Journal of Computing and Information Technology - CIT 5, 1997, 3, 199-204

199

L.Z compression of static linked list tries

Strahil Ristov!, Damir Boras? and Tomislava Lauc?

I Ruder Boskovié Institute, Zagreb, Croatia > Faculty of Philosophy, University of Zagreb, Croatia

A variant of LZ (Lempel-Ziv) procedure for compress-
ing static trie structures is investigated for different types
of natural language data. A compressed trie is produced
from the set of 40,000 bilingual dictionary entries and
the results are compared to previous results for a set
of 750,000 different word forms. A possible use of
a sliding window in LZ procedure for linearization of
algorithm execution time is investigated. The results
show considerable application potential.

Keywords: natural language processing, dictionary, LZ
data compression, trie data structure.

1. Introduction

Compressed trie structures are often used for
storing huge amounts of static natural language
data, such as dictionaries, thesauri or simple
lists of words or word phrases (Purdin, 1990),
(Morimoto et al., 1994). For an alphabet of M
letters, a trie is a M-way tree in which each node
represents a string prefix that is obtained by fol-
lowing the unique path from root node (Fred-
kin, 1960), (Knuth, 1973). Identical prefixes of
different strings are represented with only one
node. Different strings are obtained by follow-
ing different links from the prefix node. With
the search time proportional to the length of a
word, a trie structure is very fast to search but
it can be huge. When storing words of a nat-
ural language, and especially an inflected one
as Croatian, it is convenient that a node com-
prises only one letter. A full M-way tree would
then have L nodes, where L is the length of
the longest entry. An example of such a sparse
tree for a three letter alphabet and L = 3 is
presented in Figure 1. In such a tree most of
the nodes would be empty and they can be ex-
cluded. The simplest way is to implement the
trie using linked list instead of M-dimensional

nodes. Alternatively, or additionally, various
trie compression procedures can reduce the size
achieving considerable savings in space. The
typical trie compression method is a transfor-
mation into a minimal finite automaton for a
given finite language (finite set of words) or a
directed acyclic word graph (DAWG). For a set
of natural language words a DAWG is a very
practical representation, compact and fast (Ap-
pel and Jacobson, 1988) (Lucchesi and Kowal-
towski, 1993). It has an important advantage in
that there exists a linear algorithm for automata
minimisation (Revuz, 1992), but it has a draw-
back in that it is mostly appropriate for stor-
ing simple word lists and is therefore restricted
mostly to the spelling correction applications.
DAWG cannot be used efficiently for storing
more complex entries like dictionary entries or
word phrases that have greater inner diversity.

Croatian is a highly inflected language and each
word lemma (i.e. a noun in nominative singular,
a verb in infinitive) has on the average 10 dis-
tinct word forms for different tenses, cases or
gender. The grammatical rules for word form
production are too complex and there are too
many exemptions for implicit knowledge based
storage of a set of valid Croatian words. An ex-
plicit list is therefore better suited for computer
applications. In (Ristov, 95) it was demon-
strated how a compressed trie can be successtu
Ily used for storing a huge list of Croatian word
forms. Some 750,000 different words (word
forms) were stored in a structure less than 300
KB in size, and the access speed is measured
in thousands of words per second on an aver-
age PC. The algorithm used was more elabo-
rate than automata minimisation; the method of
compression can be described as a variant of
LZ compression applied to a linked list imple-
mentation of a trie (Ristov, 1997) and is brie fly

200

LZ compression of static linked list tries

&
a b
! @ (oY ®
a b \ /b \ /3 \
9 /@ o Lo O © @ ®
\ |
/1 /A
c’;b[c\ a/blc a/blec a/bjc afbjc a/‘bc\ a/blc a/bjc a/blc
A | / /
n Oe® @EO O0® ®O® OB @H® 20 @®®
acb bba bbe cac cbe

Fig. 1. Four levels (including the zero level root node) of ternary trie for an alphabet (a, b, ¢). Trie comprises words:
ac, acb, b, bb, bba, bbc, cac, cbe. Thick lines indicate existing transitions and final states. Of 27 nodes only eight are
used.

outlined in Chapter 2 of the paper. In Chapter
3 we show how this trie compression method
can be applied to a set of a more complex en-
tries, namely a Croatian-English dictionary of
economics terms and phrases. By comparing
results with those for the set of word forms
we extrapolate for bigger complex data sets.
In Chapter 4 we present some execution time
considerations. Since, unlike DAWG construc-
tion, LZ compression has inherently quadratic
time complexity, we investigated possibilities of
a speedup along standard L.Z window speedup
schemes. We conclu de in Chapt er 5 that pre-
sented algorithm and data structure show a con-
siderable application potential.

2. Linked list trie compression

The principle of LZ linked list trie compression
is demonstrated in Figure 2 for the set of four
words. Figure 2a) presents the construction of a
corresponding trie with one character per tran-
sition. Empty nodes and nonexistent transitions
are omitted. Thicker circles represent termi-
nal nodes. Actual linked list implementation is
shown in Fig. 2.b). Each eclement of the list
consists of four parts:

1) a character;

2) a marker for the end of a word, indicated by
the thick circles;

3) a pointer to the next character in the word
(null if there is no continuation of the word),
represented with horizontal arrows in Fig. 2b);

4) a pointer to the next element on the same
level in the node, represented with the inflected
pointing arrows on Fig. 2b).

The linked list itself is a way to exclude nonex-
istent nodes, and the actual implementation of
Fig. 2b) gives rise to a possibility for a further
reduction in the number of elements. With the
trie structure presented in this way it is apparent
that identical subsequences of elements can be
replaced with pointers in a L.Z manner. LZ is
a generic name for data compression methods
where, in a stream of data, repeated sequences
are replaced with pointers to their previous oc-
currences. The name originates from the se mi-
nal work (Ziv and Lempel, 1977). There exist
a variety of different implementations with the
only fixed common point being that pointers
occupy less space than original data. An ex-
haustive overview of LZ methods can be found
in (Bell et al, 1990).

In Fig. 2c) repeated sequences of elements in
structure of Fig. 2b) are replaced with two dif-
ferent types of pointers; we shall call them
one-way and two-way pointers. The one-way
pointer, represented with § sign, indicates that
the reading of the structure should continue
from the element at which the pointer points.
The sequences of elements that are replaced
with one-way pointers are identical subtrees
and, in automata terminology, the effect of one-
way pointers is the merging of equivalent states.
Two-way pointers, represented with & sign, re-
place identical subsequences of elements that
do not belong to identical subtrees. This means

LZ compression of static linked list tries

201

abaabach
abaabbab
abbabacb
abbabbab

a)

b) OXOROROROROROSONOR O ONC @@@@
e @{%@@

Fig. 2. The construction of the compressed linked list trie for a set of 4 words with binary alphabet (a, b).

that only a certain number of elements should be
followed starting from the element at which the
two-way pointer points, and that after that num-
ber the reading should be continued back from
the position of the pointer. An additional in-
formation — the number of elements replaced,
is associated with each two-way pointer. In
Fig. 2c¢) the arrows below the elements, origi-
nating at pointers, indicate to which elements
the pointers point. Full lines are for the one-
way pointers. The dashed line points to the
beginning of the subsequence replaced by the
two-way pointer and the dotted line indicates
that after two elements the reading should con-
tinue from the pointer position. In order to re-
place every (existing) repetition with a pointer,
a double loop is used to check each subsequence
for equivalence against every other. The result-
ing structure can have multilevel nested pointer
paths, i.e. a pointer can point at the subsequence
containing another pointer. The LZ structure
compression obtained in this way is very effi-
cient. However, the quadratic time complexity
of a double loop becomes restrictive for larger

data sets.

3. Data sets: description and the
compression results

Two different data sets were used to test the per-
formance of the described compression method.
One was the set of some 750,000 different
Croatian word forms, and the second a set of
40,000 Croatian-English economics dictionary
phrases. A detailed description and compres-
sion results for the word forms set are presented
in (Ristov, 1995 and 1997). The average word
length is approximately 10 characters and the
set consists of some 68,000 different word lem-
mas with an average number of about 11 word
forms per lemma. As an example, the 7 forms
of one lemma are presented in Fig. 3a). In
ASCII format the set size is over 8Mb. When
compressed, and with optimised element size,
it is under 300Kb. For this set the size of LZ
compressed trie is around 30% less than that of

202

LZ compression of static linked list tries

pismohrana
pismohranama
pismohrane
pismohrani
pismohrano
pismohranom
pismohranu

a)

Dow Jonesov indeks — Dow Jones indeks

Dow-Jonesov industrijski prosjek — Dow Jones industrial average

Europska ckonomska komisija (ECE) — Economic Comission for Europe
Europska ekonomska zajednica (EEZ) — European Economic Community (EEC)

b)

Fig. 3. The typical examples of entries in two data sets.

DAWG. For some cases it is arguable whether
this saving in space justifies longer compression
time. The time sacrifice is justified in appli-
cations where the compressed data structure is
produced only once and is used for along time or
is widely distributed. On the other hand, for ap-
plications where data structures are produced at
the run time or changed often, a faster, although
less efficient procedure should be preferred.

A typical example of few entries in the second
set is shown in Fig. 3b). The entries are longer
— around 40 characters per entry on average,
and the ASCII size is 1,6 Mb. It is obvious that
there are much less substring repetitions than
in the first set. Also, there are almost no en-
tries with longer identical endings, so a DAWG
would be of approximately the same size as a
trie. However, since there are enough repeti-
tions inside the strings, the LZ trie compression
was attempted. Results are presented in Table 1
for subsets of original sets with ascending num-
ber of entries. For the word forms, subsets were
obtained based upon a random choice of lem-
mas. At the beginning we randomly selected
10,000 lemmas from the original 68,000. From

those we again randomly chose subsets of 1000,
100, and 10 lemmas such that smaller sets were
subsets of larger ones. Finally, experimental
sets were produced by expanding lemmas into
all of their word forms, hence an odd numbers of
entries. The dictionary entry su bsets were pro-
duced straightforwardly by random selection,
again with smaller sets being parts of larger
ones. It is obvious that the tries constructed
from higher number of entries compress better.
This was expected since the variety of substrings
in natural languages is limited and, as the num-
ber of entries grows, more and more substrings
of new entries are found in previous strings.
When fitting these few values of number of en-
tries against the size of compressed structure,
we got normalized logarithmic functions of

(—6,6 + Inx) for word forms, and
(=5,8 + Inx) for dictionary entries.

The function curve slopes are quite similar, so
a valid projection for larger sets of complex
phrases can be deducted from the results for
word forms. The actual values of dictionary
compression results prove that LZ compressed

word forms dictionary entries
mo.of | 120 | 1,235 | 11,672 | 113,736 | 751,519 | 100 | 1,000 | 5,000 | 40,000
As(%{es)lze 1,452 14,711 | 136,656 | 1,328,776 | 8,276,599 | 5,582 | 43,453 | 182,259 | 1,646,349
trie size
(clements) | 210 | 2,185 | 19,634 | 176,845 | 1,029,669 4,847 31,967 | 118,512 1,054,057
compressed
trie size | 143 | 750 | 4,134 | 25,696 | 97,001 |2,089|10,657| 35,138 | 239,4586
(elements)

Table 1. The trie compression results for sets of different sizes for two data types.

LZ compression of static linked list tries

203

word forms dictionary entries
no. of elements in trie = 1,029,669 | no. of elements in trie = 1,054,057
124 N, T N¢ '3
1000 355,176 5 576,587 5
2000 295,120 9’ 534,860 . e
5000 239,505 L7 486,877 3T
10,000 206,766 25° 454,638 35
20,000 181,146 44° 423,009 1h 40°
50,000 154,854 1h 28° 382,155 3h 58’
100,000 | 138,513 2h 30 348,223 6h 40°
unbounded | 97,003 7h 40° 239,458 21h 30°

Table 2. Tradeoffs between the size (in number of elements) N, of compressed structure and the compression time
T, for various window sizes W.

trie is a plausible structure for storing and ac-
cessing such type of data. After the compres-
sion the size of the elements can be optimised
to 3 to 4 bytes, so all 40,000 dictionary entries
can be stored in about 800Kb. The access speed
is high as with any LZ compressing scheme;
a typical access speed is over 1000 words per
second on a 100MHz PC.

4. Window speedup

It has been proved that full LZ compression
asymptotically achieves maximum entropy of
compressed data (Ziv and Lempel, 1977). In
describing the procedure of LZ compression a
notion of a sliding comparison window is used.
In a stream of symbols each symbol sequence
is compared to the previous symbols inside the
given interval called window. When the size of
the window is unbounded, asymptotically opti-
mal compression is achieved, but the time com-
plexity of the procedure is O(N?), where N is
the number of input symbols. If the size of
the window is limited to a constant W, then the
symbol at the current position in a stream of data
is compared only to the W preceding symbols.
In this way, a compression algorithm has linear
time complexity O(N = W), but the compression
is less efficient and depends on the size of the
window and on the type of data. The depen-
dencies of compression efficiency on the size of
the window have been thoroughly investigated
for various file compression algorithms (Bell et
al.,, 1990), but, to our know ledge, so far no

one has investigated this tradeoffs in compress-
ing searchable tree structures. We have con-
ducted an experiment with the described data
sets and different window sizes. The results
are presented in Table 2. Time data would de-
pend on the processor used and should be re-
garded as a relative information; these values
were obtained on a PC486/100MHz. Compres-
sion was performed with various window sizes,
from W = 1,000 to W = 100, 000. For both
data sets even a very big W of about one tenth
of initial input trie causes over 40% increase in
the size of the output compressed structure. On
the other hand, modest size windows produce
structures not more than twice the size of that
with an unbounded window. A good compro-
mise values wouldbe W = 10, 000—20, 000 for
the word forms set, and W = 5, 000 — 10, 000
for the dictionary set. For these values of W the
compressed structure is not bigger than twice
the size of the optimally compressed one, but the
compression time is greatly reduced and, more
important, linearized. Overall longer times for
dictionary entries are due to the shorter repeated
element sequences in trie for that set.

5. Conclusion

By employing an original LZ compression
method on static tries, we stored 40,000 com-
plex dictionary entries in a structure that has a
very fast access time, and has the size of about
half of the full ASCII size. By investigating the
method performance on different data types we
infer that larger dictionaries would compress

204

LZ compression of static linked list tries

even better. For really large data sets the re-
strictive factor is the quadratic execution time
of the compression procedure. This can be over-
come by limiting the LZ window to a constant
value. In this way the execution time becomes
linear, but the compression performance gets
worse. The reasonable compromise seem to be
the window sizes, where the final structure is
not more than twice the size of the optimally
compressed structure. For very large data sets
we expect very efficient compression, so that
this increase in size should still be acceptable.
We conclude that this compression method for
searchable data can be efficiently utilised for
any huge sets of static natural language data
like encyc lopaedias, thesauri or dictionaries of
any sort.

References

[1] A. W. APPEL, G. J. JACOBSON, The world’s fastest
scrabble program, Communications of the ACM,
Vol. 31, No. 5. (1988)

[2] T.BELL,J. G. CLEARY, WITTEN, I. H., Text Compres-
sion, Prentice—Hall, Englewood Cliffs, 1990.

[3] E. FREDKIN, Trie memory, Communications of the
ACM, Vol. 3, No. 9, (1960), 490-499.

[4] D.E. KNUTH, The Art of Computer Programing, Vol.
3: Sorting and Searching, Addison—Wesley, 1973.

[5] C. L. LuccHesl, T. KOWALTOWSKI, Applications of
finite automata representing large vocabularies,
Software-Practice and Experience, Vol. 23, No. 1,
(1993), 15-30.

[6] K MoriMoTo, H. IRIGUCHL, J. AOE, A method of
compressing trie structures, Communications of
the ACM, Vol. 24, No. 3, (1994), 265-288.

[7] T. D. M PURDIN, Compressing tries for storing dic-
tionaries, Proceedings of the 1990 Symposium on
Applied Computing, (1990) Fayetteville, AR.

[8] D. REvUz, Minimisation of acyclic deterministic
automata in linear time, Theoretical Computer
Science, Vol. 92, No. 1, (1992), 181-189.

[9] S. RiSTOV, Space saving with compressed trie for-
mat, Proceedings of the 17th International Confer-
ence on Information Technology Interfaces, (1995)
Pula.

[10] S. RisTOV, Metoda analize i iskeriStenja zalihosti
u konac¢nom skupu znakovnih nizova s primjenom
na hrvatski oblicnik, PhD Thesis in Croatian,
University of Zagreb, 1997.

[11] 1. Z1v, A. LEMPEL, A universal algorithm for se-
quential data compression, [EEE Transactions on
Information Theory, Vol. IT-23, No. 3, (1977),
337-343.

Received: October, 1997
Accepted: December, 1997

Contact address:

Strahil Ristov

Ruder Boskovi¢ Institute

Zagreb

Croatia

e-mail: ristov{@olimp.irb.hr
Damir Boras and Tomislava Lauc
Faculty of Philosophy

University of Zagreb, Croatia
e-mail: dboras@ffzg.hr

e-mail: tzubrini@ftzg. hr

STRAHIL RISTOV received his B.S, degree in engineering and M.S. and
Ph.D. degrees in computer science from Faculty of Electrical Enginecr-
ing and Computing, University of Zagreb. He has been with the Labo-
ratory for Stochastic Processes at Ruder Boskovic¢ Institute since 1991,
His research interests include image processing and pattern recogni-
tion, natural language processing, data structures and compression. He
is author and coauthor of seven papers.

DAMIR BORAS received his B.S. degree in electrical engineering from
the Faculty of Electrical Engineering and Computing, University of
Zagreb. Currently he is working on Ph.D. thesis in the field of text
segmentation in Croatian language at the Department of Information
Science, Faculty of Philosophy, University of Zagreb, where he teaches
text processing, lexical data bases and computer networks. His interests
include lexical data bases, corpuses and text processing in Croatian. He
has published over 30 papers in the field of information science and is
coauthor of two textbooks for information and computer science.

ToMISLAVA LAUC teceived her B.S. and M.S. degrees from Faculty of
Philosophy, University of Zagreb. She is a research assistant at the
Department of Information Science at that faculty and also a member
of the research team on the project “Models of Knowledge and Natural
Language Processing”. She graduated with the master thesis entitled
“Possibilities of Tagging of a Croatian Text Corpus” and has published
several papers concerning NLP.

