Journal of Computing and Information Technology - CIT 5, 1997, 4, 209-218

209

Performance Analysis of Beam Search

with Look Ahead

Suranjan De'! and Anita Lee—Post?

I A. Gary Anderson Graduate School of Management, University of California, Riverside, USA
2 Decision Science & Information Systems Area, School of Management, Gatton College of Business & Economics, Uni-

versity of Kentucky, Lexington, USA

This paper presents a heuristic search strategy called
beam search and investigates its effectiveness by ap-
plying it to classical job shop scheduling problems. A
look-ahead feature is incorporated in the strategy to detect
potential resource conflicts. Benchmark problems and
existing test cases are used in a performance analysis of
the search strategy. The search strategy is implemented
in a SUN SPARC station using Common-LISP. Our
computational experience using this enhanced version
of beam search on job shop scheduling problems are
reported.

Keywords: Scheduling, Heuristic Search, Beam Search,
Look-ahead

Introduction

This paper presents a heuristic solution strat-
egy called beam search and the application of
this strategy to selected job shop scheduling
problems reported in the literature. Although
we have reported on the use of beam search in
our earlier research (De and Lee 1990, 1993),
this paper has some unique features. First, we
present the basic method, that is beam search.
Second, we augment the performance of the
knowledge-based beam search method by us-
ing look-ahead features. Finally, we report the
effectiveness of our method by applying it to
job shop scheduling, a well-researched prob-
lem, and comparing our results with the reported
results in job shop scheduling.

Beam Search Strategy

The complexity of job shop scheduling prob-
lems seems well suited for the application of
artificial intelligence (AI) methodology. Stef-
fen surveyed some 50 Al-based scheduling sys-
tems and indicated that among the 15 systems
used for job shop application, half of them relied
on certain types of searching strategy to gener-
ate the schedule (Steffen 1986). For example,
Intelligent Scheduling and Information System
(ISIS) used a search method called constraint-
directed search for job shop scheduling (Fox
and Smith 1984). In fact, the most widely used
problem solving technique in Al is searching,
which involves choosing a path through a prob-
lem space from an initial configuration to a goal
state. The objective of searching is to make use
of a search technique to locate a “good” solution
path efficiently and effectively by limiting the
number of alternatives examined.

In general, there are two ways of limiting the
search space to manageable size: (1) search ef-
fort concentration — search effort is directed
toward the promising paths and away from the
implausible ones, (2) search effort reduction —
no search effort is wasted in exploring the un-
promising paths by pruning these paths away
from the search. Search techniques such as
best-first, A*, and various extensions of A* such
as B (Martelli 1977), C (Bagchi and Mahanti
1983), PropA, PropC, and MarkA (Bagchi and
Mahanti 1985) belong to the first category. A
heuristic estimate called evaluation function, f*,
is used to guide the search along solution paths
in the order f*. Since none of the paths are

210

Performance Analysis of Beam Search with Look Ahead

pruned to allow for backtracking, the complex-
ity of these search techniques can be quite large.
For example, A* can require O(2N) node expan-
sions when the search is performed on a graph
with N nodes (Martelli 1977, Mero 1984). A
search technique such as branch and bound be-
longs to the second category. It relies on a
bounding algorithm to calculate a lower bound
which is used to decide whether a solution path
can be fathomed or not. However, the bounding
algorithm can be computational exhaustive in
order to arrive at a good lower bound (Nau et
al. 1984).

In this paper, we will focus on a special kind
of heuristic search method called beam search.
Beam search is sought to improve the search ef-
ficiency by incorporating both the guiding and
pruning features. It represents the search pro-
cess as a tree with each node being a partial
solution to the problem. As the tree expands
in a process called branching or sprouting, suc-
cessors are generated from each node until a
goal node (a complete solution to the problem)
is reached. Out of all these successors, only w
(w=beam width) will be chosen to expand into
the next level, the rest will be pruned. Whether
a node is chosen to be expanded or pruned is
determined by an evaluation function. Ties are
broken arbitrarily, for instance, nodes that are
generated first are preferred. There is no back-
tracking and search efforts are directed to a num-
ber of search paths that are conducted parallely.
Effectiveness of the search method depends on
its ability to locate a goal node that is close to
the optimum solution of the problem with min-
imal computational overhead. The essence of
the algorithm is given below:

The Beam Search Algorithm

1. Put the start node, NODEDO, on a list, called
OPEN, of unexpanded nodes. Calculate
f*(NODEO) and associate its value with
NODEO. f{*(n) is the evaluation function
of node n.

2. If OPEN is empty, exit with failure; no so-
lution exists.

3. Select from OPEN the w best nodes for ex-
pansion (i.c., the nodes with the w least val-
ues of f*; resolve ties arbitrarily); w is the
beam width. Move these nodes from OPEN

to the list, CLOSED, of expanded nodes.
The remaining nodes in OPEN are pruned.

4. If any of the w nodes is a goal node, exit with
success; a solution has been found.

5. Expand the w nodes, creating all successors
for each node. For every successor node ng
of n, calculate f*(ns), and add it to OPEN.

6. Go to Step 2.
End of algorithm.

The success of beam search method depends
on its ability to avoid pre-mature pruning, i.e.,
promising nodes are not omitted in exploration.
There are two ways to enhance the search per-
formance in locating the goal node: (1) use
a larger beam width, and (2) increase the ac-
curacy of £*. The fact that a larger beam width
increases the likelihood of finding the goal node
using beam search can be demonstrated using a
probabilistic analysis, as shown in the appendix.
Intuitively, it can be argued that, since w differ-
ent paths are selected in the search tree using
a beam width w, the probability of finding a
goal node is w times as large as for a unit beam
width.

The second way to enhance the performance
of beam search is to increase the accuracy of
f*. f* estimates the likelihood of reaching the
goal from a given state, which, when used n
conjunction with the beam width, determines
which node should be pruned from the search
tree. Clearly, if f* is not accurate, a “good”
node can be pruned away pre-maturely, hence,
hampering the quality of the search result. The
focus of this paper is on exploring ways to im-
prove the accuracy of f*. A discussion on this
will be provided following a description of the
job shop scheduling problem in the next section.

The Job Shop Scheduling Problem

A classical job shop consists of ¢ jobs {Jy, >,

,Jp} and p machines {Mj, My, .. M“}
Each job has u operations to be performed on
one of the u machines in a unique sequence
according to its technological constraints. The
scheduling problem is to determine a time table
for each Ojp,, (the operation of jth job on mth ma-
chine) to achieve certain objective such as min-
imum makespan, minimum sum of completion
times, minimum lateness, minimum tardiness

Performance Analysis of Beam Search with Look Ahead

211

while satisfying the technological and resource
constraints.

A number of assumptions are considered. With
regard to the machines, we assume that (i) the
number of machines and their capabilities are
known and fixed, (ii) all machines are available
at the same time and remain available through-
out the scheduling period, (iii) there is only
one machine of each type, (iv) no machine may
process more than one operation at a time, (v)
all processing times are sequence-independent,
(vi) no pre-emption is allowed, i.e., each oper-
ation, once started, must be completed without
interruption, (vii) machines may be idle. With
regard to the jobs, we assume that (i) the num-
ber of jobs to be scheduled is known and fixed,
(ii) each job is an entity, i.e., no two operations
of the same job may be processed at the same
time, (iii) each job has a known and fixed job
routing and no alternative routings are allowed,
(iv) the jobs are assumed to be independent and
available at the same time, (v) no cancellation
of job is allowed, i.e., each job must be pro-
cessed to completion, (vi) in-process inventory
is allowed, i.e, jobs may wait for their next ma-
chine to be free. Based on these assumptions,
we address a job shop scheduling problem that
is deterministic (i.e., the parameters that define
the problem are known and fixed) and static
(i.e., the number of jobs and their ready times
are known and fixed).

The interest in scheduling has been stimulated
by a number of pragmatic and theoretical con-
siderations. From a practical point of view, a
good production schedule provides a competi-
tive edge to the manufacturer through low work-
in-process, high machine utilization, increase in
productivity, efficient operations management,
to mention just a few of them. From a the-
oretical point of view, traditional approaches
have been preoccupied with the design of opti-
mization algorithms for small-sized problems.
Recent theoretical advances in complexity the-
ory and Al techniques have redirected the body
of scheduling research to examine intelligent
heuristic search methods which can be applied
to more realistic scheduling problems (Van Laar-
hoven et al. 1992, Aarts et al. 1994, Taillard
1994). The purpose of this research is to exam-
ine an intelligent search strategy called beam
search, to solve job shop scheduling problems
of reasonable size. Various sources of knowl-

edge are employed to reduce the search time and
space in locating a “good” job shop schedule.

Enhancing the Performance of Beam
Search

The Look Ahead Feature

The effort to improve the accuracy of f* on the
performance of beam search is demonstrated in
this section with an example. Generally, f*(n)
is an estimate of the minimum cost of a solu-
tion path passing through node n. It has two
components:

g(n), which is the cost of reaching node n
from the starting node

h(n), which is the cost of reaching the goal
node from node n.

When beam search is applied to job shop sche-
duling with the objective to locate a minimum
makespan schedule, f*(n) can be defined as
MaXie fjob) {gj(n) + hj(n)}, where {job} is the
set of jobs to be considered, g;j(n) is the comple-
tion time of the current operation scheduled for
job j, and h;j(n) is the completion time for the
remaining operations of job j. gj(n) is a perfect
estimate once an operation is scheduled, hence,
ithas no effect on the accuracy of f*(n). We pro-
pose the use of a look-ahead feature to detect any
resource conflicts that may exist in performing
the remaining operations of job j in estimating
hj(n). In other words, hj(n) is the sum of the
total processing time for the remaining opera-
tions of job j and the total time of waiting for
resources in conflict to complete the remain-
ing operations in job j. The total waiting time
is determined by projecting the future resource
allocation by completing the partial schedule
at node n with the use of some heuristic dis-
patching rules such as the shortest processing
time (SPT), the longest processing time (LPT),
and most work remaining (MWRK). These dis-
patching rules resolve resource conflicts among
jobs by prioritizing jobs competing for the same
resource in the following manner:

SPT: job with the shortest processing time
goes first
LPT: job with the longest processing time

goes first

212

Performance Analysis of Beam Search with Look Ahead

Machine
1 2 3
1 129 78 9
Job 2 43 28 90
3 71 81 85

Table 1. Processing times

MWRK: job with the most work remaining
goes first.

An Example

The following 3—job, 3—machine case, modified
from Fisher and Thompson (1963) illustrates
how the use of a look-ahead feature in f* im-
proves search quality. The operation time and
machine assignment for each job are given in
tables 1 and 2 respectively. The problem is to
construct a schedule to minimize the makespan.

Figure 1 shows a search tree generated by using
a beam search of beam width 5 (equivalent to
expanding at most 5 successors at each level).
Note that a beam width exceeding 5 has no effect
on the search, since all the possible active sched-

J1 Ready 0
J2 Ready 0
43 Ready 0

Machine

1 2 3

1 1 2 3

Job 2 1 3 2
3 3 1 2

Table 2. Routings

ules are enumerated in this case. Each node of
the tree represents a partial schedule with a col-
lection of triplets (i, j, k), indicating that job i
finishes using machine j at time k. The numbers
next to each node n are the values of two eval-
uvation functions f*(n) and £*(n)’. £*(n) is the
evaluation function without the look-ahead fea-
ture, i.e., hj(n) is simply the sum of remaining
operation times of job j. f*(n)’ is the enhanced
evaluation function with look-ahead feature and
is given in parentheses.

In the above example, the partial schedule at any
node n is projected to completion by using the
SPT rule. With this look-ahead information,
f*(n)’ gives a more accurate portrayal of the
behavior of a solution path. It indicates which

237 (334) 237 (289)
J1 M1 129
J3 M2 81
237 (334) L 284 (284) 289 (289)
j; m? fgz J1 M1 172 J1 M1 172
' - J2 M3 133
J3 M3 166 J3 M3 166
290 (290)\‘ 334 (304) L 284 (284) - (289)\&89 (289)
J1 M2 250
J2 M3 262 J1 M3 216 e J2 M2 161 J1 M2 250
J3 M1 243 J3 M1 243 .JB 11 243 J3 M3 218 J3M3 218
l- l g iFes) i L 289 (289) L
J1 M3 259
J1 M3 271 TikiseE J1 M3 265 J1 M2 250 o e
2 M2 284 J3 M1 289
b v J3 M1 289
J2 M2 334 J1 M3 259

Fig. 1. A beam search tree (w=5)

Performance Analysis of Beam Search with Look Ahead

213

branch is more promising much earlier than by
using £*(n). With the additional knowledge to
guide the search, a smaller search tree can be
used without jeopardizing the quality of the so-
lution. In the above example, a beam search
tree with the beam width as low as 1 is suffi-
cient to generate the optimal solution (the path
with shaded nodes, giving a makespan of 284)
if f*(n)” is used. The total number of nodes
generated is 5. Whereas, if £*(n) is used, a
beam width of 2 is required in order to prevent
premature pruning of the left side branch. As
a result, the total number of nodes generated
in the latter case is 10, doubling the number of
nodes needed in the former case.

Computational Experience

A set of 20 job shop problems is selected from
Adams et al. (1988) to investigate the effects
of (1) beam width and (2) different look-ahead
heuristics on the performance of beam search.
Two benchmark problems from Fisher and
Thompson (1963), namely, the 10—jobs 10—
machines and 20—jobs 5—machines problems
are also tested. Solution quality is measured
by the value of makespan of schedule generated
using these 22 different test cases. Computa-
tional complexity is indicated by the total num-
ber of nodes generated and by the amount of
running times spent in producing the schedule.
The running times include the input, output and
CPU times in our SUN SPARC station 1+ using

Problem m x j SB w=1 w=3 w=5 others
1 5x10 666 712 681 681 666 (w=20)
2 5% 10 720 766 728 718% 694* (w=20)
3 5x 10 623 662 662 654 619* (w=50)
4 5x 10 597 632 632 632 618 (w=20)
5 5x10 593 593
6 5m 15 926 926
7 5x15 890 910 910 910 892 (w=10)
8 5% 15 868 898 892 892 863* (w=20)
g g Wl 951 966 951
10 5x 15 959 961 958
11 5 x 2 1222 1222
12 5% 20 1039 1114 LS 1107 1039 (w=10
13 3% 20 1150 1203 1170 1175 1150 (w=15)
14 5% 20 1292 1292
15 Sx20 1207 1268 1251 1246 1232 (w=10)
16 10 x 10 1021 1081 1078 1076 1012*(w=15)
17 10 x 10 796 812 812 812 794* (w=15)
18 10 x 10 891 932 932 932 891 (w=15)
19 10 x 10 875 947 898 896 891 (w=10)
20 10 x 10 924 1052 1028 971 941 (w=15)
F&T 1 10 x 10 1015 1001* 1001* 1001*
F&T 2 5x20 1290 1287* 1270* 1234*

Notation: ~ SB: Adams et al.’s straight version shifting bottleneck
m: no. of machines
iR no. of jobs
w: beam width
F&T: Fisher & Thompson

Note:
(2) number in bold face is the optimal makespan
(3) number with * is the improved makespan

1) SPTis the look-ahead heuristic unless stated otherwise

Table 3. Makespan using different beam widths

214

Performance Analysis of Beam Search with Look Ahead

Problem m x j No Loock MWKR SPT LPT
Ahead
1 5x 10 772 771 681 756
2 5x10 793 758 728 BIL
3 5x10 699 753 662 690
4 5 10 734 702 632 746
5 5x10 593 619 593 666
6 SX15 1110 1054 926 964
7 3x 15 975 1099 910 954
8 5 x 15 974 914 892 957
9 Sm 15 1065 1004 951 980
10 5x15 1044 977 958 964
11 5x 20 1330 1353 1222 1324
12 5x 20 1128 1146 1113 1115
13 5% 20 1343 1312 1170 1237
14 5x 20 1489 1292 1292 1292
15 5x20 1330 1324 1232, 1328
16 10 x 10 1054 1145 1076 1092
17 10 x 10 909 1010 812 836
18 10 x 10 1036 1003 95 960
19 10 x 10 939 1026 898 1064
20 10 x 10 1081 1125 1028 1072
Notations: m: no. of machines

i no. of jobs

MWKR: Most WorK Remaining

SPT: Shortest Processing Time

LPT: Longest Processing Time

Table 4. Makespan using different look-ahead heuristic rules in beam search with a beam width of 3

Common-LISP.

‘The effects of beam width and look-ahead heuris-
tics on the solution quality are reported in Ta-
bles 3 and 4. Table 3 compares the makespan of
schedules obtained by using beam search aug-
mented with SPT look-ahead heuristic under
various beam widths. Table 4 compares the
makespan of schedules obtained by using three

1450 -

2 g

RO -
60 -
400 -
200 -

s

Average Makespan

w i w3

.

different look-ahead heuristics, namely, SPT,
LPT, and MWK. Makespans of schedules gen-
erated without using the look-ahead heuristics
(No Look-Ahead) are also included.

The effect of beam width on the solution quality
and search complexity are illustrated in Figures
2to4. In general, the solution quality improves
as the beam width increases, but at the expense

8 i0x10
E1sxin
Wsxls
[A5x20

w5

Beam Width

Fig. 2. Effect of beam width on average makespan

Performance Analysis of Beam Search with Look Ahead

100D -
12000 -
10000 -
K000 -
H0B0 -
4000 -
2000 -

g

Avergge No. of Nedes

w3

- IENLE

Esx10
H H

Beam Width

Fig. 3. Effect of beam width on average no. of nodes generated

e in Seconds

=4
&
o
b
3

<

Wl

?ﬁ}%; 1
TSl
ImSels |
mean |

Bowm Widdh

Fig. 4. Effect of beam width on average running time

of a larger search space and longer running time.

The effect of look-ahead heuristics on the so-
lution quality and search complexity are shown
in Figures 5 to 7. It is interesting to note that
solution quality improves with the use of look-
ahead heuristics but the computational overhead
involved is not significant. Among the three
look-ahead heuristics rules, SPT performs the
best in terms of its ability to generate schedules
with the shortest makespan. It is also worth
mentioning that complexity of the problem here
depends on the machines to jobs ratio. The 5—

1400 -
1200 1
HIOO -
800 -
GO0 -
A0 -
200 -

0 -

Average Makespan

No Look Ahead

MWEKR

Lok Ahead Heuristics

machine and 20-job cases (a machine to job
ratio of 1:4) are computationally more complex
than the 10-machine and 10—job cases (a ma-
chine to job ratio of 1:1).

The results of our experiment support the use of
look-ahead heuristics in improving the quality
of the schedule. Among different look-ahead
heuristics, the SPT performs best in obtaining
schedules with the shortest makespan. The ad-
ditional computational overhead involved in us-
ing the look-ahead is insignificant. The per-
formance of our beam search augmented with

B 10x10]
., |E5x10 |
Wmssis |

;

BT

Fig. 5. Effect of look ahead on average makespan

216

Performance Analysis of Beam Search with Look Ahead

2500 -
2000
1500
100

500

Average Running Time in Seconds

No Look Abead MWEKR

W0x10
[5x10 |
mscl5 |
o520 |

LFT SPE

Look Ahead Heuristics

Fig. 6. Effect of look ahead on average no. of nodes generated

250

T -

1500 -

1600 -

5086 4

Average Running Time 7o Seconds

No Loak Abead MWKR

T SxES ’
s

LPT SPY

Look Ahead Heuristics

Fig. 7. Effect of look ahead on average running times

SPT look-ahead is comparable to Adams et
al.’s straight version of shifting bottleneck al-
gorithm. In 8 out of the 22 test cases, we are
able to produce a shorter makespan. Also, we
are able to obtain 7 optimal makespans (out of
9), 4 of which by using a beam width as low as 1.

Conclusion

This paper reports the performance of a know-
ledge-based heuristic search strategy called
beam search on well-known job shop schedul-
ing problems. Some of the key features of our
computational experience are summarized be-
low. First, the solution quality obtained by us-
ing beam search improves with beam width.
Moreover, most of the improvements in per-
formance can be obtained at relatively small
beam widths. Subsequent improvements often
require substantial computational overhead. In
other words, our proposed approach can find
“good” solutions with very modest computa-
tional overhead. Second, improvements in the
solution quality are obtained by using domain
knowledge stored in the knowledge base; this

domain knowledge is used to identify the most
promising branches. Third, improvements in
the solution quality are obtained by using a
search mechanism whose tree size can be con-
trolled by the user. Finally, we have incorpo-
rated a look-ahead feature to detect potential
resource conflicts; the use of the look-ahead
feature also improves the quality of the solution
obtained.

The beam search strategy reported here in this
paper is by no means limited to generating
makespan-based job shop schedules. In fact,
our proposed approach can be easily applied to
due-date oriented job shop scheduling problems
or more complicated scheduling problems, such
as flexible manufacturing, with equally promis-
ing results.

References

AARTS, E.H.L., VAN LAARHOVEN, P.J.M. AND ULDER,
N.L.J., (1994) A Computational Study of Local
Search Algorithms for Job Shop Scheduling, ORSA
Journal on Computing, 6, 2, 118—125.

Performance Analysis of Beam Search with Look Ahead

217

ADAMS, J., BALAS, E. AND ZAWACK, D., (1988) The
Shifting Bottleneck Procedure for Job Shop
Scheduling, Management Science, 34, 3, 391-
401,

AMAR, A.D. AND GUPTA, I.N.D., (1986) Simulated Ver-
sus Real Life Data in Testing the Efficiency of
Scheduling Algorithms, [IE Transactions, March,
1986, 16-25.

BAGCHI, A. AND MAHANTI, A., (1983) Search Algo-
rithms Under Different Kinds of Heuristics — A
Comparative Study, Journal of the Association for
Computing Machinery, 30, 1-21.

BAGCHI, A. AND MAHANTI A, (1985) Three Approaches
to Heuristic Search in Networks, Journal of the
Association for Computing Machinery, 32, 1-27.

DE, S. AND LEE, A., (1990) FMS Scheduling Using
Filtered Beam Search, Journal of Intelligent Man-
ufacturing, 1,3, 165-183.

DE, S. AND LEE, A., (1993) Flexible Assembly Schedul-
ing Using a Knowledge-based Approach, Expert

Systems with Applications : An International Jour-
nal, 6,3, 309-326.

FISHER, H. AND THOMPSON, G.L., (1963) Industrial
Scheduling, Englewood Cliffs, NJ: Prentice—Hall.

Fox, B.R. AND SMITH, S.F, (1984) ISIS: A Knowl-
edge Based System for Factory Scheduling, Expert
Systems, 1, 1, 25-49,

MARTELLI, A., (1977) Onthe Complexity of Admissible
Search Algorithms, Artificial Intelligence, 8, 1-13.

MERO, L., (1984) A Heuristic Search With Modifiable
Estimate, Artificial Intelligence, 23, 13-27.

NAU, D.S., KUMAR, V. AND KANAL, L., (1984) General
Branch and Bound, and Its Relation to A* and
AO*, Artificial Intelligence, 23, 29-58.

STEFFEN, M.S., (1986) A Survey of Artificial Intelligen-
ce-Based Scheduling Systems, [[E Fall Industrial
Engineering Conference Proceedings, 395-405.

TAILLARD, E.D., (1994) Parallel- Taboo Search Tech-
niques for the Job Shop Scheduling Problem,
ORSA Journal on Computing, 6, 2, 108-117.

VAN LAARHOVEN, P.J.M., AARTS, E.H.L. AND LENSTRA,
J.K., (1992) Job Shop Scheduling By Simulated
Annealing, Operations Research, 40, 113-125.

Appendix

Given a search tree with a constant branching
factor b, b successors will be generated from
any node of the tree. Assume there is only one
goal node at the bottom of the tree at level D,
where the goal node represents a schedule with
a minimum makespan. We would like to show
that the probability of success (finding the goal

node) by using beam search, P, is dependent
on the beam width, w. To isolate the effect of w
on Pg, {* will not be used to guide the search. In
other words, at each level of the search tree, w
nodes will be selected randomly to expand into
the next level.

Since there is only one goal node, the path from
the root to the goal node (the optimal solution
path) will be unique. Hence, Pg can be viewed
as the probability of selecting a successful node
(anode on the optimal solution path) repeatedly
at various depths of the tree. If p(ng) denotes the
probability that node n at level d is successful,
Ps can be computed as:

D

(1) Py = [pna)

d=1

For d=0 (the root node), p(ng) = 1, since the
root node is always successful. For various d,
p(ng) can be found by noting if a successful
node is reached at level d, then one of the nodes

on level d-1 is also a successful node. This
yields (if b > w):

[(b —1

w—1 1
(2) plng) =4 (W)
W
= ifd =1
(b =

By putting expressions (1) and (2) together, we

W
have Py = oD

Hence, it can be concluded that Pgaw for a given
search tree.

Received: April, 1997
Accepted: December, 1997

Contact address:

Suranjan De

A. Gary Anderson Graduate School of Management
University of California

Riverside, CA 9251-0203

USA

E-mail: suranjan.de@ucr.edu

Phone: (818) 986-4652

Anita Lee—Post

Decision Science & Information Systems Arca
School of Management

Gatton College of Business & Economics
University of Kentucky

Lexington, KY 405006

E-mail: dsianitai@ukec.uky.edu

Phone: (606)257-1948

Fax: (606) 257-8031

218

Performance Analysis of Beam Search with Look Ahead

SURANJAN DE received his Ph.D. degree in Management from Purdue
University. He is now a Visiting Associate Professor in the A. Gary An-
derson Graduate School of Management at the University of California,
Riverside. In the past, Professor De has served on the faculty at Santa
Clara University, the University of lowa and Purdue University. His re-
search interests include decision support systems and knowledge-based
systems.

ANITA LEE-POST is an Associate Professor of the Decision Science and
Information Systems area at the University of Kentucky. She received
her Ph.D. in Business Administration from the University of lowa in
1990. Her research interests include artificial intelligence, machine
learning, knowledge-based systems, computer integrated manufactur-
ing, and group technclogy. She has published extensively in journals
such as International Journal of Production Research, Al Magazine, Ex-
pert Systems, Expert Systems with Applications, IEEE Expert, Journal
of the Operational Research Society, and OM Review. She is the au-
thor of Knowledge-based FMS Scheduling: An Artificial Intelligence
Perspective. She serves on the editorial review boards of International
Journal of Computational Intelligence and Organization, Journal of
Managerial Issues, and Journal of Database Management.

