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Lossless image compression continues to be the focus of
the medical picture archiving system designers because
of the possibility of reducing the bandwidth required
to transmit medical images. The lossless Differential
Pulse Code Modulation (DPCM) and Hierarchical In-
terpolation (HINT) have been suggested as solutions to
this problem. However, there are limitations due to
the inability of these schemes to adapt to local image
statistics. Efforts to alleviate this problem can be seen
in various adaptive schemes found in the literature.
This paper introduces a new adaptive DPCM (ADPCM)
scheme based on the shape of the region of support
(ROS) of the predictor. The shape information of the
local region is obtained through a universal Vector Quan-
tization (VQ) scheme. The proposed lossless encoding
scheme switches predictor type depending on the local
shape. Simulation results show that improvements of
about 0.4 bits/pixel over basic DPCM and 0.2 bits/pixel
over HINT can be obtained. Comparison with lossless
JPEG indicates that the proposed scheme can cope more
easily with the changes in local image statistics. The
computation required is moderate, since a universal VQ
is used in encoding the shape information.

Keywords: Medical images, Lossless coding, Adaptive
DPCM, Shape VQ.

1. Introduction

Digital imaging techniques are increasingly more
common in medical applications and there is a
consequent need to find economical ways of
storing the acquired visual data. Coupled with
this need for storage is the requirement to pre-
serve the integrity of medical images after re-
construction. Suitable storage mechanism is
provided through lossless compression of the
images. However, the compression ratio that
can be obtained through lossless compression
is not comparable to those reported for lossy
schemes. Most of the lossless schemes are

based on some form of prediction, while the
lossy schemes take advantage of such methods
as transform and wavelet coding, and vector
quantisation. The lossless variant of DPCM is
the most common form of the lossless image
compression: the lossless JPEG compression
algorithm is a variant of DPCM.

Several variants of DPCM have been reported in
the literature [Habibi 1971, Jain 1989, Hsieh et
al. 1989, Prabhu 1985, Maragos 1984, Zschunke
1977]. For image data, the effectiveness of
DPCM as a coding algorithm stems from the
inherent inter-pixel redundancy. Success of the
lossless variant of DPCM depends on the degree
to which the predictor is able to model the image
data, thereby yielding a low variance of estima-
tion error. In a lossless coder this error needs
to be encoded as well for use in the accurate
reconstruction of the data.

The fact that images are non-stationary makes
straightforward prediction ineffective, especially
at edge locations. Model-based approaches
have been used to overcome this problem [Das
and Burgett 1993]. Recently, context-based and
segmentation-based methods have been pro-
posed to adaptively predict the pixels in the edge
area [Shen and Rangayyan 1997, WU 1997].
In this paper, a novel adaptive hybrid DPCM
scheme modifying the order of prediction based
on the shape of the edge is developed.

The rest of the paper is organized as follows. In
Section 2, DPCM coding is briefly reviewed. In
sections 3, 4 and 5, the proposed scheme is in-
troduced. A performance comparison between
the new DPCM coder and other lossless predic-
tive coders is given in section 6. The results are
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presented in Section 7, while a discussion and
further development are given in Section 8.

2. A Review of DPCM Image Coding

Two-dimensional linear prediction often em-
ploys the auto-regressive (AR) model in gen-
erating the estimate of an image pixel f (,/):

Fan =32 alp,a)f (i-p.j-q). (p,q) € 5

(1)
where (p,q) # (0,0), and f(i,) is the pre-
dicted value of the pixel. In (1), a(p,q) are
the prediction coefficients and § is the region of
support (ROS). If the ROS is strongly causal as
depicted by Jain [Jain 1989 pp. 205], the pre-
diction model is often called the non-symmetric
half-plane (NSHP) model.

The prediction error, £(i, j) is given as:
e(i.) = £ (i.4) — £ (i.) (2)

In a DPCM algorithm the prediction errors are
stored instead of the image data, and, because
the variance of &£(i,j) is much smaller than
that of the raw image pixels, compression is
achieved.

The basic DPCM method utilises fixed pre-
diction coefficients irrespective by of the local
statistics of the pixel or the region being en-
coded. Its advantages are ease of implemen-
tation and little computational overhead. How-
ever, because of the non-stationary nature of im-
age data, a fixed set of prediction coefficients
cannot sufficiently model the data, especially
at the edges. Several methods have been de-
veloped to include the concept of adaptivity in
DPCM schemes [Hibibi 1977, Hsieh et al. 1989,
Kuduvalli and Rangayyan 1992, Prabhu 1985,
Maragos etal. 1984, Roos et al. 1988, Zschunke
1977]. There are two classes of methods [Hibibi
1977]: DPCM with adaptive prediction coeffi-
cients [Kuduvalli and Rangayyan 1992, Prabhu
1985, Maragos et al. 1984, Roos et al. 1988,
Zschunke 1977], and DPCM with an adaptive
quantizer [Hibibi 1977).

When adapting the prediction coefficients opti-
mal values can be obtained for each pixel [Prbhu
1985, Roos et al. 1988, Zschunke 1977, or on
a block basis [Hsich et al. 1989, Maragos et

al. 1984, Kuduvalli and Rangayyan 1992]. Co-
efficients are obtained on a block basis in the
two-dimensional multiplicative autoregressive
model-based (MAR) coder proposed by Das
and Burgett [Das and Burgett 1993] as well, but
it utilises the MAR model and is not considered
as the variant of DPCM. In the method of Roos
et al. [Roos et al. 1988] the computation of the
coefficients to be used in the prediction of the
current pixel is based on the neighbouring pix-
els. Adaptivity was achieved in the methods of
Zschunke [Zschunke 1977] and Prabhu [Prabhu
1985] by basing the choice of predictors on the
relationship between the current pixel and the
pixels in its neighbourhood. The choice of the
predictor for the current pixel needs to be trans-
mitted as overhead. By assuming that local
stationarity holds over a block of pixels, op-
timal prediction coefficients can be computed
for each block and used in the prediction of
the pixels within the block. The coefficients
of each block also need to be transmitted. A
large overhead is incurred in terms of the side
information that needs to be transmitted. Fur-
ther, the non-stationarity of the data in blocks
containing edges results in high prediction er-
ror values and detracts from the value of these
adaptive schemes for lossless DPCM.

Adaptivity of the quantizer is attractive for a
lossy DPCM scheme [Habibi 1977], but inap-
propriate in the lossless scheme, because the
error signal must be reconstructed without loss.

3. Shape-adaptive DPCM

A new linear prediction scheme, the shape-
adaptive DPCM (SADPCM), is presented in
this paper. Its suitability in a lossless DPCM
compression algorithm stems from the high-
performance prediction and low computational
requirement.

The basic DPCM procedure is able to decor-
relate pixels in a smooth image region and
performs poorly in areas with low correlation,
because the pixels are unpredictable. DPCM
with constant prediction order will produce non-
stationary errors. In the proposed method, the
coder adjusts the predictor adaptively pixel-
wise as the correlation of the pixels alters. Fig-
ure 1 depicts eight possible relationships that
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Fig. 1. Eight possible relationships between a given pixel and the pixels in its ROS.

can exist between a given pixel and its neigh-
bours in a 2*¥2 ROS.

In Figure 1, “* 7 denotes the current pixel,
f(i,)), to be predicted. The pixels used in the

Ge 9,

prediction are denoted as “e”; they are the pix-
els f(i — 1,j), f(i,j— 1) and f(i — 1,j — 1)
and they constitute the ROS. Here, the ROS
is strict NSHP and is a third-order predictor
[Habibi 1971]. The lines joining pixels imply
that there is a high correlation among the joined
pixels, otherwise no useful relationship exists
between the pixel to be predicted and the pre-
dictor pixels. Correlation between two pixels
1s assumed to depend on their grey scale values
and a high correlation is defined as two pixels
having identical or close values.

The ROS 1s chosen as NSHP 2*2 for two rea-
sons. First, NSHP ensures that all the pixels
in the ROS have appeared before the current
pixel in a raster scan of the image. The order
of scanning is from left to right and from top
to bottom. This will ensure that every pixel
except those in the first column and the first
row can be predicted and reconstructed with-
out any problems. The second reason is that
a third-order predictor is adequate for decor-
relating inter-pixel redundancy [Habibi 1971,
Jain 1989 pp. 491, Zschunke 1977|. Using few
parameters also simplifies the system from an
implementation viewpoint.

The structures depicted in Figure | are now con-
sidered in terms of prediction. In fact, the re-
quired predictors will change as the correlation
between the pixels varies. In Figure 1 (a), the

pixel being predicted has no correlation with
the pixels in the ROS. For this kind of pixels, a
special strategy of prediction based on VQ will
be exploited; this is presented in Section 5. In
Figures 1 (b) — (d), the pixel being predicted
has a correlation with only one of the pixels in
the ROS. A first-order predictor is applied in
this case: :

f(laf) :f('i —Dj— 51)? (3)

where p, ¢ € [0, 1] and (p,q) # (0,0). In Fig-
ures 1 (e) — (g), the pixel to be predicted is
correlated with two out of the three pixels in
the support region. Under such condition, a
second-order predictor is appropriate:

- i—p,j— i—rj—s

flij=tU=pi-a ;f( i—s)

(4)

where p,g,r,5 € [0,1], (p,q) # (0,0), (r,5) #
(0,0), and (p,q) # (r,s). Finally, for those
pixels with a correlation structure as depicted

in Figure 1 (h), a third-order predictor is used
[Roos et al. 1988]:

£, j)=[0.95x%f (i,j—1)4+0.95%f (i—1, ;)
—0.95%0.95%f (i—1,j—1)] /[0.95*(%0.95&_]).

In this way, the order of prediction switches
based on the shape of the set of correlated pixels
within the 2*2 ROS; linear prediction is applied
adaptively. A higher accuracy of prediction is
obtained because only highly correlated pixels
are used.
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Codebook | A128 | A256
size

A512

U128 | U256 | U512 | U1024

SNR 2895 | 312 |313

282 | 306 [313 |3189

Table 1. SNR of the shape vectors of “Lena ” using different codebook sizes.

Unresolved issues about the proposed scheme
include (i) how to transmit the choice of pre-
dictors without much overhead, and (ii) how to
obtain information about the local shape. These
will be resolved in the next sections of the paper.

4. Vector Quantization of the Shape
Information

VQ is an effective tool in lossy image com-
pression. It can be described as mapping of a
K-dimensional Euclidean space R into a finite
subset C, the codebook, containing N reproduc-
tion points called code vectors [Grey 1984]. In
VQ image coding, the image is divided into
small blocks of which the input vectors are
formed; each input vector is encoded by the
index of the code vector to which it is clos-
est according to a distortion function. Vector
quantization can further be described as a pat-
tern classification technique and has also been
used in hybrid image coding schemes with other
methods, such as Discrete Cosine Transform
(DCT) coding [Cowman et al. 1984]. In this
paper, VQ is used as a tool to acquire the local
shape of image blocks.

In the proposed scheme, the original image is
first divided into non-overlapping blocks of 8%8
pixels. The mean of each block is computed and
removed from the pixel values (mean normal-
isation). This process removes the bias of the
block mean and reveals the shape or structure
of the block.

The shape vectors can be grouped together using
a universal or image-adaptive codebook. For
each input shape vector, the index of the nearest
code vector in the codebook stores its informa-
tion. VQ is used in this situation as a quantizer
of the shape information of the image blocks.
The problem posed in the previous section on
how to easily obtain the information about the
local shape without much overhead is thus re-
solved by VQ.

A universal codebook is employed in this work
because of the low overhead when compared

to an image-adaptive codebook. This is even
more so because of the premium placed on the
use of available bits budget. The adaptive code-
book leads to less distortion as it more closely
models the input vectors; a large universal code-
book can be used to solve this problem. Table 1
shows how the fidelity of representation of the
shapes, measured in terms of signal-to-noise-
ratio (SNR), increases as the codebook size in-
creases. The SNR here is calculated as:

255 255
Z Zfrz(laj)
SNR(dB)=10xlog { 5 2515:0 i=0
2 2 lfilid) )P

(6)
where f;(i.j) is the value in the shape vector at
location (i, ), f.(i,]) is the corresponding value
in the code vector. The test image “Lena” with
a size 256*256 pixels has been used.

In Table 1, the prefix “A 7 indicates that an
adaptive codebook is used while the prefix “U
” indicates a universal codebook; the number is
the size of the codebook.

From the results of Table 1, which show the
same trend as with other test images, it can be
seen that both codebook types can produce al-
most the same SNR for sizes greater than 256.
In this paper, a codebook of 256 shape code
vectors (8*8 pixels) generated using the LBG
algorithm [GREY 1984] is used. The training
sequence consists of vectors derived from 15
images.

5. Lossless Hybrid Shape-Adaptive DPCM
(SADPCM)/DPCM/VQ Encoder

At the encoder of the proposed system, the im-
age is initially decorrelated using DPCM with a
predictor, as shown in (5), and the prediction er-
rors are stored. The original image is then split
into 8*8 non-overlapping blocks, and the shape
vectors are formed by mean normalisation. VQ
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is applied to each shape vector and the resulting
indices are stored as side information.

Each 8*8 image block is further divided into
four 4*4 blocks and SADPCM is applied to
these blocks. Furthermore, the 4*4 blocks are
classified as either a high or low activity block,
depending on the absolute value of the DPCM
prediction errors in each block. If there are
errors whose absolute values exceed the thresh-
old, the block is labelled as high activity type
and denoted 17, otherwise it is labelled as a
low activity type and denoted “0”. The one
bit index (0 ” or “1”) is also stored as side
information. For the low activity blocks, the
errors of DPCM are stored and SADPCM is ap-
plied to the rest of the blocks. In this scheme,
DPCM is used both as a predictor and as the
indicator. For the smooth regions in an image
DPCM is still one of the best coders for loss-
less coding; in such regions DPCM outperforms
SADPCM/VQ, because the shape of the block
is not exactly represented by the code vector.

The choice of the threshold by which the block
is classified as “I ” or “0 ” depends on the level
of noise in the image; the level of noise is re-
flected by the prediction errors. In this research,
the noise level of the “simple ” images is within
the range [—1, 1]. So, in this kind of images,
only those prediction errors with absolute val-
ues greater than one are initiated by the DPCM
itself. The threshold for these images is chosen
as unity. For “complex ” images, the noise level
tends to be in the interval [-5, 5]. So, five is the
choice of the threshold for these images. The
“simple ” and “complex " images are defined
by the histogram of the DPCM-based predic-
tion errors. There are two types of histograms
of absolute errors of images, as shown in Figure
2;

Images with prediction error histograms as in
Figure 2 (a) are categorised as “simple”. In
these images, the number of error samples whose
absolute values are unity is smaller than the
number of errors with a value of zero and the
threshold is set as unity. The other type of
images categorised as “complex ” have an er-
ror histogram as shown in Figure 2 (b) and
the threshold is set as five. Errors above the
threshold are caused by the inability of DPCM
to properly model the image region under con-
sideration. In these situations the blocks are
decorrelated by SADPCM.

The size of the shape vector is chosen as §*8
instead of 4*4 because of the bits saved in rep-
resenting the side information. For example, a
codebook of 256, 4*4 code vectors requires 8
bits per vector or 0.5 bits per pixel, whereas us-
ing an 8*8 code vector requires 8 bits per vector
or 0.125 bits per pixel.

In applying SADPCM to each pixel in high ac-
tivity regions, the shape pixels in the code vector
are used. The current pixel and its 2*2 ROS in
the code vector are evaluated for correlation; a
simple difference calculation is used. For ex-
ample, using the 2*2 block of Figure 3, the ab-
solute difference between pixel £ (i, ) and each
of the pixels in the ROS in the code vector is
calculated as:

i) =1fli)) —fli-pj-a)l, ()
where €(i, /) is the difference and p, g € [0, 1],
(p.q) #(0,0).

Here, in Figure 3 (b), the three differences are 0,
0.5 and 0. Correlation in this context is defined
as the difference being less than some threshold;

&

v

Fig. 2. Two kinds of histograms of the absolute errors of DPCM.
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Fig. 3. Two 2*2 blocks in the original image and their corresponding pixels in the codebook.

otherwise there is no correlation. The thresh-
old here is set as 0.2 by experimentation. As the
threshold increases, pixels with little correlation
may be included for the prediction; decreasing
of the threshold will exclude those pixels with
high correlation. In both cases, performance of
the predictor will be degraded. In the example
given, pixel f (i — 1,j — 1) has no correlation
with pixel f (i,/); this situation is equivalent to
the decision rule given in Section 3 in which the
predictor of (4) is used.

If it is found in the code vector in Figure 3 (c)
that £ (i,j) has no correlation with any of the
pixels in the ROS, which is the case in Figure
1 (a), the predictor uses VQ in the following
manner. Recall that each element of the shape
vector is mean normalised. Then, the four pix-
els in Figure 3 are related according to:

fli-14-1) _ fi—1x)

f,(iAla.j_l) f’(l—l,])
Tri-Y )
=Fe=n ray e ®

where 1 is the block mean, f (i—1,/),f (i,j—1),
f(i—1,j—1)andf(i,j) are the raw grey scale
values of the pixels which are those in Figure 3
(a>’ Hﬂdf!(l— 1*.])7fl(rﬁ.]_ 1)’fl(l - 1':.]_ 1)
and f'(i,j) are the values of the shape vector
pixels which are those in Figure 3 (c). Using
the relationship in (8) it is possible to write:

3
f'i=1j=D)+f'(-1L,j)+f"(ij-1)
3

S
The ratio on the left hand side of (9) can be in-
terpreted as the ratio of mean of the pixel in the
ROS of the predictor in both the image domain
and the codebook. The predicted pixel value,
f(i.j), can now be computed from:

" R

i7) =f(i,j)* =
Fap=f4=* 7
where R is the mean of the pixels in the ROS
of the predictor in image data, C is the mean of
the same pixels in the mean normalised code-

book, and f'(i,]) is the corresponding value of
the pixel being predicted in the codebook.

(10)

The flowchart of the algorithm is depicted in
Figure 4. The decision rule for selecting the
prediction order is listed in Table 2. Atthe trans-
mitter, not only the errors of prediction but also
all the side information need to be sent. The
prediction errors include the errors of DPCM
and those of SADPCM. The side information
includes the indices of 8*8 image blocks and
the labels of the 4¥4 blocks. At the decoder, all
the pixels can be losslessly recovered by using
the errors and the side information. The whole
error image is divided into 8*8 blocks, and the
code vector for each block is found by the index
in the side information. Each block is then split
into 4*4 blocks. The index of each 4*4 block
can also be found in the side information. The
image, therefore, can be totally recovered by the
same decision rule as introduced before.
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Fig. 4. Flowchart of hybrid SADPCM.

Number of pixels in the ROS that
have correlation with current pixel

The optimal predictor

None (See Figure 1 (a))

VQ-based predictor (See (10))

One (See Figure 1 (b) — (d))

First-order predictor (See (5))

Two (See Figure I (¢) - (g))

Second-order predictor (See (6))

Three (See Figure 1 (h))

Third-order predictor (See (7)) |

Table 2. Decision rule for selecting the “optimal ” predictor.

6. Comparative Analysis of the Hybrid
SADPCM Coder

In this section, the performance of hybrid SAD-
PCM, DPCM, ADPCM (pixel-by-pixel [Prbhu
1985, ROOS et al. 1988, Zschunke 1977] and
block-by-block [Hsieh et al. 1989, Maragos et
al. 1984, Kuduvalli and Rangayyan 1992]) and
MAR coder [Das and Burgett 1993] are com-
pared. The DPCM coder is, no doubt, the
simplest among all the predictive schemes dis-
cussed in this comparison. The problem with
DPCM is, that it is unable to cope with edges
using the same predictors that perform well in
smooth areas; high prediction errors are thus
incurred around the edges. Table 4 shows the

result of testing DPCM with nine images. It is
clear that most of the large errors are due to the
predictor. Figure 5 shows the pixels incurring
the highest prediction error in each of the nine
test-images when DPCM is applied.

In Figure 5, the pixel labelled “* ” is the one
being predicted and those labelled “e”s form its
ROS. A comparison of the prediction errors ob-
tained using DPCM and SADPCM is given in
Table 3. In Table 3, (a)-(i) are the nine pixels
listed in Figure 5. The results clearly indicate
that in those areas where DPCM has high pre-
diction errors, SADPCM has significantly re-
duced errors.

ADPCM outperforms DPCM because the pre-
dictor adapts to the changes in local image
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Fig. 5. The pixel with the highest error in each of the nine images and its ROS.

statistics. Traditional pixel-by-pixel ADPCM
can achieve very high prediction performance
[Prabhu 1985, Zschunke 1977] at the expense
of huge side information, especially in a loss-
less coder. This problem is alleviated by using
block-based adaptation in which the side in-
formation is reduced. In the schemes proposed
by Kuduvalli and Rangayyan (ADPCM) [Kudu-
valli and Rangayyan 1992], prediction parame-
ters are obtained by the extended multichannel
version of the Burg algorithm. Das and Bur-
gett presented a MAR model-based predictive
scheme [DAS and Burgett 1993]. However, in
both schemes, parameters were obtained on a
block basis. The assumption here is that the
block pixels possess stationary statistics. When
this assumption fails, the situation is similar to
simple DPCM; large prediction errors are ob-
tained. The block size could be reduced at the
expense of more side information.

The idea of switching the predictor in the hybrid
SADPCM coder is by no means new; several
schemes based on this idea have been reported
in the literature [Prabhu 1985, Zschunke 1977).
The novelty of the scheme presented in this pa-

per is that local shape is transmitted without
much side information via VQ. VQ simplifies
the process of selecting the appropriate predic-
tor based on the decision rule and storing or
transmitting the information through the index
of the shape vector. Unlike DPCM, sudden
changes in the image can be found precisely in
the hybrid SADPCM scheme and the high activ-
ity components can be detected and decorrelated
(see Table 3). The proposed hybrid scheme
retains the good characteristics of pixel-based
ADPCM,; the drawback of huge side informa-
tion is overcome by using VQ. When compared
to block-based ADPCM, complex matrix com-
putation is obviated, while prediction perfor-
mance 1s improved by switching the predictors
more finely on a pixel-by-pixel basis.

7. Simulation and Results

All the images tested here are 8 bits per pixel
grey scale images, and their sizes are 256*256
pixels. Included in simulations are coders based
on the lossless JPEG coder; the seven predictors,

| Pixel (@) | ®) [ () T (e () T[] () O
Error by -104 | 125 | -149 | 106 113 71 -85 | -192 108
DPCM |
Predictor VQ | First | First | First | First | Second | VQ | First | Second
in SADPCM order | order | order | order | order order | order
Error b -21 -9 -19 2 -4 13 9 -8 -1
SADPCM

Table 3. A comparison of prediction errors using DPCM and SADPCM.
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Image Abdo | Feet | Head | Pelvis | Thighs | Jet | Lena | Baboon | Lax
Method

J1 580 [292]355 [502 |[4.88 3.61 522 |599 6.19
12 543 1239335 [452 |4.07 374 1 4.61 | 5.74 6.40
J3 6.15 |3.09|3.84 |532 |5.10 402 546 |6.21 6.55
J4 5.04 |2.27]3.09 | 423 |3.89 4011474 |6.03 6.44
J5 516 243 ]3.00 | 432 |4.12 3.54 1470 | 5.81 6.13
J6 493 1226]343 [400 |3.68 3.58 | 455 | 5.93 6.19
I7 525 2431301 [436 |4.13 331 [4.62 | 5.81 5.98
DPCM 500 [225]3.07 |420 |4.10 4.00 | 471 | 6.39 589
ADPCM | 481 |235|298 [398 |392 3.55(4.61 | 582 5.63
MAR 482 | 248 ]3.10 | 420 |3.85 379 1 420 | 6.22 5.91
HINT 509 [237]3.04 | 422 |3.86 3.44 | 446 | 5.94 5.65
SADPCM | 4.73 [2.24 297 | 398 |3.60 3.29 | 4.28 | 5.69 5.23

Table 4. Results of compression (bits/pixel) with nine test images.

J1 —J7, listed in Table II of Aravind et al. [Ar-
avind et al. 1993] are used. The ADPCM coder
used in the simulation is the block-based scheme
introduced by Kuduvalli and Rangayyan [Kudu-
valli and Rangayyan 1992]. The MAR was by
Das and Burgett reported as efficient in loss-
less image coding [Das and Burgett 1993]. The
other two coding schemes, DPCM and HINT
(see Table 4), are widely used in lossless coders
[Kuduvalli and Rangayyan 1992, ROOS et al.
1988]. The results obtained for pixel-based AD-
PCM are not listed here, because their entropies
are much higher than all the others when the
side information is included.

The results quoted in the tables are the first-
order entropy values of the errors with the side
information added. The bits used for side infor-

mation in the proposed scheme are calculated

8 1024 + 1 « 4096
: = (.19 bits/pixel
as 256 ¥ 256 | .O 9 bits/pixel,
where 8%1024 is the contribution from the total

bits used for the indices of 8*8 blocks (a total of
1024 blocks in a 256*256 image), and 1*4096
1s the contribution from the bits used for the in-
dices of 4*4 blocks. The results for nine test
images are given in Table 4.

8. Discussion of Results

From the results listed in Table 4 it is fair to con-
clude that the proposed hybrid SADPCM cod-
ing scheme outperforms the traditional DPCM

coder and HINT for all the images tested. Com-
pared to DPCM, hybrid SADPCM shows an im-
provement ranging from 0.01 to 0.76 bits /pixel;
a mean improvement of 0.4 bits /pixel. The per-
formance of the proposed scheme with “com-
plex 7 images such as “Lena”, “Baboon ” and
“Lax ” indicates that the scheme is better able to
decorrelate high-activity images. This claim is
corroborated by the performance of the scheme
with “simple” images such as “Feet”’; not much
gain has been provided by the new scheme com-
pared to DPCM because most regions of the
“simple ” image are classified as low-activity
type and, as such, would have been decorrelated
by the DPCM in the new scheme.

Compared to HINT and the best JPEG coder for
each image, the proposed scheme can achieve
about 5% improvement. It is worth mention-
ing here that Shen and Rangayyan [SHEN and
RANGAY YAN 1997] reported that segmenta-
tion-based coding could improve the compres-
sion bit rate by about 29% and 13%, compared
to JPEG and HINT. Simple regional growing
technique in the segmentation-based scheme
may also suggest its superiority in computa-
tional aspect. Nevertheless, the new shape-
adaptive scheme still has novel ideas of ex-
tracting and describing the shape information
by VQ and executing the pixel-by-pixel adap-
tive DPCM without much side information.

It appears that the new scheme can achieve bet-
ter compression ratio than the ADPCM pro-
posed by Kuduvalli and Rangayyan [Kuduvalli
and Rangayyan 1992] or the MAR proposed by
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Das and Burgett [Das and Burgeet 1993], and
it has far less computation burden compared to
ADPCM and MAR, as it does not have the com-
plex matrix or recursive calculations.

Apart from investigating ways of adapting to
local statistics of the image and minimising the
mean squared prediction error, research effort
needs to be directed at predictors maximising
the entropy of the predicted values. This tech-
nique might lead to lossless image coders with
a much reduced bit rate.

References

A. HaBiBl, Comparison of nth-order DPCM encoder
with linear transformations and block quantiza-
tion techniques.,[EEE Transactions on Communi-
cation, Vol. Com-19 (1971), No. 6, 948-9356

A. HaBIBI, Survey of adaptive image coding technigues,
[EEE Transactions on Communications, Vol. com—
25 (1977), No. 11, 1275-1284.

A. K. JAIN, Fundamentals of digital image processing,
Prentice—Hall, Inc., 1989.

C.H. Hsien, P. C. Lu anp W. G. Liou, Adaptive pre-
dictive image coding using local characteristics,
IEEE Proceedings, Vol. 136 (1989), Pt. 1, No. 6,
385-390.

G. R. KUDUVALLI, ANDR.M.RANGAYYAN, Performance
analysis of reversible image compression tech-
nigues for high-resolution digital teleradiology.
IEEE Transactions on Medical Imaging, Vol. 11
(1992), No. 3, 430-445.

K. A. PRABHU, A predictor switching scheme for DPCM
coding of video signals, IEEE Transactions on
Communications, Vol. com-33 (1985), No. 4,
373-379.

L. SHEN, AND R. M. RANGAYYAN, Segmentation-based
lossless image coding method for high-resolution
medical image compression, Vol. 16 (1997), No.
3, 301-307.

M. DAs AND S. BURGETT, Lossless compression of med-
ical images using two-dimensional multiplicative
autoregressive models, IEEE Transactions on Med-
ical Imaging, Vol. 12 {1993), No. 4, 721-726.

P. A. MARAGOS, ANDR.W.SCHAFER, R. M. MERSEREAU,
Two-dimensional linear prediction and its appli-
cation to adaptive predictive coding of images.
IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. ASSP-32 (1984), No. 6,
1213-1229.

P. C. CowMaN, K. L. OEHLER, E. A. RISKIN AND R. M.
GRrEY, Using vector quantization for image pro-
cessing. Proceedings of the IEEE, Vol. 81 (1984),
No. 9, 1326-1341.

P.Roos, M. A. VIERGEVER, M. C. A. VAN DIIKE AND
J. H. PETERS, Reversible intraframe compression
of medical images, IEEE Transactions on Medical
Imaging, Vol. 7 (1988), No. 4, 328-336.

R. ARAVIND, G.L.CasH, D. L. DUTTWEILER, H. HANG,
B. G. HASKELL AND A. PURI, Image and video
coding standards. AT&T Technical Journal, Vol.
72 (1993), #1, 67-89.

R. M. GREY, Vector quantization, IEEE ASSP Mag.,
Vol. 1 (1984), No. 2, 4-29,

W. ZsCHUNKE, DPCM picture coding with adaptive pre-
diction, IEEE Transactions on Communications,
Vol. com-25 (1977), No. 11, 1295-1302.

X. WU, Lossless compression of continuous-tone im-
ages via context selection, quantization, and mod-
eling, IEEE Transactions on Image Processing,
Vol. 6 (1997), No. 5, 656-664.

Received: May, 1997
Accepied: December, 1997

Contact address:

Jian Wang

Department of Electrical & Computer Engineering
University of Wollongong

Northfield Ave, NSW 2522

Australia

fax: +61-2-42213236

phone: +061-2-42214689

email: jiwa@st.elec.uow.edu.au

JIAN WANG received the BE degree in bio-medical engineering in 1993
at the Capital Institute of Medicine, Beijing, China. He is now pursuing
his PhD study in the Department of Electrical & Computer Engineer-
ing, University of Wollongong, Australia. His research interests are in
image compression, computer vision, and medical image processing.

PHILIP OGUNBONA received the BSc (Hons) degree in electronic and
electrical engineering from University of Ife, Nigeria, in 1981 and the
DIC, PhD in electrical engineering from Imperial College of Science,
Technology and Medicine, University of London, United Kingdom, in
1987. He is currently a Senior Lecturer in the Department of Electrical
& Computer Engineering, University of Wollongong, Australia. His
current research interests include wavelets, image and video compres-
sion, and multimedia database. He is a member of IEEE.

GOLSHAH NAGHDY is a Senior Lecturer in the Department of Electrical
& Computer Engineering, University of Wollongong, Australia. She
received a BSc degree in electrical and electronic engineering from
Aryamehr University of Technology in Tehran in 1977. She received
a Mphil in control engineering from Bradford University and a PhD in
electronic engineering from Portsmouth University, England, in 1982
and 1986, respectively. She was a senior lecturer at Portsmouth Uni-
versity before emigrating to Australia in 1989. Her research interests
are in biological and machine vision and medical image processing.




