [2]). In
the first section we introduce the used notations.
In the following section, we review Siddon’s al-
gorithm for rays lying in a 2D plane and give the
basic formulas needed to explain the improved
algorithm in the subsequent section. In the final
section, we compare the two algorithms for rays
lying in a 2D plane as well as for rays lying in
a 3D space by comparing the obtained recon-
struction times for 3D (i.e. a stack of several 2D
planes) and fully 3D (i.e. oblique raysums are
also available) PET images.
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Fig. 1. A schematic overview of the used notations. The pixel values are denoted by p(i,7) and a point in the 2D
plane is referred to as p(x, y). The a-variable holds the relative distance of a point on the line through p(p, p1y) and
P(P2x, p2y) and the point p(piy, p1y). The c-variable equals 1 for the point P(pax, p2y) and any value between 0 and 1

for points between p(p1y, piy) and p(pay, pay). The other variables hold real distances.

Notations

The pixel space is determined by the inter-
section of two sets of equally spaced parallel
planes, perpendicular to an x- and an y-axis (see
Figure 1). The x- and y-axis are perpendicular to
each other. The two sets will be referred to as the
x- and y-planes, respectively. The number of x-
planes equals N, and the distance between them
is denoted by dy. The x-planes are numbered
from O to Ny — 1. Similar notations hold for the
y-planes. Hence, the pixel values p(i,;j) have
indices running from (0, 0) to (N — 2, Ny, — 2).
The lowest left corner of the pixel space, i.e.
the intersection point of x-plane 0 and y-plane
0, has co-ordinates (by, b,). Eachray goes from
a point denoted by p; = p(piy, p1y) to another
point denoted by p; = p(pax, pay)-

Siddon’s Algorithm

We could evaluate equation (1) by summing
over all (7,7). This would be very inefficient,
as pointed out by Siddon, because most I(i, )
are zero. It is more efficient to follow the ray
through the pixel space. Therefore, we use a

parametrical representation of the ray,

P12= {

with o € [0, 1] for points between p; and p,
and oo ¢ [0, 1] for all other points. In what
follows, we will assume that the ray is generic,
ie. that py; # py and p1, # pa,. Non-generic
rays are trivial to handle and will not be dis-
cussed further. Following Siddon’s algorithm,
we first determine the entry point (¢ = Ogiy,)
and exit point (¢ = Qiqy) of the ray (see Fig-
ure 1). Equation (9) calculates the o parameter
corresponding to the intersection of the i-th x-
plane and the line going through p(p1,, py,) and
P(P2x; P2y), hence, these values are not restricted
to the interval [0, 1].

px()

py(a) plx+a(p2x_plx) (2)

Py +o(pay—p1y)

Omin = maX(Omem, Ofymin) (3)
Doy = 10N Oz aymax) (4)

with
Qxmin = min(ax(()), ax(Nx - 1)) (5)
Ohymax = max(ocx(O), ax(Nx - I)) (6)
Oymin = min(eg(0), oy(Ny — 1)) (7)
Oymax = max((xy(O), ay(Ny - 1)) (8)
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and
: (bx JF idx) — Plx
W] = 9
. (I) P2x — Plx ( )
; (by ‘|“jdy) —Ply
= 10
o(j) = (10)

Given that the ray does intersect the pixel space,
i.e. Chmin < Ohyax, We calculate the number of the
first intersected x-plane ir after the ray entered
the pixel space and the number of the last in-
tersected x-plane i; including the outer plane.
We will use the variables i, = min(ir, i) and
Imax = max(ir, i) to simplify the following for-
mulas. Similar definitions hold for j,;;;, and jyax
concerning the y-planes. Whenever p1; < pax
we calculate i, and i,,,, with equations (11)-
(14) and otherwise with equations (15)-(18).
The definition of ¢,() is given by equation
(19). Similar formulas hold for ju;, and jimax.

Oonin=Cbmin — min=1 ( 11 )

ConinFOamin = Imin= ((px(amiﬂﬂ ( 12)

O =0+~ Lmgr=Nyp 1 (13)
ama.x#axmax —  Ipax= L(px(amax” (14)
Omin=Clxmin — Imax=Nx — 2 (15)

Ofmirﬁ'é Oxmin  —  Imax= L(Px( %in)J ( 16)

Onax—Comax  — imin:0 (17)
OnaxF Oxmax —  Imin= [@x(amaxﬂ (18)

PilCt) — by
A L)
X

Further, we calculate two arrays o |.| and o],
holding the parametric values of the intersection
points of the ray with the x- resp. y-planes, after
the ray entered the pixel space. If p1, < pax
the first array is given by equation (20) and oth-
erwise by equation (21). Similar formulas are
used to calculate the second array.

Ol [imin LY imax]

= (ax(imin)a (xx(imin T 1): N OCX(imax))(zo)
Clx [imax i imin]

= (ax(imax)a ax(imax o 1)7 E R ax(imin))(zn
Subsequently, we sort the elements of (Qun,
O], 04[.]) in an ascending order and replace
all the values that occur twice by one copy of
the value, resulting in the array oty[0---N,]

holding the parametric values of all intersected
points. The occurence of dual a-values is due
to the simultaneous intersection of an x-plane,
a y-plane and the ray. Given the ¢ty |.] array, we
calculate the co-ordinates (i, jn) of the inter-
sected pixels with equations (22)-(23) and their
intersection lengths (i, jm) With equation (24)
forallm € [1---N,]. The variable d,,p, equals
the Euclidean distance between the points p;
and p;. The pixels (7,j) which do not corre-
spond to a certain (i, jm) are not intersected.

I . Oty 1]+ Oty [m—1] (22)
r (Oﬂxy[m]Jrixy[m—l])J )
o (i)

1))dconv  (24)

Jm =
WimyJm) = (Oty[m] — Otry[m —

After implementing and profiling Siddon’s al-
gorithm, we found that its speed is greatly lim-
ited by the frequent use of equations (22) and
(23) where floating point values are converted
into integer values. In the following section we
present an altered algorithm, based on Siddon’s
algorithm, which restricts the use of these equa-
tions to once for each ray.

Improved algorithm

As pointed out in the above section, frequent
use of equations (22) and (23) limits the speed
of Siddon’s algorithm. In this section we pro-
pose an improved algorithm which restricts the
use of these equations to once for each ray. It
also obviates the need to allocate memory for
the different oc-arrays.

We follow Siddon’s approach until the values
of oy, and oy, are calculated. Starting from
here, our approach differs from the one used
by Siddon. Instead of calculating the arrays
o,[.] and oy[.] we only calculate the values
o, = 0,[0] and &, = 04[0], i.e. the paramet-
ric value of the first intersection point of the ray
with the x- resp. y-planes, after the ray entered
the pixel space.

We also calculate the values i, and i, given
by equations (11)-(18) and ji, and jimax given
by similar equations. These values are used to
calculate the number of planes N, crossed by
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the ray when it runs through the pixel space,
after it has entered the pixel space, i.e.

Ny = (imax = imin+ 1) + Gimax —jmin + 1) (25)

Note that N, > N, because the simultaneous
crossing of an x-plane, a y-plane and the ray
is subdivided into two separate events, i.e. the
crossing of an x-plane and then the crossing of
a y-plane, or vice versa. We only use equations
(22) and (23) to calculate the indices (i,]) of
the first intersected pixel, i.e.

[ 5 (min(ax, o)+t J -

[% (min(ax, 02‘}1) + ocmm)J (27)

Following the ray through the pixel space, we
have to update the values of ¢, oy, i and j ac-
cording to whether we cross an x- or y-plane.
Whenever o, < «, the next intersected plane
is an x-plane and we increase o, and i with
Clxy TSP. iy, given by equations (28) and (29).
Similar equations hold for updating o, and j
when the ray crosses a y-plane, i.e. o, < o. If
0 = 0, then we can use either case to update
the variables.

=

dy
- [pr - Plxl ( )
- 1 ifpy, < s
= { -1 else (29)

Finally, after initialising d}> to 0 and o to Gy,
we are able to calculate the radiological path by
running N, times through the following algo-
rithm: if o, < @ then calculate I(z, j) with (30)
and update dyy, i, o, and o, with equations (31)-
(34), else calculate /(i, j) with (35) and update
d12, ], 0 and ¢, with equations (36)-(39).

l(i,j) = ((Xx — Occ)dwnv (30)
diz = dip+I1(ije@,j)  (31)
Y (32)

O = (33)
& = Ot Oy (34)
1(i,j) = (0 — A)deony (35)
dip = dip+Ui,j)pG,j)  (36)
j == J + Ju (37)

O = 0oy (38)
Gy = 0y + Oy (39)

Besides the calculation of raysums, some algo-
rithms also need exact intersection lengths (7, j)
to calculate something else, e.g. the backprojec-
tion of an image. It is for these algorithms that
we formulated (30-39). Algorithms which do
not need explicit calculation of the intersection
lengths should incorporate (30) and (35) into
(31) resp. (36) without the multiplication with
dcony. The multiplication of dy, with d,,,, can
be done afterwards.

Evaluation and Results

In order to compare the two algorithms in real-
istic situations, we chose the reconstruction of
3D and fully 3D Positron Emission Tomography
(PET) images with the Maximum Likelihood
Expectation Maximization (MLEM) algorithm

[5).

3D PET data consists of a set of sinograms.
Each sinogram corresponds to a spatial plane
through the patient. Each element of a sino-
gram corresponds to a raysum of a ray through
the spatial plane and is determined by its angle
with respect to the x-axis of a 2D Cartesian xy-
co-ordinate system and its distance to the origin.
Because each sinogram corresponds to a 2D im-
age, 3D PET is actually a 2D problem. For the
evaluation, we used a data set obtained with an
ECAT 951 PET-scanner, consisting of 31 sino-
grams of 256 angles and 192 distances each.
The 31 reconstructed images have dimensions
192 by 192,

Fully 3D PET data consists of a set of data
planes. Each data plane corresponds to a spatial
plane through the origin of a 3D Cartesian xyz-
co-ordinate system and is determined by its tilt
with respect to the xy-plane and its angle with
respect to the xz-plane. Each element of a data
plane corresponds to a raysum of a ray perpen-
dicular to the spatial plane and is determined
by two Cartesian co-ordinates. Because ray-
sums are available for rays with different tilts,
fully 3D PET is a real 3D problem. For the
evaluation we used a data set calculated by the
software package eval3dpet [6, 7]. The data
planes in the data set correspond to 15 tilts and
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Siddon Improved Speedup
3D (ray calculation) 75 10 75 5 iterations
3D (reconstruction) 84 17 5.0 5 iterations
fully 3D (reconstruction) | 52 15 3.5 1 iteration

Table 1. A comparison of the algorithm of Siddon and the improved algorithm by comparing the reconstruction times
(in min.) of a 3D PET image after 5 iterations and a fully 3D PET image after 1 iteration.

96 angles and have dimensions of 90 by 128.
The reconstructed image has dimensions 64 by
128 by 128.

The MLEM algorithms have been implemented
in C on a Sun Ultra 2 Creator with 2 Ultra-
SPARC processors. In Table 1 we compare the
reconstruction times for 5 iterations for the 3D
PET case and 1 iteration for the fully 3D PET
case. We observe that speedups between 3 and
5 are obtained. The speedup for fully 3D PET is
smaller than the one for 3D PET because only a
smaller fraction of the total reconstruction time
is used to calculate the radiological paths, i.e.
37% instead of 57%.

We found that the improvement of Siddon’s al-
gorithm resulted in a speedup of 7.5 for the cal-
culation of radiological paths and in a speedup
of 5.0 for the total reconstruction time in the case
of 3D. The time used to calculate the raysums
was reduced from 89% to 57% which empha-
sises the importance of reducing the time spent
on calculating the raysums and/or the intersec-
tion lengths.
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