Journal of Computing and Information Technology - CIT 5, 1997, 3, 183-192 183

Optimal Module Distribution for Pipeline
Digital Filter Analysis Algorithm

Marija Kacarska and Dragan Andonov

Faculty of Electrical Engineering, Skopje, R Macedonia

The development of general techniques for the analyses
of digital filters with arbitrary topology is an area of
interest in the process of digital filter design, especially
in the educational area. A few analyses with a large
number of frequency points are required until the desired
response is achieved. Therefore, it is necessary to provide
fast analysis algorithms. The pipeline implementation
of the Crout’s algorithm enables parallelized execution
of the digital filter analysis. The process distribution
must be optimized in order to achieve faster analysis
execution and balanced processor performance. This
paper presents a program package with a generalized
approach to optimize the process distribution, based on
an algorithm for element combinations for a set of size L
into all subsets of size m arranged in lexicographic order.
Two optimization criteria are used: the number of pro-
cessors and their utilization. To avoid variable execution
times on different processors, the number of operations
executed at each processor is taken as a measure of
processor execution time. Obtained results indicate that
optimal distribution is achieved using smaller number of
well balanced processors. With a larger N processor
efficiency rises to more than 95%.

Keywords: digital filter analysis, pipeline architecture,
process distribution

1. Introduction

A digital filter is defined as a network of inter-
connected elements for signal delay, signal sum-
mation and signal multiplication. A suitable
representation for such a network is its signal-
flow graph. The signal-flow graph consists of a
set of nodes and a set of directed branches show-
ing the flow of the signals through the network.
It is also a graphical representation of the exist-
ing relationships among the network elements
(Crochiere et al., 1975). The characteristic of
digital filters is the linearity of these relation-
ships. Figure 1 represents a typical digital filter

signal-flow graph (a) and the existing interele-
ment relationships (b). Due to the linearity of
element relationship, mathematical representa-
tion of the digital filter is a set of linear equa-
tions. Signals of the digital filter are discrete in
time, with a time step 7. The signal-flow graph
with N nodes is completely described with a set
of N linear equations.

An area of special interest for digital filter the-
ory application is the development of general
techniques for the analyses of networks with ar-
bitrary topology. This demand is a consequence
of various network configurations that can be
used for digital filter implementation, as well
as of various characteristics offered by these
networks. In this paper we propose a program
package that provides fast analysis of digital
filters with arbitrary topology, without limit in
their size (including wave digital filters).

General aim of the filter analysis is to deter-
mine the frequency response of the network. A
single frequency response requires a solution of
the system of N linear equations, using some
algorithm such as Gauss or Crout solvers (Chua
et al., 1975, Kacarska, 1988). In order to ob-
tain a complete frequency response, the system
solver must be applied for up to 500 separate
frequencies within the range from 0 to 7 radi-
ans (Thede,1996).

Chapter 2 presents a matrix representation of
the system of N linear equations, suitable for
computer implementation. The solution based
on Crout’s method is particularly interesting due
to its parallelization potential. This algorithm
is presented in Chapter 3, where the distinc-
tion between its two basic processes is outlined.
The paralellization potential of the algorithm is

184

Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm

x2(0T) y2(0T) ya(nT) ys(aT) ye(@T) y#(nT) yio(nT) yn(nT) yi(nT)

b]

fenz | feza | fausy | fuse { feeny | feraoy | feronny] ferin
fues, ’ fas,10
fe2.3) y3(aT) fea fos9) | yo(oT) | fewan
facso

b
fer.8) ya(nT) fea1ny

a)

Clempn g'raphic' relationship
representation
delay 5 N P
=fg*yi(nT-T
(delay branch) Ty Yi(nT)=fe*yi(nT-T)
multiplier
(coefficient —— e
branch) % *HEE

m
| ypD)= g bj*y; (aT}
adder =1

bi=fc or bi=fy

Fig. 1. (a) Principal signal-flow graph of a digital filter and (b) its relationship representation.

explored in Chapter 4 and a pipelined parallel
implementation of the algorithm is described in
Chapter 5.

Parallel implementation is optimized with re-
spect of the execution time and processor ef-
ficiency, as described in Chapter 6. The two
cases considered here relate to a fixed number
of available processors and to situations with
unlimited number of processors. The optimiza-
tion analysis is modeled with several programs
and tested on various filter designs. The results
are presented in Chapter 7. Chapter 8 is the
conclusion and recommendation for practical
application and further development.

2. Matrix Representation of Digital Filters

The digital filter elements are represented as
nodes and branches in a signal flow graph. A
typical digital filter signal-flow graph presented
in Figure 1.a. is used as a basis for the explana-
tion of the mathematical transformation suitable
for the computer filter analysis. The filter con-
sists of 12 nodes and 17 branches, with one input
node and one output node. The node numbered
12 is the entry point for the unit pulse input
signal (x12(nT)). The network response is rep-
resented by the signal output at node numbered
1 (y1(nT)). The two types of branches (delay
— fa and coefficient — f,.) are used to inter-
connect node pairs. Existing interelement rela-
tionships at discrete time steps are represented
in Figure 1.b. The output signal y;(n7) of each
node is a sum of the signals entering the node,

as described by the equation (1).

N
W(nT) = xx(nT) + Y " [fe,vi(nT)
=1
+Fay(nT =T)), k=1,...,N. (1)

Equation (2) represents the z-transform of the
equation (1).

N
i(z) = m(z) + Z[fcjk
=1
+fdj-kz—1]lfj(z),k =Tsa N (8

The above system of N linear equations fully
represents the digital filter network with N nodes.
The equation (2) can be represented in a matrix
form as in equation (3).

I—fe—fa 7' IY(@) =X(@). (3)

Taking [I — f{ — f}-z7!] = A(z), the equation
(3) becomes

Az) * Y(2) = X(z) (4)

where:

A ~is the N x N system matrix, unsymmetri-
cal, positive, definite and very sparse, whose
elements are complex numbers,

Y —is N * 1 column matrix of the node signals
¥ilz) 1 = L2 « enVhi

X —1s N x 1 column matrix of the node input
signals Xi(z) (k=1,2,...,N).

Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm

185

a)

i 00 00 0 0 0 1 0]
0 1 00 0 00 0 0 0 1

0 G 0 G 0 0 0 0 0 0 0

0o gzl1 00 0 0 0 0 0 0]
00 0 I 1 0 0 0 0 0 0 0

A4O 0 0 0 1 1 00 0 0 00

0 00 0 0C 1 00 0 0 0

© 00 0 0 0 1 1 0 0GC o0

© 0 0 0 0¢c o0zl 0 o

000 0 0 0 1 02z'1 0 o

0 0 0 0 0 0 0 01 1 0

(000 0 0 0 0 0o 0 1|

b)

Fig. 2. (a) Actual signal-flow graph of a digital filter and (b) its system matrix A.

The principal signal-flow graph of the digital
filter presented in Figure 1.a is redrawn in Fig-
ure 2.a with the actual parameters. Its system
matrix A is presented in Figure 2.b.

Equation (4) is used to calculate the frequency
response of the digital filter for a single fre-
quency. Frequency response of the digital fil-
ter is a periodic function with a period 2pi/T,
where T is the time between two consecutive
signal samples. The sampling frequency is usu-
ally normalized in the range from 0 to 7 radians.

To obtain the complete filter response, it is nec-
essary to solve the equation (4) for each discrete
frequency in the range from 0 to 7 radians (at
least 100 discrete frequencies, normally work-
ing with 500 for better resolution (Thede, 1996).

According to many digital filter examples the
matrix A in system (4) is a sparse matrix with
at least 80% zero elements. The Crout’s al-
gorithm is especially suitable for the solution
of this type of matrix equations (Chua et al.,
1975, Stott et al., 1986), due to its pipeline po-
tential, especially for the matrix factorization
process (Kacarska et al., 1993, 1995). At the
same time, this algorithm preserves the sparse-
ness structure of the system matrix A. The orig-
inal Crout’s algorithm is modified to provide
pipeline data parallel processing on distributed
memory multiprocessor, or some other type of
MIMD (multiple instruction multiple data) ar-
chitecture. Algorithm for the digital filter anal-
ysis is presented in the following chapter.

3. Algorithm for Solving the System
A¥Y =X

The solution for system (4) using the Crout’s
algorithm consists of three processes:

1. Matrix A factorization into three matrices
A = Lx*Dx U, where L and U are triangular
matrices with 1s in the diagonal, D is diagonal
matrix. There, elements are calculated from the
following relations

dp=all ™V r=1,...,N
lir:ag_l) i:r+1a v iy N

g=t+L, i N(5)

(r-1) o
azj:aif —lip - uyj { j=r+1,...,N)

r—1)
urjzafj Ay

2. Step by step forward replacement in the
equation Lx D+ Y/ =X

3. Step by step backward replacement for the
equation U * ¥ = Y’ to get the vector ¥

N

yj:y;_zujk'yka d5 Ml [7)
k=j+1

The sequential program for digital filter analysis
MADF was implemented in FORTRAN.

186

Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm

) determine the filter response

Input data for A and X
Set the initial frequency
¥
For all the frequencies IW=2,...,100

v
Subroutine LUFAC
(LDU factorization of matrix A)
T
Subroutine RESIS
(solve the equations)
-
Print the filter response for particular
frequency
>

Fig. 3. The MADF program block diagram.

The block diagram is presented in Figure 3.
Obvious characteristic of MADF is formation
of the matrix A at the beginning of the algo-
rithm. For any subsequent frequency it is only
necessary to change the value of only a few
matrix elements (those that represent the delay
branches of the filter). So, a network of fixed
sparseness structure must be solved repeatedly,
with different numeric values.

The program manipulates only the non-zero el-
ements of matrix A, as it is a very sparse matrix.
The implementation is based on linear vectors
holding only the nonzero elements of the A, L, D
and U matrices. This results in memory savings
of as much as 90% and the number of operations
for the factorization and solution of AY = X is
highly reduced (Kacarska, 1988).

With appropriate numeration of filter nodes, it
is possible to avoid the process 2 in the solution
of system (4), thus speedingup the calculations
(Kacarska, 1988).

As the filter response is calculated for K fre-
quency values in the range from 0 to 7, every
particular frequency represents a single point in
the global solution. Structure of the global solu-
tion of the filter response is presented in Figure

4.

Another important feature of the sequential al-
gorithm is the recursive nature of the two inher-

ent processes for forward and backward com-
putations.

4. The Parallelization Potential of the
Algorithm

Parallel processing techniques can be used in
order to speed up the filter response calcula-
tions. Several parallelization approaches are
considered, depending on the available number
of processors.

The first area of parallelization is to use the
algorithm implicit global parallel computation
processes at the system level (point level paral-
lelization). This is the fact that the equation (4)
should be used K times for the complete filter
frequency response. This approach, although
trivial, would require K independent processors.
K is minimum 100, and usually 500. The second
area of parallelization (process level paralleliza-
tion) is to use the nature of the LU factorization
of the matrix A and the backward replacement
process (process 1 and process 3 of the sys-
tem solution). These processes are part of the
calculation of a single frequency digital filter
response.

The process for LU factorization of the matrix
A starts with an N = N initial matrix Ay = A.

Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm 187

Input data [———————— -
l d
for A and 1
LUFAC
printing RESIS
the results 4 Y(1)

A A
LUFAC | ! Lurac | ¥
RESIS RESIS

‘]' Y(i) J’ Y(K)

Fig. 4. The global solution block diagram.

Each following step uses a lower order matrix
Al,Ay, ..., A;, ..., Ay_1. The order of the ma-
trix A; is (N — i) x (N — i), the last matrix Ay
consisting of a single element dyy. There are
several efficient parallel algorithms for the LU
factorization process on triangular systolic ar-
rays (Kacarska et al.,, 1993, 1995). For sparse
matrices these algorithms result in unbalanced
processor load. The backward replacement pro-
cess uses only the U/ matrix (upper triangular).
In this case, the solution starts with a single el-
ement matrix and ends with N x N matrix. As
above, the same systolic array implementation
characteristics apply for this process, too.

Both, the point-level and process-level paral-
lelization potentials require a large number of
processors. For efficient parallelization, a pipe-
lined implementation of the Crout’s algorithm
for digital filter analysis is proposed. This
method integrates the two parallelization poten-
tials of the algorithm, providing balanced per-
formance.

5. Pipeline Implementation

The computation process analysis for a sin-
gle point has extracted two important compu-
tational phases that can be further parallelized
in a pipelined fashion:

e LDU factorization (embedded in the process
LUFAC), and

e cquation solver (embedded in the process RE-
SIS).

Each of the LUFAC and RESIS processes is
based on recursive computations, as is indicated
in processes 1 and 3 of the system solution. The

recursive steps are expanded for both, LUFAC
and RESIS, so that the single point solution pro-
cess can be represented as in Figure 6. The
resulting process is composed of L = N — 1
pipelined processes, each being distributed to
a separate processor. In order to balance the
processor utilization, according to the modified
algorithm described in the Chapter 7, several
processes are grouped within a single proces-
sor, resulting in a pipeline of the m < L. The
idea is to keep all the processors busy for about
an equal amount of time. On the other hand,
high sparsity of operational matrices depends
on the particular filter configuration whose re-
sponse is to be determined. The number of filter
nodes is not a good estimate for the sparsity of
the operational matrices, so filters with the same
node complexity require various computational
complexity. The number of computational steps
cannot be estimated in advance.

It is therefore suggested that the system (4) for
the first frequency is solved on a sequential pro-
cessor determining the number of operations
required for particular computation steps. Af-
terwards, the program subroutine grouped pro-
cesses for the available number of pipelined pro-
cessors (m < L), with balanced computational
complexity.” The program is then executed on
the pipeline in order to compute filter responses
for the rest of K — 1 points. As soon as one
part of the computation for a single process is
completed at a processor, the results are sent
to the next processor in the pipeline. Such or-
ganization has all the positive characteristics of
pipelined computations. Figure 5 represents an
example of a pipeline operation of a system with
K = 5 solutions (K different frequencies) for
L = 9 processes, distributed to a pipeline with
m = 3 processors. The solution is executed

188

Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm

K=5, L=9, m:3
t=1 K(3) K(2)
te= K{4) K(3)
t=3 K(5) K@)
t=4 K(5)

P1 P2 P3
K(D
K2) | K(1)
K@) | K@ | KD
K@) | K3) | K@) | KD

Fig. 5. Pipeline operation example.

in t = 8 time steps. One must keep in mind
that the pipeline size is usually less than 20 pro-
cessors and the number of computed points is
bigger than 200. Except for the initial delay in
data distribution, the rest of the computations
flow sioothly through the pipeline. If the pro-
cessor load is balanced, this gives high compu-
tational efficiency is accomplished. Balancing
the pipeline performance is therefore very im-
portant. .

6. Optimization of Process Distribution

The basis for optimal process distribution is the
pipelined architecture of the LUFAC and RE-
SIS processes. This enables efficient imple-
mentation of the sequential Crout’s algorithm.
The factorization phase (LUFAC) and the solver
(RESIS) are splitinto L = N — 1 pipelined pro-
cesses (LUP and REP respectively) to be exe-
cuted on a pipeline of the m < L length.

The LUP and REP processes are pipelined for
the following three cases:

1. The step i of the factorization and the step
(N —1i) of the solver are executed at one proces-
sor (Figure 6). Execution time for the processor
i is then

t(i) = (i) + tr(N — 1),

where #l(i) is the execution time for the LUP
process and ¢tr(N — i) is the execution time for
the REP process at step i. This organization re-
quires the data transfer only for the elements of
the submatrix A(i — 1), while the processor P;
keeps the elements belonging to row i and col-
umn { of the matrix. The optimization process

is therefore performed on a vector of (N — 1)
elements, as presented in Figure 6.

2. The LUP and REP processes are consid-
ered independent of each other, and optimiza-
tion is performed for two vectors independently.
In this case two groups consisting of differ-
ent number of processors are formed and the
LUP and REP process distribution within the
two groups is different. In general, processing
time of the LUP process is much longer than
processing time of the REP process, the time
t1(i) is dominant. This means that distribution
of the LUP processes dominates distribution of
the REP processes and the REP processes can be
distributed accordingly within the same group
of processors. Each processor executes differ-
ent combination of LUP and REP processes. An
example of this kind of distribution is presented
in Figure 7 (for the digital filter presented in Fig-
ure 2). Figure 7a presents an optimal distribu-
tion of the LUP and REP processes separately,
while Figure 7b presents an actual distribution
of the processes in m = 2 processors. The data
transfer in this case is similar to the one de-
scribed for case 1, but there is no transfer for
the processes within the same processor.

3. This case takes a sequence of the LUP pro-
cesses followed by a sequence of the REP pro-
cesses. A single sequence of independent pro-
cesses is considered, whose length is the dou-
bled length of individual sequences, 2% (N —1).
The whole matrix A is transferred between the
processors. This data transfer slightly overloads
the processors, mainly because of the high spar-
sity of matrix A (for filters with N > 100 nodes
only Ny < 4% elements are non-zero). The
vector (i) with length 2 * (N — 1) represents
both, the LUP and REP execution times. This
situation is represented in Figure 8.

Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm

189

A, th |A th | A i | Ana
» LUP —-eeeeee LUP | —p-vusines _'r LUP
4 REP W—-eererees REP J—-vivrnn REP

y(1) | trna i tr; y(N)
Py b Py

Fig. 6. The distribution of interdependent LUP and REP.

Taking the execution time of each process f;
(i=1,...,N — 1), the total execution time is

N—1
T= Z (i)

If there are m processors available, the ideal dis-
tribution would keep each processor busy for a
period T, = T/m. This provides a balanced
performance with small communication over-
head.

Nature of the matrix A requires LUP and REP
processes with variable execution times, so ideal
distribution is impossible. Therefore we try to
load the processors as evenly as possible, with
small execution times and reduced communica-
tion overheads to lowest possible level.

Several program implementations were tested
on various filter designs. The digital filter pre-
sented in Figure 2 was used in the experiments
as example 1, increasing the filter complex-
ity for examples 2 (cascade), 3 (wave) and 4
(wave). .

The case with m = N — 1 processors (each
processor for individual LUP) gave fastest ex-
ecution, but it was trivial and the balance was
very bad. For N large, a large number of proces-
sors was required and the implementation was
very inefficient.

The optimization process considers execution
times, communication overheads and the num-
ber of processors available. Two general cases
were considered:

1. There is a fixed number of processors avail-
able (fixed length pipe), and

2. The number of available processors is unlim-
ited (variable).

7. Experimental Results

Two computer programs for process distribution
optimization were implemented:

1. MADFPF — for the case with a fixed num-
ber of available processors. This program tests
the distribution processor loads for the vari-
ous combinations of neighbor processes. It is
based on an algorithm to find element combi-
nations for a set of size N into all subsets of
size m arranged in lexicographic order (Rein-
gold et al., 1977). The algorithm is modified
for particular program implementations. The
modification reduces general computations of
the algorithm for the restriction of neighboring
processes. The execution time differences are
compared for each processor pair, T = Ti — Tj
(i,j = 1,...,m). The bestdistribution has min-
imal average waiting time.

2. MADFPU — for the case with unlimited
number of processors. This program tests pro-
cess distributions for variable number of proces-
sorsm (m =2,...,N). An optimal distribution
is selected for minimal average waiting time for
each processor in the pipe. For a filter with
N > 50 nodes, the time to analyze all possible
combinations can easily grow higher than the
time necessary to complete the filter analysis,
so only the cases for up to m=10 processors
are analyzed. A measure for optimal timing
is developed during the evaluation of process
execution times. This measure enables further

190 Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm

LUP d(12)
optimisation 6 LUP 5 LUP
oo ='I H 1—»
l
a)
REP y(1) y(12)
optimisation 3 REP 3 REP li—lm_
imise “ IFL
A,
6 LUP |—»| 5 LUP
b)
+— 5 REP [—| 6 REP ¥z
y(1)
P] PZ

Fig. 7. (a) Process distribution for folded LUP and REP (b) and processor grouping in m = 2 processors for digital
filter presented in Figure 2.

improvement of this implementation by elimi-
nation of unproductive combinations.

Each program is tested with several digital filter
examples. Experimental results for 4 represen-
tative filter designs are presented in Table 1.
The MADFPF program is tested with the num-

ber of processors fixed to m=5. The MADFPU
program is tested for m<10. Both programs are
tested for each of the three cases described in
Chapter 3.

Results obtained for the MADFPF program in-
dicate that optimal distribution is achieved by

example | N | sp % |case | L MADFPF: m = 5 MADFPU: m < 100
1 111 \m=135; p=1574% [m=4; m=160; p=1042%
2 11|tm=105; p=1786% |m=4; m=120: p=28.33%
1 1212014 3 |22|m=130; p=1154% |m=5: tm= 1305 p=11.54%
1 119/m=240; p=1771% |m=2;, m=525; p=3381%
2 |19 |tm=180; p: 16.67% |\m=2; tm=405: p="741%
2 20112.75| 3 |38 |tm=220; p=795% \m=2' 1m= 525; p=381%
2124 tm=255 p:294% m=73; rm:420 p=1.78%
3 35| 694 3 |68|m=2345; p=507% |m=4: tm =420 : p=198%
1 1491m=3510; p=3564% |m=2; tm=1235; p=2.83%
2 |49/ tm=390; p=673% |\m=2: tm= 945 ; p=4.76%
4 50| 463| 3 |98 |mm=495: p=202% |m=5; m=495; p= 2.02%4‘

N —number of filter nodes and size of matrix A
sp — percentage of non-zero matrix elements

L — number of processes exccuted in m processors
m — number of processors in pipeline

p — average processor idle time in percents

im — maximum processor execution time in time units

Table 1. Optimization results for 4 filter designs.

Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm

191

thy
LUP

5

v

b
Y1) | oty

T e L%
LUP LUP

e T

REP REP

trni try y(N)

N 2(N-1)

tl

tr

Fig. 8. Process distribution for independent LUP and REP.

the third method of process grouping. The sec-
ond method is neglected because it is based only
on the execution of LUP processes. Due to the
LUP processes domination over the REP pro-
cesses, inclusion of the REP execution times
results in further loss of performance. Each of
the other two methods produces similar maxi-
mum processor execution times, but the criti-
cal differences are in processor utilization. For
the third method, the parameter p is minimal
in all four examples, which is more obvious
for largerN (processor efficiency rises to more
than 95%). As this method operates with vector
twice as long, this optimization naturally takes
much longer time than the other two methods.

The MADFPU program takes much longer time
than the MADFPF program. In most cases (for
smaller filter sizes) it generates optimal solu-
tions for smaller number of processors (m<5),
as its optimization criterion is processor load
balance and not the minimal execution time.
Naturally, if the optimal number of processors
obtained is m = 35, the results are the same as
for the MADFPF program.

8. Conclusion

A digital filter designer has a choice of various
filter structures and methods in order to achieve
the desired frequency response. In general, the
obtained filter structure is analyzed (from 100 to

500 frequencies) in order to check the disagree-
ment limits between the desired and obtained re-
sponses. Therefore, many analysis steps might
be required and fast analysis algorithms will
speedup this process. The pipeline implemen-
tation of the Crout’s algorithm enables paral-
lelized execution of the digital filter analysis
stage. The process distribution must be opti-
mized in order to achieve faster analysis execu-
tion and balanced processor performance. This
paper presents a fast algorithm for analysis of
digital filters with arbitrary topology (includ-
ing wave filters). There are no limits to digital
filter size. Besides, this paper presents a gener-
alized approach to the process distribution opti-
mization, based on an algorithm to find element
combinations for a set of size L into all subsets
of size m in lexicographic order. The optimiza-
tion criteria are the number of processors and
their utilization.

The program implementation of digital filter
analysis gives different execution times on dif-
ferent processors. Therefore, to avoid vari-
able execution times on different processors, the
number of operations executed at each proces-
sor is taken as a measure of processor execution
time. It is assumed that the division opera-
tion (5) and update operation (6) have the same
execution times. This supports the proposed
filter analysis procedure: find sequential algo-
rithm timings for one frequency, optimize it for
the particular processor and then execute the

192

Optimal Module Distribution for Pipeline Digital Filter Analysis Algorithm

parallelized version on the pipeline of optimal
length. Three methods for process grouping are
proposed and experimentally tested on several
digital filter configurations. Two cases are con-
sidered, for a fixed and for unlimited number
of available processors, as this is usually the
case in practice. The corresponding optimiza-
tion programs (MADFPF and MADFPU) are
implemented and tested by the three grouping
methods. The best process distribution for large
N are achieved by the third method (which is the
case of interest). Future research concentrates
on better and faster optimization algorithms.

References

R.E. CROCHIERE, A.V. OPPENHEIM, Analysis of Linear
Digital Networks, Proc. of the IEEE, vol. 63, No.
4, (1975), pp. 581-595.

M. Kacarska, Efficient methods for digital filter analy-
sis in frequency domain, MSc thesis, University St.
Kiril I Metodij, Skopje (in Macedonian language),
1988.

M. KACARSKA, D. ANDONOV, Pipeline implementation
of a digital filter analysis algorithm, Proc of the IV
Theme ETAI Symposium, Ohrid, Macedonia, 1993,

M. KACARSKA, D. ANDONOV, Optimal module distribu-
tion for pipeline digital filter analysis algorithm
Proc of the 17th International Conference ITI'95,
Pula, Hrvatska, 1995.

B. StotrT, O. ALSAC, An Overview of Sparse Matrix
Techniques for On-Line Network Applications,
Proc of the IFAC Symposium Computer Applica-
tions in Large Power Systems, China, 1986.

LEON CHUA, PEN-MINLIN, Computer-aided Analysis of
Electronic Circuits, Prentice Hall, N. Jersey, 1975.

E. M. REINGOLD, J. NIEVEGELT, N. DEO, Combinatorial
Algorithms: Theory and practice, Prentice-Hall,
N. Jersey, 1977.

LES THEDE, Analog and Digital Filter Design Using C,
Prentice-Hall, N. Jersey, 1996.

Received: July, 1995
Accepted: October, 1997

Contact address:

Marija Kacarska, Dragan Andonov
ElektrotehniZki fakultet

Karpos II bb.

91 000 Skopje

R Macedonia

tel: 389-91-363566

fax: 389-91-364262

MARIIA KACARSKA was born in Skopje, Macedonia, on June 16, 1954.
She received the dipl.ing, and M.Sc. degrees in electrical engineering
from St. Kiril and Metodij University, Skopje, Macedonia in 1978 and
1988, respectively. Her current position is of an assistant at the ETE
Skopje, Macedonia, where she is registered for a PhD degree. Her inter-
ests are in circuit theory, especially in digital filters and computer aided
network analysis, She is a member of IEEE and IASTED societes.

DRAGAN ANDONOV was born in Skopje, Macedonia, on August 20,
1955. He received the dipl.ing. degre in electrical engineering from St.
Kiril and Metodij University, Skopje, Macedonia in 1979 and M.Sc.
degree in computing from Warwick University, England in 1990. He is
employed as an assistant at the Computer Sci. Dept. ETF Skopje, Mace-
donia, where he is registered for a PhD degree. His interests include
parallel computing and software engineering. He is a member of TEEE
and IASTED societes.

