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AND/OR graphs and project
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It is shown that projects can be described by AND/OR
graphs and that the cost of the minimal solution subgraph
can be defined so as to equal the shortest time for
completing a project or the minimal costs of the project
represented by the AND/OR graph.
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1. Introduction

AND/OR graphs were introduced to model the
reduction of problems to their subproblems.
Thus, solving a problem by reduction is in the
context of AND/OR graphs equivalent to find-
ing a solution subgraph in the corresponding
AND/OR graph [5,7]. Moreover, AND/OR
graphs provide a natural environment for auto-
mated deduction and theorem proving [3]. In
all cases the central concept is that of a solution
subgraph or — according to the paradigm small
is quick [6] — a minimal solution subgraph. As
we shall show, AND/OR graphs can be useful
in planning, scheduling and control of projects
as well — the cost of a solution subgraph can
be defined so as to correspond to the duration
of a project or to the costs of the project.

2. AND/OR graphs

For any graph G the set of its tip nodes (the
nodes without child nodes) will be denoted by
Ng. It will be assumed that a distinguished sub-
set S of Ng is given; the nodes in S will be called
solved. For any node x, I"(x) will denote the set
of child nodes of x and for any arc (x, y) its cost

will be denoted by ¢(x,y). It will be assumed
that c(x,y) € R*, where R* = RU {oo}, with
the usual extensions of summation and order-
ing: x+o00 = 0+x = oo, Vx € R*, and
Vx € R.

An AND/OR graph is a directed graph G for
which a partition of the set of its nodes G =
0O UA U Ng 1s given; the nodes in O and A
are called OR-nodes and AND-nodes, respec-
tively. The distinction between these nodes re-
sults from the way they are established — an
OR-node is established when any of its child
nodes is established, an AND-node is estab-
lished when all of its child nodes are established,
while a tip-node is established if and only if it
is solved.

In problem reduction, the situation B can
be solved by solving B; or by solving both
Bz and B3

and can be represented by the AND/OR graph
in Figure 1; a node is established when the prob-
lem corresponding to that node is solved. Nodes

o
A
Qo

Fig. 1.
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in Ng represent problems which either cannot be
reduced to subproblems or can be solved with-
out reduction (hence the term solved nodes).
Node C is an AND-node; it is established when
both B, and B3 are. Node B — an OR-node —
can be established by establishing any of B, C.

Similarly, the following formula can be repre-
sented by the AND/OR graph in figure 1:

Bl\/(Bz /\33) —F

Here a node 1s established when the correspond-
ing formula is true.

3. AND/OR graphs in project management

A project 18 traditionally described as a set of
activities, equipped with the precedence relation

A1PA; <= A{ must finish before
Ay can start

(1)
It is tacitly understood that every activity starts

as soon as possible, which implies that A, starts
as soon as every A, such that APA;, is finished.

Especially in the planning phase, more flexi-
bility can be gained by introducing yet another
binary relation

A1EA; <= the finishof A;
enables the start of Ay

(2)
thus allowing alternative ways of accomplish-
ing a goal. For instance, if the conditions for
the start of activity A, can be attained by per-
forming any of A, A3 then we have A{EA; and
A3EA;.

It will be tacitly understood that when intro-
ducing alternatives one is thorough, i.e., when
A» starts, at least one of A, for which AEA,, is
finished. Hence the following will apply:

V(AEAy = BPA) =—> BPA; (3)
Suppose now that for some A; we have AjPA;
and A\ EA>. Then, when A/ finishes, A starts
so that A; must have finished by then. Thus
the finish of A; always precedes the finish of
Al. Tt follows that either A;PA| or A] splits,

’1 — {B],Bz}, such that A;PBy and B>,EA,
(B is simply a part of A after the finish of A).

In the latter case both P and E in a natural way
extend to By and B;:

CPB, < CPA!, CEB; <= CEA,
B,PC <= A|PC, BEC <= A|EC,
BiEB>.

Since, by (3), A|PA; is implied by A PB; and
ByEA; (or A| PA| and A| EA,) corresponding to
all A| for which A|EA,, it follows that A;PA;
can be omitted. Clearly, by repeating this step
(if necessary) a new relation P’ C P can be
obtained for which

Rp NRg =0,

i.e., no activity is in the ranges of both P" and
E, but which, by (3), nevertheless implies com-
plete original information about precedence.

Clearly, such a project can be represented by an
AND/OR graph — activities in the ranges of P’
and £ are represented by AND-nodes and OR-
nodes, respectively; a node is established when
the corresponding activity is finished. Actu-
ally, AND-nodes can be viewed as representing
virtual activities (with zero duration time), cor-
responding to the completion of all of the ac-
tivities, corresponding to their child nodes. For
instance, the situation

B is triggered by the finish of B; or
by the finish of both B, and B3  (4)

can be represented by the AND/OR graph in
Figure 1.

A weighted AND/OR graph is then obtained by

setting
clx,y) = d(y)

where d(y) denotes the duration of the activity
represented by y.

(This is the so called activities-on-nodes
approach; obviously, the activities-on-arcs ap-
proach is also possible — the corresponding
AND/OR graph for the situation (4) is in Fig-
ure 2.)

We shall assume (clearly without loss of gen-
erality) that in our AND/OR graphs there are
two distinguished nodes, s and ¢ — represent-
ing the start and the completion of the project
— and that through every node ¢ there is a path
from c¢ to 5. Furthermore, we shall assume that

§={kk
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is given recursively by
h(u), UENG
WB(M): wB(v)—l-c(u,v), ucO
max {wg(v)+c(u,v)}, ucA
vel'(u)
where

Fig. 2.

While by the traditional approach the corre-
sponding network is necessarily acyclic [4],
allowing alternative ways to accomplish cer-
tain goals does not rule out cycles any more.
Thus, it is to be expected that, in general, these
AND/OR graphs will not be acyclic.

4. Solution subgraphs and their cost

A solution subgraph of x € Gis such a subgraph
G' C G that

e x € G’ and G’ contains no arcs ending in X,

e for every OR-node ¢ € G’ it contains exactly
one arc leaving f,

e for every AND-node ¢ € G’ it contains all arcs
leaving ¢,

e every tip node 1 € G is solved,
e it contains no cycles.

Clearly, every node of a solution subgraph is
established; to establish x it suffices to find any
of its solution subgraphs.

Inan AND/OR graph representing some project
node c is established if and only if all activities,
corresponding to the nodes of some solution
subgraph of ¢ are finished. Thus solution sub-
graphs of ¢ are in one-to-one correspondence
with feasible ways of completing the project.

Let B be a solution subgraph for x; its cost is de-
fined as wp(x), where the function wp : B — R

0, ues
h(”)_{oo, € NG\ S.

By induction one easily verifies that wp(x) is
equal to the cost of the most expensive path in
B from x to a tip-node of B (where the cost of a
path is equal to the sum of the costs of its arcs).

Clearly, in any cycle free AND/OR graph the
cost of the minimal solution subgraph is given
by the function w : G — R*, satisfying

h(”)% UENg
WB(M): min"er(“>{w(v) + C(”a V)}, pe @
mgy W) hele )}, | e

vel (u)

(5)
This function can be computed recursively and
can be applied to direct the search for the min-
imal solution subgraph [2,5,6,7]. Of course, if
there are cycles, w can no longer be computed
by (pure) recursion, but algorithms for its com-
putation are known [1]. With w it is then easy to
find the minimal solution subgraph M : for any
x € M — unless x € Ng — it contains

e all child nodes of x if x is an AND-node,
e the node z € I'(x) for which

w(z) +(r2) = min {w(y) + ()

if x 1s an OR-node.

When a project is represented by an AND/OR
graph, then clearly two activities, lying on the
same path, cannot be performed simultaneously,
moreover, the one lying further down the path
must be executed before the other. Thus the
time, necessary to complete all activities on
some path, cannot be shorter than the cost of
that path. It follows that the time for the com-
pletion of a project in some feasible way is equal
to the cost of the most expensive path in the cor-
responding solution subgraph of ¢, i.e. to the
cost of that solution subgraph. Therefore the
following applies:
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The shortest time for the completion of a project
is equal to the cost of the minimal solution sub-

graph of c.

As already told, algorithms for finding the cost

of the minimal solution subgraph and the mini-

mal solution subgraph itself are available. Know-
ing minimal solution subgraph M it is then easy

to determine the slack of all activities that con-

stitute it — for any + € M a delay § in the

execution of the activity corresponding to t af-

fects the activities lying on any path from ¢ to 1;

if T C M is such a path and cy its cost, then, if

there is to be no delay for ¢, we must have

w(t) + 8 + cr < wlc)
and therefore

w(t) + 06 + max cr < w(c),

where P is the set of all paths in M from ¢ to ¢.
Thus the slack equals

s(t) = w(c) — max ey — w(t).

Since there is no difference between an AND-
node and an OR-node with only one child node
(both are established exactly when their child
node is), all nodes in M can be considered AND-
nodes. Then clearly

wy+ () = max cr,
TeP

where M* is the converse graph of M, i.e.,
(xy) EM = (y,x) € M",
with § = {c}, so that we finally have .

s(t) = w(c) — wu=(2) —w(t), VieM.

Sometimes, the costs of the project are more
important than the time dimension; if there are
more feasible ways of completing the project,
one naturally tries to minimize the costs. In
this case too, AND/OR graphs provide appro-
priate environment — if the cost of a solution
subgraph is defined as the sum of the costs of
its arcs, then, as one easily verifies, the cost of
a solution subgraph is equal to the costs of the
project, if realized in the way corresponding to
that solution subgraph.

If the solution subgraph is a tree, then clearly
its cost equals wp(x), where

h(u), MGNG
g ()= we(v)+c(u, v), ucO
Y. (ws(W)+c(u,v)), ueA.

vel(u)

Consequently, if the AND/OR graph is a tree,
the cost of the minimal solution subgraph is
given by

h(u), -
wp(u)= VIEHFI(I:&){WB(VHC(”’ v)}, u€0
2, (we(v)+e(u,v)), u€A.
vel(u)

(6)
Algorithms for the computation of the func-
tion, satisfying (5), can be easily modified so
as to compute the function satisfying (6) in any
AND/OR graph. However, if the AND/OR
graph is not a tree, w(x) may be different from

the cost of the minimal solution subgraph of x
— cf. Fig. 3.

Of course, since the function, giving the cost of
the minimal solution subgraphs, cannot be de-
scribed recursively, its computation is substan-
tially more demanding than that of the function
satisfying (6).
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Fig. 3.
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5. Conclusion

We have shown that instead of understanding a
project as a fixed set of activities which must
all be finished to complete the project, one can
admit alternatives to some activities, which ex-
tends the applicability of the model from the
realization phase to the planning phase of the
project. As we have seen, AND/OR graphs
provide a natural environment for modelling
such projects — solution subgraphs correspond
to feasible ways of completing the project; the
cost of a solution subgraph can be defined so
as to be equal to the duration or to the costs
of the corresponding realization of the project.
Algorithms for the former are available while
effective algorithms for the latter are still to be
developed.
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