Journal of Computing and Information Technology - CIT 5, 1997, 3, 167-182 167

Gene pool recombination, genetic
algorithm, and the onemax function'

Heinz Miihlenbein? and Uday K. Chakraborty”

2 GMD Forschungszentrum Informationstechnik, SET.AS, Schlof Birlinghoven, Sankt Augustin, Germany
3 Department of Computer Science and Engineering, Jadavpur University, Calcutta 700032, India

In this paper we present an analysis of gene pool re-
combination in genetic algorithms in the context of the
onemax function. We have developed a Markov chain
framework for computing the probability of convergence,
and have shown how the analysis can be used to esti-
mate the critical population size. The Markov model
is used to investigate drift in the multiple-loci case.
Additionally, we have estimated the minimum popula-
tion size needed for optimality, and recurrence relations
describing the growth of the advantageous allele in the
infinite-population case have been derived. Simulation
results are presented.

Keywords: Genetic algorithm, gene pool recombination,
onemax function, Markov chain, convergence

1. Introduction

Genetic algorithms (GAs) are a special kind
of evolutionary algorithm developed by Hol-
land (1975). These algorithms are a class
of stochastic, adaptive, general-purpose search
heuristics based on concepts borrowed from the
principles of natural selection and population
genetics. These algorithms use computational
models of evolutionary processes as basic ele-
ments in the design and analysis of computer-
based problem-solving systems. Genetic al-
gorithms usually outperform classical gradient
search techniques and various forms of random
search and heuristics on more difficult, com-
plex search spaces. Numerous variants of the
original genetic algorithm have been applied to
a wide variety of problems in science, engi-
neering, economics, business and other fields
(see, for example, Belew and Booker, 1991;

Forrest, 1993; Eshelman, 1995; Saha and Chak-
raborty, 1997). For some recent advances in
theoretical research on genetic algorithms, see
Chakraborty et al. (1996), Chakraborty (1995a,
1995b), Chakraborty and Dastidar (1993), Chak-
raborty and Miihlenbein (1997), Miihlenbein
and Schlierkamp—Voosen (1993, 1994), Miihlen-
bein (1991, 1992), Whitley (1993), Whitley and
Vose (1995).

Genetic algorithms are radically different from
the traditional search and optimization algo-
rithms. They operate on the principle of a ran-
dom yet intelligent search. These algorithms
do not presuppose any special property (e.g.,
continuity, differentiability, etc.) of the search
space. They maintain a population of individu-
als that evolve according to the rules of a number
of artificial genetic operators, such as selection,
recombination (also called crossover), and mu-
tation. The individuals are selected (to create a
mating pool) in proportion to some monotone
function of their relative fitness. They are then
crossed and mutated, to create the next genera-
tion of (possibly better) individuals.

A new type of recombination operator, called
gene pool recombination, was introduced in
Miihlenbein and Voigt (1996). It was shown
in that paper that gene pool recombination pos-
sesses the property of keeping the population
binomially distributed. In the present paper
we build on that work, by analyzing the be-
havior of gene pool recombination when it is
applied on the linear bit-counting function (also
called ONEMAX in the literature (e.g., Ackley,
1987; Syswerda, 1989)). Specifically, we de-

! An earlier version of this paper appeared in Miihlenbein and Chakraborty (1997).

168 Gene poal recombination, genetic algorithm, and the onemax function

velop a Markov chain model for computing the
probability of convergence to the optimum, and
demonstrate how the analysis can be used to ar-
rive at an estimate of the critical population size
necessary for convergence.

The remainder of this paper is organised as fol-
lows. Section 2 provides a brief introduction
to genetic algorithms. Section 3 presents a
Markov model and the simulation results. In
that section we use the Markov model to esti-
mate the critical population size and to analyze
genetic drift in gene pool recombination. The
minimum population size needed for optimal-
ity is also estimated in that section. Recurrence
relations describing the growth of the advanta-
geous allele in the population are established in
Section 4. Section 3 deals with finite popula-
tion sizes while Section 4 considers the infinite-
population case. We present the conclusions in
Section 5.

2. The genetic algorithm

The outline of the simple, "canonical" genetic
algorithm is given below:

I} =0

initialize population(t);

evaluate structures in population(t);

while predetermined termination con-
dition not satisfied

{

=t+1;
select population(t) from
population(t — 1),
apply recombination and muta-
tion to structures in population(t);
evaluate structures in population(t);

}

Genetic algorithms start with a population of
randomly (or heuristically) generated candidate
points in the search space. Each candidate so-
lution is coded (following some predetermined
encoding scheme) to represent some underly-
ing parameter set. (Binary coding is one of the
most popular encoding strategies.) The algo-
rithm operates in a number of iterations, in an
attempt to improve upon the trial solutions. In
each iteration (an iteration is called a "genera-
tion" in the GA parlance), several probabilistic

operators are applied to the trial solutions with
a view to creating (possibly) better solutions.
The algorithm terminates when either an opti-
mal / near-optimal solution has been found or
a specified number of generations have been
completed. It is to be noted that the genetic al-
gorithm is a "weak" method, with no guarantee
of finding the optimum solution in a particular
run.

The transition from one generation to the next
has been depicted in Figure 1 where the three
phases — selection, single-point recombina-
tion, and mutation — have been shown sepa-
rately. The example used in Figure 1 shows a
population size of six. Note that in this exam-
ple the selection mechanism has resulted in no
copies of AAAAA and FFFFF being present in
the mating pool. This example assumes that
the random pairing of individuals in the mating
pool has led to the three pairs (1,3), (2,5), and
(4,6) being crossed.

The following subsections explain the working
of the three operators in greater detail.

2.1. Selection

Although there exist a number of selection al-
gorithms in the literature (for an analysis of
the effects of various selection schemes, see
Chakraborty et al., 1996), the basic principle
of selection is the same, and simply stated, this
principle is to allocate, in the next generation,
more copies to fit individuals and fewer copies
to the poor ones. In the present paper we con-
sider proportional selection (also called fitness-
proportionate selection) (Goldberg, 1989). In
proportional selection an individual is selected

N
with a probability f;/ > f;, where f; is the fit-
=1

ness of the individual, and A is the population.
size (the total number of individuals in the pop-
ulation).

2.2. Recombination

The recombination (crossover) operator creates
offspring by combining segments (parts) from
parents. The idea is that useful portions from
good parents can be combined to form a (hope-
fully) better child. A wide variety of recom-
bination operators have been proposed in the

Gene pool recombination, genetic algorithm, and the onemax function 169

(1) AAAAA (1) BBBBB (1) BBCCC (1) BBECC
Children of
@1)x@3)
(2) BBEBB (2) BBBBB (2) CCBBB (2) CCBBD
3) ccccc 3 cccce (3) BBBBE (3) EBBBBE
L= => => Children of = =>...
Selection Crossover 2)x(5) Mautation
(4) DDDDD (4) DDDDD (4) EEEEB (4) AEEEA
(5) EEEEE (55 EEEEE (55 DDEEE (5) FDEEA
Children of
@) x (6)
(6) FFFFF (6) EEEEE (6) EEDDD) ECDDD
Generation £ Mating pool Generation t+1
A !
Intermediate states

Fig. 1. The simple genetic algorithm. One generation has been broken down into three phases: selection, crossover,
and mutuation.

Parent1: 10110101 Childl: 10101101
e ——)
Parent2: 01101101 Child2: 01110101
Cross site
Parentl: 10110101 Childi: 10111101
Parent2: 01101101 Child2: 01100101
Cross site

Fig. 2. The single-point crossover operator. Two cases, corresponding two different cut points, have been shown,

literature. One of the most frequently used
operators is the single-point crossover. This
operator creates two children from two par-
ents by choosing a cut-point uniformly ran-
domly along the length of the individual and
then swapping segments between the parents
(see Figure 2). Important examples of other
types of crossover include two-point (Cavic-
chio, 1970), multi-point (De Jong, 1975), mod-
ified crossover (Davis, 1985), partially matched
crossover (PMX) (Goldberg and Lingle, 1985),
order crossover (OX) (Oliver et al,, 1987),

cycle crossover (CX) (Oliver et al., 1987),
shuffle crossover (Caruana et al., 1989), uni-
form crossover (Syswerda, 1989), and order-
based, position-based and edge-recombination
crossover (Syswerda, 1991). Instead of pro-
ducing two children from two parents, some
GA-practitioners prefer to create only one child
from two parents.

In gene pool recombination (Miihlenbein and
Voigt, 1996), if p; is the relative frequency (that
is, proportlon) of a partlcular allele at locus ¢
(i =1,2,...,n, where n is the number of loci)

170

Gene pool recombination, genetic algorithm, and the onemax function

Before mutation

After mutation at the third and the fifth bits :

11011100

11110100

Fig. 3. The mutuation operator.

in the pool of selected parents, then the proba-
bility that after recombination a new individual
k will have that same allele at locus i is Dis
k=1,2,...,N (N = population size). In other
words, gene pool recombination implements a
Bernoulli process at each locus, with mean p;
and variance p;(1 — p;) at locus i.

2.3. Mutation

The mutation operator changes an allele with
a pre-determined low probability. In a binary
string, it complements a 1 to a 0 or vice versa.
This operator is applied to all bits in the string.
Figure 3 illustrates this operator. Mutation is
necessary to (re)introduce diversity in the pop-
ulation, that is, it can prevent the genetic algo-
rithm from getting stuck at a local optimum. (In
the present paper we do not consider mutation.)

3. Finite population size

The Wright-Fisher model (Fisher, 1930; Wright,
1931; Ewens, 1979; Naglyaki, 1992) in math-
ematical genetics is one of the most funda-
mental models for studying the behavior of
gene frequencies in finite populations. That
model considers the diallelic, single-locus case.
In this section we develop a Markov chain
model for studying gene frequencies in a di-
allelic, multi-locus genetic algorithm with pro-
portionate selection and gene pool recombina-
tion. We also show how the Markov model
can be used for analyzing drift in small pop-
ulations. We consider genetic algorithms with
discrete, non-overlapping generations where the
offspring population replaces the parent popu-
lation at the end of each generation.

3.1. Multiple loci: A Markov chain model

In this section we set up a Markov chain model
to compute the probability that convergence oc-
curs by a given generation.

Definition 1: Throughout this paper, by con-
vergence we will mean the situation where the
entire population is filled with copies of the op-
timal solution.

Miihlenbein and Schlierkamp—Voosen (1993,
1994), Thierens and Goldberg (1994), and Miller
and Goldberg (1996) have used this definition
of convergence. For the onemax function, the
optimal solution is the all-1 string, and thus con-
vergence represents the case when the popula-
tion contains no zeros. (The reader should note
that for a selection-recombination genetic al-
gorithm there is no guarantee that the optimal
solution would be obtained in every run of the
GA.) Convergence as defined here is not to be
confused with the situation where the popula-
tion is filled with copies (clones) of some string
that is not the optimum (this situation has been
referred to as “premature convergence” in the
literature).

Our use of this interpretation of convergence
should not be construed to mean that compu-
tational efforts in a GA must necessarily be di-
rected to achieve convergence. In real problems
itis sufficient if the GA is able to produce a sin-
gle copy of the optimal solution.

For notational convenience we consider three
loci (but this method is perfectly general and
is applicable to any problem size). Let mo,
ml, ..., m7 represent, respectively, the fitness
values of the 23 = 8 genotypes 000, 001, ...,
111. We consider a linear bit-counting function
for which the fitness of a string is obtained by
multiplying the number of ls in the string by
s, where s is the “selection coefficient”. Then
m0 = 0, ml = s, m2 = s, and so on. Clearly,

Gene pool recombination, genetic algorithm, and the onemax function

171

for s = 1, this function reduces to the familiar
ONEMAX problem.

As pointed out by Miller and Goldberg (1996),
the onemax problem is very popular in the GA-
literature because of the following factors: (1)
The problem is non-epistatic, (2) The alleles
are uniformly scaled, (3) The proportion of the
advantageous allele in the initial population can
be easily determined, (4) The mean and vari-
ance of the population fitness can be expressed
as functions of the proportion of the advanta-
geous allele, (5) The crossover operator neither
creates nor destroys building blocks.

The results of this paper are valid only for
the onemax function. It should be noted that
the onemax problem is not representative of
the complex fitness landscapes of hard, real-
world optimization problems. As observed by
Miihlenbein and Schlierkamp-Voosen (1994),
the onemax domain in GAs serves to play the
role of the “ideal gas” in thermodynamics: even
thoughno ideal gas exists in reality, the ideal gas
theory provides valuable insights into the over-
all behavior of gases.

Let us index the genotypes withi = 0,1,...,7.
Let p; denote the frequency of 1s at the ith lo-
cus. Then the present model allows us to study
the progress of the genetic algorithm as it moves
from a gene frequency vector (p; (), p2(2), p3(t))
at generation 7 to another vector (p1 (t+1), p2(¢t-+
1), p3(t + 1)) at generation ¢ + 1. At conver-

sence,pi =ps = pi=l.

From the principle of fitness-proportionate se-
lection, we know that in a single trial, the prob-
ability with which a genotype i is selected into
the mating pool is given by

mm(r)

2.1 (1)

where m; is the fitness of genotype i, x;(t) de-
notes the number of copies of genotype i, and
S™f is the sum of the fitnesses of all individuals
in the population at generation z.

(1)

prob; seect =

It follows that the probability that a single trial
picks a 1 at the leftmost locus (locus 1) is given
by

7

plsglecf = Zpr()bk,select (2)
k=4

For a binomially distributed population, we

xo(t) (1 =p1(£))(1 - p2())(1 — p3(1))N
xi() = (1=pl(6)(1 —p2(1))p3(1)N

x2(t) = (1-pl()p2(6)(1 — p3(1))N

x3(1) (1 = p1(1))p2(2)p3(t)N

x(t) = pl(n)(1 = p2(2))(1 — p3(1))N

xs5(1) p1(t)(1 - p2(2))p3(1)N

x6(t) = pl()p2(e)(1 —p3(1))N

x7(t) = pl(t)p2(t)p3(1)N

where N is the population size and pk(¢) is the
gene frequency at the kth locus at generation ¢.

Noting that the population average fitness at
generation ¢ is given by s(p1(7) +p2(¢) +p3(1)),
we have from the above equations:

pl(r) (

ST pa()pa(D) P
x (1=p3(2))+mS5(1—p2(1))p3(¢)
+m6p2(1)(1—p3(0))+mTp2()p3(1)) (3)
PAD ((1-p1 (1)
s(p1(t)+p2(t)+p3(1))
x(1=p3(t))+m3(1-p1(¢))p3(1)

p lselect:

P zselect:

+mbp1(2)(1-p3(1))+mTpl(1)p3(1)) (4)
B p3(1) B ”
p3sezm—s(pl(I)+p2(t)+p3(r))(m1(1 pl(t))
x(1=p2(t))+m3(1-p1(2))p2(¢) -
+m5p1(2)(1-p2(2))+mTpl()p2(t)) (5)

The probability that there will be exactly j
(0 < j < N) Is at the kth locus after selec-
tion 1s given by

pku"—() kfvelect(

where pkgejecr, k =
tions 3, 4 and 5.

Thus the probability that after selection there
will be i 1s at the first locus and j 1s at the
second locus and k 1s at the third locus is

- pkselec!)N_

1,2,3, are given by equa-

P1,iP2,jP3 k- (6)

The gene frequencies at the next generation are
obtained by noting that the gene pool recom-
bination mechanism implements three indepen-
dent sequences of Bernoulli trials at the three

172

Gene pool recombination, genetic algorithm, and the onemax function

Population Size | Ultimate Probability of Convergence
4 0.5332
6 0.6407
8 0.7600
10 0.8460

Table 1. Ultimate convergence probabilities for 3 loci (initial frequency = 0.5 for all loci)

loci in the selected parent pool. Thus, given
i,j,k 1s at the three loci before recombination,
the probability that there will be i’ s at the first
locus, ;' at the second and k' at the third after
recombination is given by

(¥)@ra-o. @

The transition probability matrix of our Markov
chain is thus given by the product of two ma-
trices — the selection matrix (given by equa-
tion 6) and the recombination matrix (given by
equation 7). It is interesting to observe from
equations 3—7 that because of the nature of the
bit-counting function, the transition probability
values are independent of s.

Definition 2: The ultimate convergence proba-
bility is defined as the convergence probability
as the number of generations tends to infinity.

In Table 1 and Table 2 we present some rep-
resentative results of our Markov chain calcu-
lations. Most figures in this paper have been

ity does not increase any further, regardless of
the number of generations.

Definition 3: We define the critical population
size as the minimum population size needed to
obtain convergence with a specified probability.

If, in the definition of the critical population
size, we choose the acceptable value of the prob-
ability of convergence to be 80% (say), then
Table 1 shows that for three loci, the ONEMAX
function requires a critical population size of
16 ’

It is sometimes necessary to be able to analyze
bit-counting functions where the fitness values
are defined as follows:

i for the all-O string
fitness= ¢ 1+4+sxnumber of
Is in the string, otherwise.

For such a fitness function, the average fitness of
the population at generation 7 is 1 + s(p1(z) +
p2(t) + p3(1)), and equations 3, 4 and 5 are
changed to

pl(z)

rounded to four decimal places. In Tables 1 Plsetecr= 1+s(p1(f)+p2(t)+p3())(mA(1-p2(1))
and 2, the last column represents the saturation x (1—p3(1))+mS(1—p2(1))p3(1)
value of the convergence probability — once 6 5 7 »
this value is reached, the convergence probabil- +m6p2(e)(1-p3{1))+mTp2(1)p3(1)
Popsize | Initial Frequency at each Locus | Ultimate Prob. of Convergence

4 0.5000 0.8042

5 0.4000 0.8286

6 0.5000 0.9094

j 0.2857 0.8917

8 0.5000 0.9608

10 0.5000 0.9837

10 0.2000 0.9538

Table 2. Ultimate convergence probabilities for 2 loci

Gene pool recombination, genetic algorithm, and the onemax function

173

0.8 ,
0.7 |

0.6 -

Prob. of 04 F

conv.

0.3
0.2

0.1

Theoretical <—
Empirical - -

10

15 20
Generation

25

Fig. 4. Comparison of theoretical and experimental convergence probabilities (population size = 6, number of loci

= 3, initial frequency of 1s at each locus =

P2 o= p2(1)
T s (p1 () +p2(0) +p3(1)
x (1=p3(£))+m3(1—p1(2))p3(1)
+m6p1 (1) (1—p3(z))—l—m?pl(t)pS(r})

3(t
Peter= T M P 0%
x (1=p2(1))+m3(1-p1(2))p2(1)
+mSp1(t) (1—p2(t))+mTpl(t)p

(m2(1—pl1(t))x

2(r))

withm0=1ml=1+s,m2=1+s,m3=
14+2s,md=1+s,m5=1+2s,m6=1+2s
and m7 = 1 + 3s.

3.2. Comparison with simulation

To obtain empirical support for our model, we
conducted experiments by running the genetic
algorithm (with proportionate selection and gene
pool recombination) on the ONEMAX prob-
lem. For each experiment, a set of values for
(a) population size, (b) number of loci, and (c)
the initial gene frequency was chosen, and us-
ing these values, 500 independent runs (with
as many different seeds for the pseudorandom
number generator) were taken. All of the 500
runs in any single experiment were started with
the same initial population, the initial popula-
tion having been generated with the specified
initial probability of 1s. The generation num-
ber at which convergence occurred in each of

0.5)

these 500 runs was noted, and the convergence
probability at a given generation was computed
from the relation

(1)
500’
where s(1) denotes the total number of runs (out

of 500) in which convergence occurred at or
before generation £.

pr()bconvergence (t) =

The experimentally obtained convergence prob-
abilities agreed with the values computed by the
Markov model. In Figures 4 and 5 we compare
two representative theoretical-experimental pairs
of plots.

In the following subsection we show how the
Markov chain model can be used for analyz-
ing drift (Crow and Kimura, 1970) in small-
population genetic algorithms that use gene pool
recombination.

3.3. Multiple loci: Drift in gene pool
recombination

Drift at a single locus was analyzed by Gold-
berg and Segrest (1987). Drift in a multi-locus
genetic algorithm has been studied in Asoh and
Miihlenbein (1994), but the uniqueness of the
present approach is that unlike that paper, it does
not treat the multi-locus case as a simple gener-
alization of the single-locus analysis, and more

174

Gene pool recombination, genetic algorithm, and the onemax function

0.8 -

0.6

Prob. of
conv.

0.2 |

0'. | | |

Theoretical <— -
Empirical 4 -

1 { H 1]

0 5 10 15

20 25 30 35 40 45

Generation

Fig. 5. Theoretical and experimental convergence probabilities (population size = 10, number of loci = 2, initial
frequency of 1s at each locus = 0.5)

importantly, it allows us to treat drift as a special
case of selection (where the selection pressure
is zero).

Gene pool recombination is a novel recombi-
nation scheme where the offspring allele at a
particular locus is obtained by uniformly ran-
domly choosing one allele from all alleles at
that locus in the selected pool. This recombina-
tion method ensures that the population always
remains binomially distributed. In this recom-
bination algorithm, the process of generation of
the offspring population from the selected par-
ent population can be thought to be a collection
of n independent sampling processes with re-
placement, where n denotes the function size
(= number of loci).

The Markov chain model developed in Section
3.1 can be used for analyzing drift by modify-
ing only the selection matrix (the recombina-
tion matrix remains unaltered). We begin by
noting that in the case of random drift there is
no systematic selection pressure in favor of any
genotype and equation 1 becomes

xi(f)
N

(8)

prObi,selecr =

Equation 2 holds for drift also. Using equa-
tions 8 and 2, and substituting gene-frequency

expressions for genotype frequencies, we get

Plselect :pl(l‘)
pzselecr :p2(l‘)
P3select =p3 (t)

It follows that the probability that after uniform
random selection there will be v 1s at the uth lo-
cus (foru = 1,2, -, n) is given by p,,, where
Pu,v depends only on the gene frequency at the
uth locus, py,:

N\ _
Pupy = (v)pu(l *pu)N %

Thus the probability that after uniform random
(i.e., unbiased) selection there will be v; 1s at
the first locus,- - -, v, 1s at the nth locus is given

by
(9)

As before, the transition probability matrix for
drift is obtained by multiplying the selection
matrix (given by equation 9) and the recombi-
nation matrix (given by equation 7).

Ply-P2yvy - Prny,-

The probability of fixation (to any absorbing
state) by generation ¢ is obtained from the ¢-
step transition probability matrix by summing
all the probabilities corresponding to the ab-
sorbing states. As an example, for a two-loci
case, the probability of fixation by generation ¢

175

Gene pool recombination, genetic algorithm, and the onemax function

n| N=2 | N=4 N=8 N=16
2 1 2.6667 | 6.3153 | 13.7165 | 28.7069
4 | 3.5048 | 8.3474 | 18.1047 | 37.7954

Table 3. Expected fixation time with deterministic selection and gene pool recombination (initial frequency = 0.5 at
each locus)

n| N=2 | N=4 | N=8 | N=16
2 1 1.6000 | 3.4041 | 7.1084 | 14.6035
4 |1.9929 | 44241 | 9.3023 | 19.1477

Table 4. Expected fixation time with uniform random selection and gene pool recombination (initial frequency = 0.5

at each locus)

is given by fixation times after taking into account uniform
random selection and gene pool recombination.
Pf ixation(t) = It is interesting to note from the data in Tables

prob:((p1.0,p20) = (0,0))+prob,((p1,0:P2,0)
= (0, 1))+prob:((p1,0,p2,0) — (1,0))
+prob.((p1,0,P20) — (1,1))

where py o denotes the gene-frequency at the kth
locus at generation 0 and the right arrow (—) in-
dicates a transition from the left hand side gene
frequency vector to the right hand side vector.

It is easy to see that pf jyarion (1) defines a cumula-
tive distribution function. The mean (expected)
fixation time is then given by

> kq(k)
k=0

3 and 4 that uniform random selection followed
by gene pool recombination is about two times
faster than deterministic selection and gene pool
recombination.

3.4. Multiple loci: Minimum population size
for optimality

In this section we continue our analysis of gene
pool recombination on the simple ONEMAX
function. We show by simple probabilistic anal-
ysis that it is possible to arrive at a lower bound
for the population size needed to find the opti-
mum.

where We consider the ONEMAX problem and a select-
ion-recombination genetic algorithm. No muta-
q(k) = {0, k=0, tion is applied. To compute the minimum pop-
Pr ixarion(k) — Py ixation(k — 1),k > 1. ulation size needed in this case, we proceed by

Tables 3 and 4 show the mean fixation times for
some representative cases. The values in Ta-
ble 3 have been obtained for the case when the
whole of the population at a particular genera-
tion is deterministically chosen to be parents. In
other words, in this case all members at a gen-
eration go into the selected parent pool. This is
how drift was treated by Miihlenbein and Voigt
(1996) whose results agree with the data in Ta-
ble 3. Interestingly, the fixation times in Table 3
agree with the results of Asoh and Miihlenbein
(1994), too. In general, some sort of selection
is applied to create the parent pool, and gene
pool recombination is then applied on the pool
of selected parents. In Table 4 we show the

noting the fact that in the absence of mutation,
the optimal string (all 1s) can never be achieved
if, in the initial population, all the bits at a locus
are zeroes. Thus, for the optimal individual to
be ever achieved, every locus should contain at
least one 1. Now because of stochastic effects
in small populations, having just a single occur-
rence of the advantageous allele at a locus may
not be sufficient to guarantee the presence of 1
at that locus over a number of generations. It
is therefore reasonable to require the presence
of a certain number, say k (> 1), of Is at each
locus in the initial generation. It follows, then,
that the probability that convergence to the op-
timum will not occur is given by the probability
that the initial population contains at least one

176 Gene pool recombination, genetic algorithm, and the onemax function

No. of Loci | & p Required Minimum Popsize
32 & 1 05 53
22 g | 0.25 121
32 8 | 0.125 256
64 16 | 0.5 79
64 16 | 0.25 178
64 16 | 0.125 373
100 1] 05 27
100 5 ¢ 035 36
100 5| 05 44
100 10| 0.5 61
128 32| 05 125
128 32 | 025 277
128 32 | 0125 a7
200 1] 05 28
200 2 1 0 33
256 64 | 0.5 210
256 64 | 0.25 455
256 64 | 0.125 942

Table 5. Minimum population size for specified n and k values

locus with less that £ 1s. We compute this prob-
ability next.

Let the initial population be generated with
probability p for the advantageous allele (1).
We then have the same p for each locus. Now
the probability that a particular locus (column)
in the initial population has i 1s (we are not con-
cerned at this stage with exactly which positions
are 1s; the knowledge of the total number of 1s
is sufficient for the present purpose) is given by

(]:[) p'(1—p)N.

Therefore the probability that a locus has 0 or 1
or2or..ork—11sis

kz_f (Iy) P(1=p)"™ = pa (say).

j=0

We note that out of a total of # loci, one or two
or ... or nloci may have less than £ 1s. Thus the
probability that at least one locus has less than
k 1s is given by
n
n »
> (7) eatt—par

=i

=1 (1—pa)

The minimum population size can be found by
setting

1 —(1—pa)* <e, (10)
where ¢ is a predetermined small quantity, and
solving for N. Unfortunately, it is difficult to
solve the above inequality analytically. We
wrote a program that uses equation (10) to
find out the minimum population size by iter-
ation. Table 5 presents the results for some

sample cases. For all entries in this table,
¢ = 0.0000001.

3.5. Single locus: Markov chain analysis

In this section we consider a single-locus ge-
netic algorithm where the fitness of a 0 is 1 and
that of a 1 is 1 + s, s being a predetermined
selection coefficient. We will apply the Markov
chain approach to obtain the critical population
size, the ultimate probability of convergence,
and the mean time to fixation (when both ab-
sorbing states — the “all 0" state and the “all 17
state — are considered).

Let N denote the population size and let there
be i Is at any generation. Then in proportionate
selection, the probability that in a single trial a
I would be picked is given by

Gene pool recombination, genetic algorithm, and the onemax function

L7

i(145)
i(14+s)+N—i

Pselect =

The probability that given i 1s in the present
generation, the next generation would have j 1s
is

N _ L
Py = (J) pielect(l _pselecI)N %

The above equation defines the transition prob-
abilities of the Markov chain, and it is now
straightforward to compute the ultimate prob-
ability of convergence and the mean fixation
time. In Tables 6 - 8 we present some numeri-
cal results.

4. Infinite population size: Proportion of
the advantageous allele

4.1. An analytical model

We consider a linear bit-counting function for
which the fitness of a string is given by the
number of 1s in the string times s, where s is the
selection coefficient. Letus assume that the pro-
portion of 1s is the same for all loci, and let this
proportion at generation ¢ be denoted by p(z).
Then the proportion of 1s in the population at
generation ¢ is also p(#). For a sufficiently large
population size, we have the following theorem
(for proportionate selection):

(k=0,1,..

THEOREM 1: Let n be the number of loci. Then
1—plt
p(r-i—i):p(t)nt—np(r-)«. (11)

Proof: It is easy to see that the average fitness
of the population, fue(t), is given by nsp(z).
If we concentrate on a particular locus, we
see that there are 2"~ ! genotypes with a 1 at
that particular locus, and out of this total of

271 genotypes, (n | have exactly £ 1s

., — 1). Proceeding as in Section
3, we have for proportionate selection

n—1
-1

P)= Y ("

xsp*(1-p

n—1

—E(Z(”El)p"(l—p)”*“"kﬂ)

k=0

= (== Dp+1)

)(k+1)><

)n—l—k

Q.E.D.

It is interesting to note that equation 11 is inde-
pendent of s. Equation 11 is a linear difference
equation and can be solved analytically. The
solution is given by

plt)=1- (1 - 1) 1-p0). (12)

n

Next we consider the case when the fitness of a
string with £ 1s is 1 + ks. Letting n denote the
number of loci, we have the following theorem:

Popsize s Mean Fix. Time | Ultimate Prob. of Conv.
16 0.5 7.5374 0.9987
16 0.25 11.8694 0.9734
16 0.125 16.6570 0.8687
16 0.0625 19.4179 0.7253
16 003125 20.3889 0.6207
34 10.0 2.1920 1.0000
32 1.0 5.8155 1.0000
34 0.5 8.9711 1.0000
32 0.25 14.4805 0.9993
32 0.125 23.6204 0.9778
32 0.0625 33.9414 0.8747
32 0.03125 39.8874 0.7281

Table 6. Ultimate convergence probabilities and mean fixation times for specified values of the selection coefficient

(initial frequency of 1 = 0.5)

178 Gene pool recombination, genetic algorithm, and the onemax function

s Critical Population Size
1.0 4
0.5 6
0.25 10
0.125 20
0.0625 38
0.03125 72

Table 7. Critical population size corresponding to ultimate probability of convergence into the all-1 state = 0.9
(initial frequency of 1s = 0.5)

s Critical Population Size
1.0 6
0.5 8
0.25 14
0125 26
0.0625 50
0.03125 96

Table 8. Critical population size corresponding to ultimate probability of convergence into the all-1 state = 0.95
(initial frequency of 1s = 0.5)

THEOREM 2:

p()(1 + s + snp(t) — sp(7))
1 + nsp(t)

p(t+1) = it

Proof: The proof is similar to that of Theo-
rem 1. Noting that the average fitness of the
population at generation 7 is 1 + nsp(t), we get

P+ =rrer® Y (")0

x(l—p)”_l_k(k+1)s+l)

Les(3 (%) x

xph(1-p)" k1))

(1+s((n=1)p+1))

__2_(
14nsp

__ P
1+4nsp

QED.

Unfortunately, equation 13 is a non-linear dif-
ference equation and is extremely difficult to
solve analytically (other than by iteration).

4.2. Empirical results

In Figure 6 we have compared the theoretical
model (equation 12) with the experimental re-
sults. Figure 7 compares the theoretical p(r)
values (obtained from equation 13 by iteration)
and simulation results. A single-locus case for
equation 13 has been shown in Figure 8. Each of
the simulation curves in Figures 6-8 represents
the average of 100 independent runs. It is inter-
esting to note that for small population sizes,
the p(z) curve levels off to a less-than-unity
value. The envelope (i.e., the curve correspond-
ing to equation 12 or 13) is not achieved until
the population size is sufficiently large. These
findings are similar in spirit to the observations
made in Miihlenbein and Schlierkamp—Voosen
(1994, Section 3). We capture the insight ob-
tained from these experimental results in the
following empirical law:

Empirical law: During the early generations,
the rate of growth of the proportion of the ad-
vantageous allele is more or less independent of
the population size. The population size does,
however, determine the quality of the ultimate
solution. For population sizes greater than a
certain threshold, the speed with which conver-
gence occurs does not depend on the popu-

179

Gene pool recombination, genetic algerithm, and the onemax function

1.1 T T T T T
1 Theoretical
0.9 N=256 -
0.8 N=128 |
i, oF 0.7 F & _
1s in pop. 0.6 - N=64 |
0.5 N=32]
0.4 s
0.3 -

0"2]] | 1]

0 50 100 150 200 250 300
Generation

Fig. 6. Proportion of the advantageous allele in the population under proportionate selection and gene pool
recombination (number of loci = 32, initial frequecy at each locus = 0.25)

I T T T T T r T
1 Theoretical
N=256
0‘9 N:64 —
Prop. of
Is in pop. 0.8 _
=32
0.7 A
0.6 a
05 1 1 I | 1 1 |
0 20 40 60 80 100 120 140
Generation

Fig. 7. Proportion of the advantageous allele in the population under proportionate selection and gene pool
recombination (number of loci = 16, initial frequecy at each locus = 0.5, s = 0.5)

lation size. If the population size is less than
the threshold value, convergence will never be
achieved.

5. Conclusion

This paper provides a mathematical description
of genetic algorithm behavior. A Markov model
has been developed, and the model has been
used to obtain several quantities of fundamental
interest in genetic algorithm theory. By em-

ploying a mix of theoretical analysis and exper-
iments, we have been able to study the genetic
algorithm behavior. The ultimate probability of
convergence, mean fixation time and proportion
of the advantageous allele have been obtained,
under certain simplifying assumptions. The re-
sults of this paper sharpen our insight into how
the genetic algorithm really works.

In the present Markov chain approach, we have
to deal with (N + 1)" distinct states, where N
and n represent population size and number of
loci, respectively, and the transition probability

180

Gene pool recombination, genetic algorithm, and the onemax function

1.1 T T T T T T T
{ Theoretical
N=16
0.9 - -
Prop. of 0.8 H=8
1sin pop. °° | 7
0.7 o
0.6 o
05 | | | | | | |
0 5 10 15 20 25 30 35 40

Generation

Fig. 8. Proportion of the advantageous allele in the population under proportionate selection and gene pool
recombination (number of loci = 1, initial frequecy at each locus = 0.5, s = 0.5)

matrices are of dimension (N + 1) x (N + 1)™.
Thus even though the approach is perfectly gen-
eral for any N and n, for large N and n values the
computation time for manipulating the matrices
becomes prohibitively large. We note here that
most of the previous work on Markov chain
analysis of genetic algorithms (e.g., Nix and
Vose, 1992) seem to suffer from the same prob-
lem.

We believe that a useful approach to unravel the
mystery of the genetic algorithm operation is
to study the fundamental issues raised in math-
ematical population genetics, and to interpret
their significance with reference to genetic al-
gorithms.

Acknowledgment Thanks to the anonymous ref-
erees for their detailed comments. This work
was supported in part by the SIFOGA project
under the Real-World Computing Partnership.
The contribution of the second author was made
while he was working at GMD as a guest re-
searcher.

References

[1] D.H. ACKLEY (1987) A Connectionist Machine for
Genetic Hillclimbing, Kluwer, Boston.

[2] H. AsoH AND H. MUHLENBEIN (1994} On the mean
convergence time of evolutionary algorithms with-
out selection and mutation, in Y. Davidor, H.-P.
Schwefel and R. Minner (editors), Parallel Problem
Solving from Nature — 3, pp. 88-97, Springer—
Verlag, Berlin.

(3] R. BELEW AND L. BOOKER (editors) (1991) Pro-
ceedings of the Fourth International Conference
on Genetic Algorithms, Morgan Kaufmann, San
Mateo, CA.

[4] R. A. CARUANA, L. J. ESHELMAN AND J. D. SCHAF-
FER (1989) Representation and hidden bias II: elim-
inating defining length bias in genetic search via
shuffle crossover, Proceedings of International Joint
Conference on Artificial Intelligence, pp. 750-755.

[5] D. J. CaviccHio (1970) Adaptive Search Using
Simulated Evolution, Doctoral dissertation, Univer-
sity of Michigan, Ann Arbor.

(6] U. K. CHAKRABORTY AND D. G. DASTIDAR (1993)
Using reliability analysis to estimate the number of
generations to convergence in genetic algorithms,
Information Processing Letters, Vol. 46, No. 4, pp.
199-209.

[7] U. K. CHAKRABORTY (1995a) A simpler derivation
of schema hazard in genetic algorithms, Information
Processing Letters, Vol. 56, No. 2, pp. 77-78.

8] U. K. CHAKRABORTY (1995b) A branching process
model for genetic algorithms, Information Process-
ing Letters, Vol. 56, No. 5, pp. 281-292.

[9] U. K. CHAKRABORTY, K. DEB, AND M. CHAKRA-
BORTY (1996) Analysis of selection algorithms: A
Markov chain approach, Evolutionary Computation,
Vol. 4, No. 2, pp. 133-167.

[10] U. K. CHAKRABORTY AND H. MUHLENBEIN (1997)
Linkage equilibrium and genetic algorithms, Proc.
4th IEEE International Conference on Evolutionary
Computation, Indianapolis, USA, April 1997, pp.
25-29.

Gene pool recombination, genetic algorithm, and the anemax function

181

[11]

[12]

(13]

[14]

[15]
[16]

[17]

18]

[19]

[21]

22]

[23]

[24]

J.F. CROW AND M. KIMURA (1970) An Introduction
to Population Genetics Theory, New York: Harper
and Row.

L. Davis (1985) Applying adaptive algorithms to
epistatic domains, Proceedings of International Joint
Conference on Artificial Intelligence, pp. 162-164.

K. A. DE JONG (1975) An Analysis of the Behavior
of a Class of Genetic Adaptive Systems, Ph D
Thesis, University of Michigan, Ann Arbor.

L. J. ESHELMAN (editor) (1995) Proceedings of the
Sixth International Conference on Genetic Algo-
rithms, Morgan Kaufmann, San Mateo, CA.

W. J. EWENSs (1979) Mathematical Population Ge-
netics, Springer—Verlag, Berlin.

R. A. FISHER (1930) The Genetical Theory of Nat-
wral Selection, Clarendon Press, Oxford.

S. FORREST (editor) (1993) Proceedings of the Fifth
International Conference on Genetic Algorithms,
Morgan Kaufmann, San Mateo, CA.

D. E. GOLDBERG AND R. LINGLE (1985) Alleles,
Joci, and the traveling salesman problem, in J.
J. Grefenstette (editor), Proceedings of an Interna-
tional Conference on Genetic Algorithms, Lawrence
Erlbaum, Hillsdale, pp. 154159,

D. E. GOLDBERG AND P. SEGREST (1987) Finite
Markov chain analysis of genetic algorithms, in J.
J. Grefenstette (editor), Proceedings of the Second
International Conference on Genetic Algorithms,
Lawrence Erlbaum, Hillsdale, pp. 1-8.

D. E. GOLDBERG (1989) Genetic Algorithms in
Search, Optimization, and Machine Learning,
Addison—Wesley, Reading, MA.

1. H. HOLLAND (1975) Adaptation in Natural and
Artificial Systems, University of Michigan Press,
Ann Arbor.

B. L. MILLER AND D. E. GOLDBERG (1996) Genetic
algorithms, selection schemes, and the varying ef-

feots of noise, Evolutionary Computation 4(2), pp-
113-131.

H. MUHLENBEIN (1991) Evolution in time and space
— the parallel genetic algorithm, in G. J. E. Rawlins
(editor), Foundations of Genetic Algorithms (pp.
316-337), Morgan Kaufmann, San Mateo, CA.

H. MUHLENBEIN (1992) How genetic algorithms re-
ally work: mutation and hill-climbing, in R. Ménner
and B. Manderick (editors), Parallel Problem Solv-
ing from Nature (pp. 15-26), North-Holland, Am-
sterdam.

H. MUHLENBEIN AND U. K. CHAKRABORTY (1997)
Analysis of the selection-recombination genetic al-
gorithm for the bit-counting function, Proceedings
of the 2nd International Conference on Soft Com-
puting (SOCO-97), Nimes, France, September
1997.

26

(32]

(33]

[34]

35)

[37]

[38]

] H. MUHLENBEIN AND D. SCHLIERKAMP—VOOSEN

(1993) Predictive models for the breeder genetic
algorithm, Evolutionary Computation 1 (1), pp.
25-49.

H. MUHLENBEIN AND D. SCHLIERKAMP-VOOSEN
(1994) The science of breeding and its application to
the breeder genetic algorithm (BGA), Evolutionary
Computation, 1 (4), pp. 335-360.

H. MUHLENBEIN AND H. -M. VOIGT (1996) Gene
pool recombination in genetic algorithms, in I.
P. Kelly and I. H. Osman (editors), Metaheuris-
tics: Theory and Applications, Norwell (Kluwer
Academic).

T. NAGLYAKI (1992) Introduction to Theoretical
Population Genetics, Springer—Verlag, Berlin.

A. NIX AND M. D. VOSE (1992) Modeling genetic
algorithms with Markov chains, Annals of Mathe-
matics and Artificial Intelligence, 5, 79-88.

[. M. OLIVER, D. J. SMITH AND J. R, C HOLLAND
(1987) A study of permutation crossover opera-
tors on the traveling salesman problem, in J. J.
Grefenstette (editor), Proceedings of the Second
International Conference on Genetic Algorithms,
Lawrence Erlbaum, Hillsdale, pp. 224-230.

D. SAHA AND U. K. CHAKRABORTY (1997) An
efficient link enhancement strategy for computer
networks using genetic algorithm, Computer Com-
munications, Vol. 20, No. 9, pp. 798-803.

G. SYSWERDA (1989) Uniform crossover in genetic
algorithms, in J. D. Schaffer (editor), Proceedings
of the Third International Conference on Genetic
Algorithms, pp. 2-9, Morgan Kaufmann, San Ma-
teo.

G. SYSWERDA (1991) Schedule optimization using
genetic algorithms, in L. Davis (editor), Handbook
of Genetic Algorithms, Van Nostrand Reinhold,
New York, pp. 332-349.

D. THIERENS AND D. E. GOLDBERG (1994) Con-
vergence models of genetic algorithm selection
schemes, in Y. Davidor et al. (eds.), Parallel Prob-
lem Solving from Nature — III, Lecture Notes in
Computer Science Vol. 866, Berlin: Springer, pp.
119-129.

L. D. WHITLEY (editor) (1993) Foundations of Ge-
netic Algorithms — 2, Morgan Kaufmann, San
Mateo, CA.

L. D. WHITLEY AND M. D. VOSE (editors) (1995)
Foundations of Genetic Algorithms — 3, Morgan
Kaufmann, San Mateo, CA.

S. WRIGHT (1931) Evolution in Mendelian popula-
tions, Genetics 16, pp. 97-139.

Received: February, 1997
Accepted: October, 1997

182 Gene pool recombination, genetic algorithm, and the onemax function

Contact acddress:

Heinz Miihlenbein

GMD Forschungszentrum Informationstechnik
SET.AS, SchloB Birlinghoven

D-53754 Sankt Augustin

Germany

E-mail: muehlenbein@gmd.de

Uday K. Chakraborty

19 Kalibari Road
Santoshpur

Calcutta 700075

India

E-mail: uday @jadav.ernet.in
Phone: +91 33 413 0382

DR. HEINZ MUEHLENBEIN is currently head of the research group Adap-
tive Systems (http://set.gmd.de/SET/asvfhtm]) at the GMD, Sankt
Augustin, Germany. He has published research work in the areas of
computer networks, parallel processing, evolutionary algorithms, neu-
ral networks and robotics. He is the European editor of the journal
“Evolutionary Computation” and an editor of “Journal of Heuristics™.

UDAY KUMAR CHAKRABORTY is a Reader at the Department of Com-
puter Science & Engineering at Jadavpur University, India, where he
has been teaching since 1990. He received his PhD from Jadavpur
University for his work on theoretical analysis of genetic algorithms.
During 1988-90 he worked as a systems engineer at CMC Limited,
India. During 1986-88 he worked as a senior research associate at
Computer Aided Design Centre, Calcutta, India.

He has held visiting positions at Carnegie-Mellon University, USA
(1987) and at GMD, Germany (1995 and 1996). He has authored
(or co-authored) 30 papers and a book. He received a UNIDO Fel-
lowship (1987), a Commonwealth Scholarship (1992), and an AICTE
Career Award (1996). He has been on the program commiittees of many
conferences including the 7th International Conference on Genetic Al-
gorithms (Michigan, 1997), the 4th IEEE International Conference on
Evolutionary Computation {Indianapolis, 1997), the 5th IEEE Interna-
tional Conference on Evolutionary Computation (World Congress on
Computational Intelligence) (Anchorage, 1998), and the Fifth Interna-
tional Conference on Parallel Problem Solving from Nature (Amster-
dam, 1998).

