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Some Precedence Relations in Single
Machine Sequencing
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A model for real-time control of flexible manufacturing
systems is considered. In this model, a machine can
process a finite number of part types at specified rates,
but only one part type can be processed at any given
time. Each switch from one type to another requires
different setup times.

A better upper bound on the total work backlog than
those available in literature is derived by introducing
the clear-the-largest-work-after- setup (CLWS) heuristic
policy which stabilizes the system in the sense that, in
the long run, the required demand is met.

Studying whether the CLWS scheduling policy induces
convergence to a stationary state, some precedence
relations between part types are reported with the com-
putational results.

Keywords: single machine sequencing, CLWS heuristic,
upper bound, precedence relations

1. Introduction

In a paper [6], Perkins and Kumar (1989) pro-
posed a model for a flexible manufacturing sys-
tem and made a number of important obser-
vations about the stability and performance of
feedback scheduling policies implementable in
a real time. The problem is to stabilize the
system in the sense that, in the long run, the
required demand is met. This is equivalent to
saying that the total work backlog in the system
remains bounded. They also derived a finite up-
per bound on the buffer level for given schedul-
ing policy and a lower bound on the average
buffer levels for any s cheduling polic y.

After that, Lou, Sethi and Sorger (1991 ) showed
how these bounds can be improved by taking
into account the dynamic evolution of the sys-
tem, when controlled by a feedback policy.

In this paper a better upper bound on the total
work backlog than those available in literature
is derived by introducing the clear-the-largest-
work-after-setup (CLWS) heuristic policy which
stabilizes the system in the sense that, in the long
run, the required demand is met.

The paper is organized as follows.The next sec-
tion introduces the problem (called PKM) and
defines the CLWS heuristic policy. The subse-
quent sections derive an upper bound on the to-
tal work backlog, compare it to the upper bound
from [4] and give some precedence relations
between part types. These relations could be
useful in studying whether the CLWS schedul-
ing policy induces convergence to a stationary
state. The final section supposes the finite hor-
izont and reports some computational results
indicating that the stationary state exists.

2. The PKM Problem

This model assumes a single machine process-
ing different part types at specified rates, but
only one part type can be processed at any given
time. Each switch from one type to another re-
quires different setup times and once a part type
has been chosen for the production, it has to be
produced until the moment at which its buffer
level hits zero.

In the same way as in [6], we suppose that a ma-
chine processes I part types. Each part of type i
needs to be produced at a prespecified demand
rate d;, i = 1...1. The machine can process
only one part ata time. Let 7;,i = 1.../, be the
time required to produce one unit of part i and
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Fig. 1. The flexible single machine manufacturing system.

let us suppose that a setup from any part type to
part type i, requires &;, i = 1.. ./, units of time.

It is assumed that there is an unlimited buffer in
front of the machine (Figure 1).

Let x;(¢) denotes the buffer level of part type i
at time £. We define the w;(t) = x;(¢)7; and
pi = d;7; as the work backlog of part type i at
time ¢ and the machine load or input due to part
type i, respectively.

We can then define

I
X(1) =) x(r)
i=1

as the total buffer level at time t,

W(t) = Z wi(1)

i=1

as the total work backlog at time t and

as the total machine load.

We could also say that p is the average propor-
tion of time the machine spends in production.

In the same way as in [6], we say that the system
is stable if

sup W(t) <M < oo
0<r<oo

holds for some constant M.

Clearly, the necessary condition for stability of
any policy is
p<l

what we assume throughout this note.

Remark 1. Note that p; = d;t;, that is, this is
the time needed for the production of the quan-
tity of part type i arrived into the buffer in one
unit of time. So, the condition p < 1 means that
we are able to produce faster than the part types
arrive and in this way satisfy the demand. Oth-
erwise, the buffer level would increase without
any limits and we would not be able to keep the
system stable.

The problem is to find a policy which gives an
upper bound on the buffer level as small as pos-
sible. This policy should at a certain moment
T, choose a part type for the production. When
a part type, say i, has been chosen, the machine
actually begins its production at time 7, + &; and
continues until the moment 7, | at which the
buffer level x;(¢) hits zero (Figure 2).Because
of this property, the considered policy will be
called clearing policy.

From [7], we have the following definition.

Definition 1. A scheduling policy is called a
clear-the-largest-work-after-setup (CLWS) pol-
icyif it is a clearing policy and if. at time T, the
machine chooses for the next production run a
part type i, which satisfies

Wi (Tu + 8,) = wi(T, + 8;,)
Vi=1...0, j#i (1)
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Fig. 2. Performances of buffer levels.

Thus, the CLW S policy, at amoment 7, chooses
the part type i, which would have the largest
work backlog after the setup time.

Obviously, CLWS clearing policy generates a
sequence of setups and production runs (Figure
2);

Since, during the setup, the machine does not
produce anything, we have that w;(7,, + §;,) =
wi(Tn) + p;6;,, Vi = 1...Iand summing the
inequalities (1) forallj = 1...1, we obtain

I 1
B 1
an(Ti'l) + 8{,,91’,; 2 }' le’vi](T”) + _]—'Sih' Z]: pj
Jj= J=

that 1s,

1 1
Wi”(Tn) + 6fnpfn 2 FW(T”) + }-51.:10 (2)

3. Upper Bound on the Total Work Backlog

Once the part type i,, has been chosen, its pro-
duction run can begin at the time 7}, + 9;, and
continue until the time 7. | at which the buffer
level x;, (¢) hits zero.

At the time 7,11, as in [4] and [6], we have
iy (T-'H‘l) = x,-,,(T”) & dl;n 51-:1

|-
G (di,; = T—')(F‘IH—H = Tn G 61',,)

In

and, clearly, multiplying by 7;,,

wf’n(ﬂ?"f'l) = Wj”(T”) + pin Sin

+ (pf” - 1)(71114»1 - Tn - 5;',1)
Since, x;,(Tp41) = 0,ithastobe w; (Ty01) =0
and we obtain the production interval
T” — V')I'n(T”) i Sii:

3
] — Pi, ( )

TnJrl -

For the part types that were not chosen for the
production run [T}, Tj4], it is

W,i(Trz-H) = Wj(Tn) o p,i(Tn-i-l = Tn)a

Thus, the total work backlog at the moment 7, |
is

W(Tyt1)= Z Wf(TnJrl )+Wi, (Tny1)

JFin
= Z WJ(TH)'JF Z IO_,"(Tf'Hrl = Tn)
J#n J#in

+1Vf{!(7-"7)+p1’1161”11+p1‘a1(T11+1 - TT!)
_pflzain_(T-’IJ(‘i_Tll)+5f”
:W(T”)i(] ﬁp)(T‘”‘}‘l ﬁTn>+57H

Using (3), we obtain

1— . D—0;
JO + j” p )Oln
L=, 1—p,

W(TJHri ):W(ﬂ?)_win (TH)

From (2), we have that

l 1
7]'1’)1.,'!(7-'”) S 7FW(T'H) + 5inpfn - }(anp
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So, it follows

1 1-p
W(THJrl) = W(TH) }1 S W(T”)
n
1 — p I p p-’n
+ 5inl . p (p[n ],D) 51!1 1 o p
that is
1 1-p, 11-p
W(Tnr1)<W(Ta)[1-7 =0 ]—}17’0_ i

T
1 pr” p pln pin pp-’n

This implies

W(Tpy1) < W(T)[1 — 11' : Aﬁin]
+ p&;, — p 5‘"1 — pﬁ:,
and since 1 — 7%5; >0
W(Toi1) < W(T)[1 — j'll:ﬁ;om}
+ pdn (1 — %11:;)”1)

where p,, = min;—_p; and dy = max;—,._;6;.

The theory of difference equations has proposed
as follows (see Lou, Sethi and Sorger, [4]).

Proposition 1. Let (W,,) be a sequence of real
numbers satisfying

A" Wakd £ Wn+1 < A+Wn T BJr
with) < AT < 1,0 <A™ < | and AW, =

ml“’l - m!‘ Then;
Wn < — = AW” > 0
B-l—
W, = T AT = AW, <0
and
B~ o . Bt
== = Gt W = linisup Wo £ 37—

As in [4], we have the following lemma.

Lemma 1. For the CLWS policy, it holds
limsup W(T,,) < K — pdy

n—co

where

pm)
l—-p

K — I,OSM(I =

Proof. From the previous proposition and from
the fact that

1-p

1
0<1l—-=
= [l_pm

<1

QED.

Now, we can determine the following upper
bound on the total work backlog.

Theorem 1. For the CLWS policy, it holds
limsup W(r) < K

1—co

Proof. We know that for t € [T, T,4,], for
every n, it holds that

W) < W(T,+ éu)

From this fact and from the previous lemma, we
obtain the proof.

QED.

Remark 2. Observe that we consideredlim sup
=00
W(t). This means that at the beginning it may

happen that the level of the total workbacklog
is higher than K. But, once the level of work-
backlog falls bellow the upper bound K, it will
not increase any more.

Remark 3. Letr us analyse the upper bound
K a little bit. If &y = 0, ir follows that
0; = 0, Vi = 1...1, that is, there is no setup
time between any two part types. And, in this
case, the upper bound K becomes equal to zero.
This means that without the setup time, it is
enough to keep the machine busy, that is, to
produce as the part types come into the buffer.
Also, we can notice that, if the total machine
load p is great enough, that is, almost equal to
1, then the value 1 — p is almost equal to 0 and
the upper bound K becomes very high.
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4. Comparison to the SW Upper Bound

In the work [4], assuming the fixed setup time,
Lou, Sethi and Sorger used the clear-the-largest-
work (CLW) policy which, at a certain moment
T}, chooses a part type i, such that

W(Ty)

] =

With the assumption of different setup times, it
holds that

8 limsup W(r) < SW
r—00
where
16 - Mm
SW = iip_Tp) + Sup

Comparing these two upper bounds, we get the
following theorem.

Theorem 2. The upper bound SW is greater
than the upper bound K if and only if there is at
least one input different from the others.

Proof. Let us consider the difference

SW_K — ISM(p_pm)_i_aMp‘[péM(l_pm)
1—p 1—p
_ Idy (1=p)p
T lT,(;[ 6= er ] —p(lﬁpm)]
LY P
= E l—p)(f—p,.”)
— SM(p*IDm)

1 /
— 5M(Z pj* Z pm)
j=1 J=1

I
= O Z(pj_pnz)
j=1
Thus, SW — K > 0if and only if there is at least
one input p; different from the others.

QED.

Remark 4. Note that if p; = p,,, Vi=1...1,
the upper bounds SW and K are equal. Con-
sequently, the policies CLW and CLWS have
the same rules for choosing the part types for

the production runs because, assuming that
Pi = Pm, Vi = 1...1, the part type which
has the largest workbacklog in a certain mo-
ment Ty, will also have the largest workbacklog
at the moment Ty, + 6, foranyi=1...1

The next section gives some precedence rela-
tions between part types, that could be useful
in searching for the way of obtaining conver-
gence to a stationary state (that is, to a solution
consisting of cycles of identical lengths)

5. Some Precedence Relations

From Figure 2, we can observe that there is
a certain cyclic behavior of the system we are
considering. So, we can set our problem in the
framework of the sequence dependent cyclic lot
scheduling problems (see, for example Dobson
[1]).

Dobson’s goal is to minimize the average hold-
ing cost (or workbacklog) over all possible cy-
cle lengths and over all frequences of production
(that is, over all numbers of runs per cycle) for
each part type. The problem was to compute
the production frequencies that were used then
as the dates in minimizing the average holding
costs, but now, they are used with all sequences
of production having the given frequences.

In [§] the CLWS heuristic is compared to the al-
gorithm branch and bound. The reported com-
putational results show that the CLWS heuristic
policy is very effective, giving an optimality gap
that s, the difference between the optimal value
of the objective function and the value obtained
by the heuristic, of approximately 2.5-3.0 %.

Using the results from [8], we suggest that one
way of computing production frequencies in se-
quence dependent cyclic lot scheduling prob-
lems could be by using the CLWS policy. So,
1t is interesting to study the cycles, their lengths
and the number of runs of certain part type per
one cycle (that is, their frequences per cycle).

In this section, we will see how a sequence and
frequencies of setups and production runs de-
pend on inputs and setup times.

Let us consider a sequence S; = (i,...i) gen-
erated by the CLWS policy which contains two
runs of part type i (one at the beginning and one
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at the end of the sequence), say, [Ty, T,+1] and
[Ty, Ty41] for k > n+ 1. From this follows that
Wi(Tn-i-l) = W:‘(Tk+1) = 0.

Observe that for CLWS policy it may not be
true that two consecutive runs do not process
the same part type. According to the CLWS
policy it can happen that, in order to keep the
upper bound as small as possible, it is better to
process a part type, say j, for a time interval
during which x;{1) is equal to zero, rather than
switch up to another part type.

Let us now make these observation more con-
cise and state the following theorems.

Theorem 3. If p; < p;, for some j # i, there
is at least one run for part type j in the sequence
S5

Proof. During the period when the part type j is
not processed, for some moment 7, Ty <t <
Tk, 1t 1s

wi(t) = wi(Ths1) + 0j{r —

pj(t - T;-z+1)
(t = Tn+])

TrH— 1)

Since §;p; < 9;p;, we have
wi(t) + &pj > wilt) + ;p;

that 1s,
wi(t + &) > wi(t + &)

Thus, all the part types j such that p; > pi,
have to be processed at least one time before
the moment T.

QED.

Corollary 1. If p; = p;, for some j # i, there
is only one run of part type j in the sequence S;.

Proof. From the previous theorem, we know
that there is at least one run of part type j in the
sequence S;. Let Ty, Thyy < 11 < Ti, be the
moment when the part type j was chosen for the
production for the first time and (77, 7j.{], the
interval of its production. By the CLWS policy,
at the moment 7, we have w;(7T741) = 0 and
wi(Tie1) = i(Tist — Tugr). Thus, wi(Tiy) <
Wf(T[+l). Also, Vi, Tixy <t < Ty, since

02 = Pi, itis ,OJ,'(I — T!'—i—l) = p,-(t = Tg_+.1). Com-
bining these, we obtain

wi(Tis 1)+ (t—Ti1) < wi( Tre1)+0i(t—=Ti41),

Vi, Tipi <t £ T

and since p;§; = p;0;, it follows

wi(Tier) + 0it = Tir) + 038 < wilTier)
+ pit — Tiq1) + Pibi, V1, Tipn <t < T

that is,
Wj(l + 5,) < Wi(l + 5,'), Vi, T St < Ty

Thus, by the CLWS policy, in the sequence S;
the part type j will not be produced any more
after the moment Ty .

QED.

Theorem 4. For all j # i, such that p; < 0;,
there is not more than one run of part type j in
the sequence Si.

Proof. Let us suppose the contrary, that is, that
there are at least two runs of part type j in the
sequence S;.

Let [TI-: Tl—l—l} and [Tma Tr;l+1]v (Tn—H £ T €
Tiy1 < Ty < Ty < Ti), be two consecutive
intervals of the production of part type j in the
sequence S;. By the CLWS strategy, it follows
that

wi(Ti + ;) = wi(T) + &)
and
Wi(Tp + ) = wi(Ti + 6;) (4)

Also, at the moment 7y y, itis w;(T4+1) = O and
wi(Ti+1) = Pi(Tie1 — Tut1). Since pj < pi it
is

wi(T + 8) = wi(Tig1) + PiTon — Tivr + 9)

e wi(Tf‘H) * pi(Tm — T4 -+ 8])
= wi(Tm + 5;)

which is in contradiction with the (4).

QED.
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6. Computational Results

Based on the results from the previous sections
we implemented the CLWS heuristic policy and
assuming the finite horizont, executed it until all
the part types were scheduled.

Our computational experiments have objective

to estimate empirically whether the CLWS heuris-

tic policy induces convergence to a stationary
state that is, to a solution consisting of cycles of
identical lengths.

We performed all the computations on a SPARC
Server 20 mod. S20 (2 processors SuperSPARC
50 MHz, 1 Mb SuperCache, RAM 128 MB, op-
erational system UNIX SunOS 5.5 (Solaris 2.5).
The CLWS heuristic is coded in programming
language C.

The problems solved were randomly generated.
We specify for each machine load of the prob-
lem a range of values (p; € [0.01,0.6], i =
1...1) and each machine load was randomly
generated within this range. The setup cost was
chosen so that the sum of the machine loads is
less than 1. We generate set of problems with
2,3 and 4 part types and horizont equal to 50,
100 and 400.

All the problem instances assume that the ma-
chine is off at the begining of the production
and that there is no setup at the start of the first
production run.

Let denote the part types by Ji,J2,...,J;.
Example 1. 1=2, T=50

(a) p1 =0.1,00 = 02,8, = 05,8 =10
The production cycles are:
Jod1Jada\ Jadad 1 Jadad 1 2 da 1 da )y

(b) p = 0.1, 0, = 0.2, 8 = 0.5, 8, = 0.5
The production cycles are:

JoJ Jod\Jad Jo 1 Jod JaJ

(c)p1 =0.1,0,=02,8 = 10,8, =05
The production cycles are:

Do\ Jo o\ Jo 1 Jod (Jad

Example 2. 1=3, T=400

(a) P = 0.1, pp = 0.2,03 = 0.6, 51 == 0
g1 =05, 65 = 1.0

The production cycles are:

J3Jr I3 S 1 303 J 1 Jad3dad3d1 302 J3d 1 o g3
JoJ3J 1 J3Jad3d | Jad3Jad3d 1 Jada RS s

(b) P = 0.1, P2 = 0.2,93 = 0.6, 51 == L5,
o =08:8=05

The production cycles are:
J3JoJ3 1 JsJad3 1 0oy Ja )30\ Jad2d3d 102 )3
JoJ3d 1 Jada 031 2S5 dad3 01 Jada 301 s

(C) P = 0.1, Py = 0.2,p3 = (.6, 51 =R {1
0p =205, 85 = 0.5

The production cycles are:
J3JoJ3J 1 Jadada S | J3daJad 1 o302 030130003
J1J2J3JQJ3J1J3J2J3J1.]2.]}]213]1.]3]2.}3]1.]2 Ca

(d) P = 0.1, P = 0.2,03 = 0.6, 51 = 1.0,
B L5 =0,

The production cycles are:

JaJo 31 JadrJ3d 1 J3Ja 030 1 302 30102 30,
J3J1 I3 ds 1 JodsJod3 0 Jady 3 Do
Example 3. 1=5, T=100

(a) p1 = 0.05, py = 0.2,03 = 0.2, p4 = 0.25,
Ps = 0.3, 51 == ()15 52 = {}.3, 53 == 1.0,54 =
13,85 =15

The production cycles are:
JsJaJ3JsTrdadsJ3dadrIs030 a5 T2 0 1 J3dad5 ]
J3J4dsJ2J3 0405020304050 12030 4] 523405
NENEN N ENENEN IR EN SP LN LN PR

(b) o1 = 0.05, p, = 0.2,p3 = 0.2, pg = 0.25,

ps = 03,8 =058 =058 =058 =
0.5, 85 = 0.5

The production cycles are:
JsJaJaJ3JsJadrdsT3Jads T2 d30adsT 1 T2 030405
JaJ3dadsJoJ3Jsds T2 I3 adsT 12 T3 ad 5020304
JsJ2J3J4d5J2J3d 4051020304 . . .

Considering these results, we can observe that
after some production runs at the begining, the
part types are produced with a certain regular-
ity depending on the date (the machine loads
and setup times). In Example 1 (a) and (b),
we can notice that the regularity changed when
we decreased the value of the setup &, but in
the majority of examples this regularity did not
even depend on the values of setup times. Yet, it
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surely depended on the values of machine loads,
in the sense of the theorems from the previous
section.

So, the results verify these theorems and make
them useful inresolving the sequence dependent
cyclic lot scheduling problem, because we can
assume a rotation schedule and use the produc-
tion frequences obtained from the CLWS policy
as the dates in its modelling (for example, in the
Dobson’s model from [1]).

7. Conclusions

The objective of this work was to study the
single machine sequencing problem PKM pro-
posed by Perkins and Kumar [6]. In this paper
we proposed on new heuristic strategy (called
CLWS) giving better upper bound on the work
backlog than those available in the literature.

Introducing different setup times for different
part types we gave some precedence relations
between the part types in order to investigate
whereas the stationary state exists. The com-
putational results reported in the last section
indicate this possibility.

For the future research it would be very inter-
esting to examine this problem in the context of
periodic scheduling problems.
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