Journal of Computing and Information Technology - CIT 5, 1997, 2, 103-113 103

A Computational Study of Distributed
Processing Environments with Parallel
Multiperiod Assignment Method:

A Dedicated Machine versus

a Workstation Cluster

Babita Gupta' and Jay E. Aronson?

! California State University, Monterey Bay, Monterey, CA, USA
2 Department of Management, Terry College of Business, The University of Georgia, Athens, GA, USA

We provide a computational study of two of the more
commonly distributed processing environments using
a robust parallel multiperiod assignment branch and
bound implementation running in the Parallel Virtual
Machine (PVM) environment. We describe the multi-
period assignment problem (an np-hard, combinatorial,
network-based integer programming problem), an effi-
cient parallel algorithm for its solution, and implementa-
tion details. The algorithm is designed for a large-grain
computing environment and uses a Master/Slave (or
monitor) configuration. Minimal communication among
the processes is used. We then describe the PVM
software system and the computational platforms being
analyzed. We provide a computational comparison of
runs on an IBM SP-2 and a cluster of IBM RISC
6000 POWERStations. The results indicate that losses
in efficiency occur when employing parallelism in a
cluster, but some gains in efficiency can be obtained by
a single processor with multiple processes running in
a time-shared mode. However, in general, the cluster
provides poor parallel performance when compared to
the dedicated IBM SP-2 for which linear and superlinear
speedups can be routinely obtained. The results may be
generalized to any branch and bound method that utilizes
a similar tree search strategy.

Keywords: Network Programming, Parallel Algorithms,
Assignment Problem, Distributed Computing

1. Introduction

The multiperiod assignment problem is an im-
portant specialization of the three dimensional
assignment problem, which is a generalization
of the classical two dimensional assignment

problem. This model describes the optimiza-
tion problem of assigning m activities (jobs)
to n persons over T discrete time periods. In
this model, which is the most general case, two
types of costs are considered. There is a cost of
assigning a person to an activity in each time pe-
riod, and a cost of transferring a person from an
activity in each time period to another activity
in the following period. The transfer cost can
be set high as a penalty for situations where no
employee is allowed to repeat a job assignment
for two consecutive time periods. This situation
may arise in a hazardous job environment.

One application of the multiperiod assignment
model is the case where there are n machines
with different efficiencies, or costs for operating
on different sets of task requirements at each of
n locations over several time periods (Aronson
1986). Any machine can be installed and op-
erated at any location to perform the required
tasks. In addition, the machines can be moved,
at a cost, from one location to another at the
end of each time period. The cost of moving or
transferring heavy equipment between locations
may be substantial. Other applications of the
multiperiod assignment problem occur in the
scheduling of parallel activities on concurrent
processor computers, the assignment of aircraft
to routes, the assignment of salesmen to territo-
ries, the assignment of groups within an organi-
zation to various projects, and other problems in

104

Parallel Multiperiod Assignment

manpower planning. Franz and Miller (1993)
present a recent application involving the large-
scale, multiperiod staff assignment problem for
scheduling medical residents into rotations at a
university teaching hospital. By selecting ap-
propriate costs and using dummy persons and
activities, it is also possible for the multiperiod
assignment model to describe the hiring and
firing of employees, the activation and deacti-
vation of manufacturing divisions, the startup
and shutdown of variable time length projects,
the assignment of communication satellites into
stationary orbits over time, and the facility lo-
cation/warehouse version of the three dimen-
sional assignment problem (Pierskalla 1968;
see Elnidani and Aronson 1991).

In our model, the number of time periods is not
restricted to equal the number of persons or ac-
tivities. , Also, the number of persons n, is not
restricted to equal the number of jobs m. How-
ever, in general, we assume that the number of
persons equals the number of activities (jobs),
that is, m = n, since if m # n, dummy persons
or jobs can be added. Costs associated with as-
signing a dummy person to a job, or a person to
adummy job are zero, unless specified penalties
are required by the model.

Here, we present a computational comparison
along with a parallel branch and bound algo-
rithm and its implementation for solving multi-
period assignment problems on the Parallel Vir-
tual Machine (PVM) software system: 1) on
a cluster of IBM RISC/6000 POWERStations;
and 2) on a dedicated IBM Scalable Power-
Parallel System (IBM SP-2). The algorithm is
designed for a large-grain computing environ-
ment.

The purpose of our study is to identify some
inherent advantages and disadvantages of the
workstation cluster environment for parallel al-
gorithm implementation and use. The work-
station cluster environment has evolved into an
implicit standard computing environment, but,
for algorithmic research, there is little control
over the load of the individual workstations
and /or over their communication traffic. Con-
sequently, it is difficult to determine the useful-
ness of this environment for parallel optimiza-
tion.

Most of our observations are generalizable to
parallel integer programming implementations.

In the following sections, we present the mul-
tiperiod assignment problem, a brief discussion
of the distributed processing environments, the
parallel algorithm and its implementation, com-
parative parallel computational results and com-
parison with the serial implementation, a sum-
mary and conclusions.

2. The Multiperiod Assignment Problem

The multiperiod assignment problem is a special
case of the planar three-dimensional assignment
problem (for an excellent survey, see Gilbert
and Hofstra 1988; for related work see Gilbert
and Hofstra (1987, 1992) and Hofstra (1990)).

There is a cost associated with the assignment
of person £ to job j, in time period 7 which may
be different from that of assigning person k to
job j in period ¢ where ¢ # f. Another set of
costs is introduced, that is the cost of transfer-
ring person k from job j in period ¢ to job lin
period ¢ + 1. The problem of optimally assign-
ing n persons to n jobs over T time periods is
the Multiperiod Assignment Problem (MAST)
stated as follows (see Aronson 1986):

mini: Z C{‘ fj (1)

k=1 (iJ)EA
subject to
AX = k=1,....n (2)
n
K
doxt<1, t=1,...,r (3)
k=1
X=0,1 (4)
where k is the commodity (job or person)

to be assigned,
[,] are the activities, and
t is the time period.

Constraint set (2) represents n independent, spe-
cialized shortest path problems (see Figure 1).
The n activities are represented by the ‘rows’
of nodes and arcs. The assignment arc sets A,
for t = 1,...,T and transfer arc sets T, for
t = 1,...,T — 1 are shown. There are n7
mutual capacity constraints, which incorporate
only the assignment arcs. The mutual capac-
ity constraints (3) prevent the assignment of

Parallel Multiperiod Assignment

105

Period 1 Pariod 2

Assignment Ay

Transfer T, Assignment A; Transfer Tp

Period T-1 Period T

oa e _,_JLV—/\—\

Transfer T, Assignment Ay
(X X 2
[X X | @ +—Activity 1
LR B Activity 2

N+
Demand-1

L B R “—Aotivity n

Fig. 1 The Multicommodity, Multiperiod AssignmentProblem Network of Commodityi.

an activity (job) to more than one commodity
(person) in each time period. Constraint set (4)
imposes the integer restrictions. Because the re-
quirement in each of the shortest path problems
for the source is +1 and for the sink is —1, the
upper bounds imposing limits on the arc flows
to be 1 are redundant.

MAST may be solved by a specialized branch
and bound algorithm (Aronson 1986) (see El-
nidani (1986), Elnidani and Aronson (1990a,
1990b, 1991) for a different, specialized mul-
ticommodity branch and bound algorithm and
implementation). First, we find a feasible in-
teger solution to the problem using a special-
ized shortest path based heuristic to obtain an
incumbent solution, yielding an upper bound
to the optimum objective value. Relaxing the
mutual capacity constraints (3), that is, allow-
ing multiple assignments, we again solve the
problem for each commodity using a special-
ized shortest path algorithm to obtain a lower
bound to the optimum objective value. Branch-
ing is done on infeasible assignments. So, in
a time period in which a mutual capacity con-
straint is violated (e.g., persons 2 and 7 each
perform job 3 in period 5), we do the branch-
ing using a depth first rule (left branch: person
2 is assigned job 3; right branch: person 2 is
not assigned job 3). We move down the left
branch and solve its subproblem with the mu-
tual capacity constraints relaxed. Whenever a

better feasible solution is found, we update the
incumbent solution. The fathoming procedure
follows standard rules (in terms of when we
branch to the right move up and then down to
the right). Next, we briefly discuss the com-
putational software platform PVM for handling
communication.

3. The Parallel Virtual Machine (PVM)

Advanced systems are being developed to per-
mit the utilization of a heterogeneous network
of parallel and serial computers as a unified
general and flexible concurrent computational
resource. One of them is the Parallel Vir-
tual Machine (PVM) (Sunderam 1990; Sun-
deram and Geist 1992), which supports the
message-passing, shared memory and hybrid
paradigms. The user views the PVM system as a
loosely coupled, distributed-memory computer
programmable in C or Fortran with message-
passing extensions (Beguelin et al. 1991).
PVM allows supercomputer-level concurrent

computations to be carried out on intercon-
nected networks of heterogeneous computer sys-
tems. This makes PVM very cost effective as
the supercomputer-level computations can be
attained at a fraction of the cost of single-system

106

Parallel Multiperiod Assignment

distributed computing platforms. The main ad-
vantage of PVM is derived from its ability to ex-
ecute applications in existing network environ-
ments without the need for specialized hardware
or software enhancements or modifications.

The PVM system may be configured to con-
tain a variety of machine architectures includ-
ing sequential processors, vector processors,
distributed-memory or shared-memory multi-
processors (for example: Sun 3, Sun 4, [BM
RISC System/6000, IBM SP-2, Sequent Sym-
metry, Cray, Intel iPSC/860 Hypercube, Intel
IPSC/2 Hypercube, Alliant FX/8, Connection
Machine CM-2, SPARCstation, etc.). This per-
mits the use of the best resource for each com-
ponent of the application. These computing
clements may be interconnected by one or more
networks and are accessed by application via
a library of standard interface routines. These
routines allow the initiation and termination of
processes across the network as well as com-
munication and synchronization between pro-
cesses.

An interesting aspect of PVM is that proces-
sors accept work within the system if they are
deemed to have the capacity to perform it. Sev-
eral “virtual processors” may run on a sin-
gle computer in the network, and other users
may simultaneously be utilizing the processors
through time-sharing. Thus, if a processor is
idle within PVM, it may still be actively work-
ing on other tasks, in other words, machine cy-
cles are not lost if the parallel job becomes idle.
Application programs are composed of compo-
nents that are subtasks at a moderately large
level of granularity. During execution, multiple
instances of each component may be initiated.

PVM provides two options to effectively use any
multiprocessor that may be available to an ap-
plication: 1) the ability to treat multiprocessors
as an atomic resource, that is, applications may
run programs that are hardcoded for specific
multiprocessors under PVM control; and 2) the
provision for dynamic incorporation of applica-
tion modules in a selective manner. At run time,
the user or PVM can select the most appropriate
module to use, depending upon the specific ma-
chines on which the application will run. PVM
is used as the primary parallel communication
scheme in both the cluster of workstations and
the IBM SP-2.

3.1. IBM RISC System/6000
POWERStation

The RISC System /6000 (IBM 1990) architec-
ture is a Reduced Instruction Set Computer. It
has a virtual memory addressing scheme that
allows programs to reference a larger data area
than available real memory. The architecture
supports a real address space of 4 gigabytes, or
272, with a theoretical maximum of 4 petabytes,
or 252 because of virtual memory support. The
RISC System/6000 a processor can execute
the maximum of four instructions per machine
cycle, and the Floating Point Unit (FPU) can
give a theoretical throughput of two operations
per cycle. The CPU speed in the RISC Sys-
tem/6000 Model 560 with 64 MB of mem-
ory is 50 Mhz. This gives peak megaflops
rate of FPU to be 100 MFLOPS (one megaflop
is equal to 1,000,000 floating point operations
per second). The RISC System /6000 runs the
AIX version 3.2 (Unix) operating system. The
University Computing and Network Services’
(UCNS) Workstation Cluster at The University
of Georgia consists of 13 RISC/6000 POWER-
Stations (actually configured as one cluster of
10, and a second one of 3): the specific Models
are the 390, 550, 560 and 590. We used four in
parts of our experiments.

3.2. The IBM Scalable PowerParallel
System (SP-2)

The University of Georgia’s IBM SP-2 parallel
processing system has 8 nodes connected by a
high performance switch. Each of these nodes
consists of a RISC/6000 Model 390 processor
chip with 64 MB of memory, 2 gigabytes of
disk space and has a peak MFLOP rating of
266. The switch has a 40 MB/sec bidirectional
bandwidth between node pairs and an applica-
tion uniform latency less than 40 microseconds.
The University Computing and Networkin g Ser-
vices” IBM SP-2 runs under the AIX version
3.2 (Unix) operating system. There are two
communication channels or switches called: 1)
the High Speed Switch; and 2) the Low Speed
Switch. The High Speed Switch option allows
for faster communications, but only one com-
puting process may run on each hardware pro-
cessor. The Low Speed Switch, though slower,
allows multiple processes per processor and is

Parallel Multiperiod Assignment

107

more appropriate for our research, where a Mas-
ter Process has minimal work (about 0.1% of the
effort) once the optimization begins. The Low
Speed Switch uses the TCP/IP communication
protocol. Further, the SP-2 is divided into two
4-processor segments, of which only one may
be activated at a time by an individual user, thus
limiting our tests to 4 processors.

4. A Parallel Multiperiod Assignment
Algorithm and Implementation

Branch and bound methods are essentially the
only tool available to solve hard combinatorial
problems to optimality (de Bruin et al. 1988).
There are several parallel branch and bound
algorithms in the literature (Kindervater and
Lenstra 1988, Gendron and Crainic 1994), par-
allelized at a low or high level. We use the
branch and bound method of Aronson (1986)
and develop a high-level parallel algorithm, that
is, several iterations of the main loop are per-
formed in parallel and the work is partitioned
and assigned dynamically during execution.

The algorithm uses a master-and-slave processes
configuration implemented under PVM. The
Master Process spawns all the Slave Processes.
These processes are now activated and are wait-
ing for further instructions from the Master Pro-
cess. The idea is that all processes are ini-
tialized and read problem data simultaneously.
Otherwise, if a Slave Process were to be acti-
vated during the branch-and-bound operation,
each Slave Process would need to be initial-
ized by reading the bulk of the problem data,
thus reducing the effectiveness of paralleliza-
tion. The Master Process decides how the
work should be divided among Slave Processes,
broadcasts requisite information and maintains
the level of synchronicity. Therefore, the Mas-
ter Process makes all important decisions. The
Slave Processes perform the actual subprob-
lem solving, which includes branching, com-
puting lower bounds and fathoming the sub-
problems generated. Each maintains ‘local’
incumbent solutions (its best one found) and
the global incumbent objective value (shared by
all processes). The number of Slave Processes
spawned depends upon the size of the problem
and the resources available.

The Master Process maintains the information
obtained from Slave Processes and coordinates

the information exchange among them. The
Master Process spawns the Slave Processes, and
keeps a list of processes that are currently busy
working on a subproblem, in a process busy
queue. It also maintains a list of idle Slave Pro-
cesses, 1.€., the Slave Processes currently avail-
able for work in the process idle queue, and
the list of subproblems waiting for a Slave Pro-
cess assignment in subproblem wait queue. The
Master Process obtains the global upper bound
(UBglobal) from the heuristic solution and exe-
cutes the shortest path algorithm to obtain the
lower bound (LB) at node 0. It then dynam-
ically activates the first generation Slave Pro-
cesses to start the branch-and-bound algorithm.

Initially, the Master Process assigns two Slave
Processes for the first infeasible assignment
found, introducing a dichotomy in the search
tree. For example, if in period 5, persons 2 and
7 each perform job 3, we branch using a depth-
first rule and assign the left branch (person 2
assigned job 3) to Slave Process one and the
right branch (person 2 is not assigned job 3)
to Slave Process two. The partial tree assigned
to a Slave Process has flags indicating which
portion of the tree ‘belongs’ to it.

Each Slave Process works independently on its
part of the search tree. A Slave Process may
send part of its tree to the Master Process, thus
requesting that the Master Process assigns an-
other Slave Process to work on it (simultane-
ously, it marks the portion of the tree transmit-
ted to the Master Process so it can be ignored
when exploring the tree). This Slave Process
then works on the remainder of its subprob-
lem until it is completely explored (portions
may be fathomed). This ensures that the tree
is spread out breadth-wise early in the algo-
rithm, so that each Slave Process has a reason-
able amount of work while executing a depth-
first search. This also ensures that algorithm
achieves near perfect load-balancing. Note, our
early tests indicated that the most effective way
to partition the search was for a Slave Process
to send a portion of the search tree back to the
Master Problem as high in the tree as is possi-
ble, say the first three right branches. The depth
of the tree, where the Slave Processor starts,
indicates the number of right branches to send
to the Master Process; fewer right branches are
sent as we move deeper in the tree.

108

Parallel Multiperiod Assignment

The Master Process keeps a list of subproblems
that are waiting to be assigned to a Slave Pro-
cess. A Slave Process, after it finishes work on
its subproblem, indicates to the Master Process
that it is available for further work. The Mas-
ter Process then assigns a waiting subproblem
(the partial tree information) from the subprob-
lem wait queue to this Slave Process (at ran-
dom). However, if the subproblem wait queue
is empty, the Master Process assigns any Slave
Process becoming idle to the process idle queue,
for later use.

When a Slave Process fathoms a subproblem
by finding 2 new candidate for the incumbent
solution, it computes the new current UB, up-
dates the local upper bound, Z* and global upper
bound, UBgjobal, and broadcasts it to all cur-
rently active Slave Processes for future fathom-
ing opérations, and to the Master Process. Each
currently active Slave Process thus receives the
updated UBgjopai as soon as it becomes avail-
able. A Slave Process checks the message for
the updated UByjobal after it evaluates a node
in the tree (checking is as expensive as a sim-
ple logical IF statement). Thus, each of the
Slave Processes can use the updated UBgjopal
to conduct the lower bound fathoming tests on
the subproblems it generates. These tests de-
termine whether to prune its part of the tree
or to continue branching. If the result of this
test is such that the entire subproblem is fath-
omed, then the Slave Process indicates to the
Master Process that it is now free for more
work. If no more work is available, i.e., the
subproblem wait queue is empty, then it joins
the process idle queue maintained by the Mas-
ter Process. The branch-and-bound algorithm
terminates when all Slave Processes are in the
process idle queue and no subproblems are in
the subproblem wait queue. Then the Master
Process sends a done signal to the Slave Pro-
cesses, which compare their local incumbent
objective value to the global upper bound value.
If equal, the Slave Process transmits its solution,
which is an optimum, to the Master Process.

Communication among the Master Process and
the Slave Processes is an integral part of the al-
gorithm. The Master Process can receive four
types of messages from a Slave Process:

ili; that the status of the Slave Process is idle
(message type = Idle),

2. anew subproblem to be assigned to an-
other Slave Process (message type = Sub-
problem), and

3. anew UBgippa (message type = NewUB)
(also sent to all active Slave Processes).

4. anoptimal solution (message type = Opt-
Sol).

A Slave Process can receive the following types
of messages:

1. a new UBgjopa from another Slave Pro-
cess or the Master Process (message type
= NewUB),

2. a done message from the Master Pro-
cess (message type = Done) implying it
should transmit its solution if UBjgea; =
UBg]obal» and

3. a new subproblem to be assigned to this
idle Slave Process (message type = New).

We use the depth-and-breadth-first combined
strategy while exploring the branches. A Slave
Process, while branching, always takes the left
branch subproblem (depth-first). The first few
right branches are assigned to idle Slave Pro-
cesses by the Master Process from the process
idle queue (breadth-first). Thus, many subprob-
lems can be explored simultaneously, depth-
wise as well as breadth-wise. The Master Pro-
cess selects subproblems (tree segments) from
the subproblem wait subproblem wait queue at
random. For additional details on the algorithm
see Gupta (1995).

5. Computational Results

We report the computational results of the par-
allel branch-and-bound algorithm described in
Section 4. The code, PMAST, was implemented
in Fortran 77 and runs under PVM. It was tested
on the IBM RISC System /6000 POWERStation
Cluster and the IBM Scalable PowerParallel
System (SP-2) of the UCNS at The University
of Georgia. The RISC/6000 Cluster consists of
machines of the same architecture but different
MFLOPS ratings. The UGA Cluster consists of
one Model 590, two Model 560°s, seven Model
550’s, and three Model 390’s. There were actu-
ally two clusters, one consisting of three Model
390’s, and the second consisting of the 500 se-
ries machines. Each cluster had dedicated com-
munication channels within the cluster. The

Parallel Multiperiod Assignment

109

Model 590 is the fastest machine in the clus-
ter, faster by a factor of 1.80 compared to the
Model 560; a factor of 2.18 compared to the
Model 550; and a factor of 13.45 compared to
the Model 390. Recall that the SP-2 consists of
eight RISC/6000 Model 390 processors with
some additional, speed enhancements. Each
processor is 14% faster than the Model 590.

On the cluster, the maximum CPU time avail-
able to any user was 660 CPU seconds (11 CPU
minutes). The wall clock time = CPU time
limit on the SP-2 was 21,600 CPU seconds, or
6 CPU hours. Both the serial code, MAST
(Aronson 1986) and the parallel code, PMAST,
were tested on the same processor to ensure a
fair comparison of results.

We use the measure of absolute speedup which
measures the reduction in time due to the par-
allelism, and can be used to compare two com-
puting platforms, given that the serial and the
parallel algorithms are the same on the different
platforms. The absolute speedup is calculated
by dividing the time required by the serial algo-
rithm, MAST, on a platform by the time required
by the parallel algorithm, PMAST.

The xIf (f77) Fortran compiler was used with
the optimization feature enabled at the highest
level (-03). The number of people, n, ranged
from 5 to 10, and number of time periods, 7,
ranged from 4 to 9, when it was possible to solve
a problem within the allowed maximum execu-
tion time. Multiperiod assignment problems
were randomly generated from a uniform prob-
ability distribution with assignment arc costs
ranging from 1 to 100, and transfer arc costs
ranging from 1 to 1000. These problems are
extremely difficult to solve because the paths
of each network are approximately of the same
length. We had to work with two sets of prob-
lems for the two computational platforms, the
cluster and IBM SP-2, due to practical limita-
tions. Owing to the time limitation of 11 CPU
minutes available to any user on the cluster, we
could not solve large problems on the cluster.
The same set of eight problems that we could
solve on the cluster, however, ran so fast on SP-2
(in a few CPU seconds) that one could not ef-
fectively measure any speedup. Hence we solve
a different set of four very large problems on the
SP-2. This, however, does not detract from the
merit of the study, as we make speedup com-
parisons of the two platforms based on solving

a problem in serial and parallel algorithms on
a particular platform. In other words, speedups
are a ratio, and therefore can be compared re-
gardless of the problems solved, so long as the
algorithms, MAST and PMAST, themselves are
the same on the two platforms.

Three runs were made for each of the eight
problems tested on IBM RISC/6000 Cluster.
The computational results obtained on the
RISC/6000 Cluster are reported in Tables 1
and 2. We ran the parallel implementation us-
ing four Slave Processes. The Master Process
(called the PVM host program) of the PMAST
code ran concurrently on processor one as the
fifth process on the four (hardware) processors,
so, only four processors were used overall. The
Master Process typically requires about 0.10%
or less computing effort.

Table 1 shows the results when all four Slave
Processes in PMAST were started on four dif-
ferent machines in the cluster: two Model 390’s,
one Model 550 and one Model 560. Since we
have a CPU time limit of 11 CPU minutes for
any job on the cluster, we could not solve very
large problems. MAST, the serial implemen-
tation, was run on the Model 590, the fastest
machine in the cluster. The average speedup
(solution time of the serial implementation di-
vided by the solution time of the parallel im-
plementation) for this set of tests was a very
poor 0.612 with a standard deviation of 0.183.
The cluster is shared by many users. Heavy
cluster usage and network communication traf-
fic has significant impact on the synchroniza-
tion and communication time. Qur parallel al-
gorithm, though not communication intensive,
does require timely computation of local upper
bounds and their data transmission, and there-
fore, heavy network use and traffic affect the
overall solution time of PMAST. Thus, our tests
of running four Slave Processes on four different
processors of differing hardware ratings, com-
munication specifications and different loads,
due to time sharing with other users on the clus-
ter, indicated that we were pursuing a fruitless
line of empirical research.

We then ran the parallel implementation with all
four Slave Processes running on a single pro-
cessor, the Model 590. For the eight problems
solved, the average speedup (the solution time
of the serial implementation divided by the so-
lution time of the “paralle]” implementation)

110

Parallel Multiperiod Assignment

PMAST on four different
cluster processors (NPROC=4)
MAST MAST PMAST PMAST | Speedu
Prob-| Runl RunZ2 Run3 Average | Run1l Run?2 Run 3 Average AS
lem | Time Time Time Time Time Time Time Time | /PMAST
558 974 10.11 13.45 11.1060.31| 18.29 24.51 34.37 0.323
665 | 46.92 46.16 44.61 45.90 | 101.24 88.88 105.29 98.47 0.466
666 | 7899 7729 77.83 78.04 | 112:67 137.12 11352 121.10 0.644
775 | 46.77 51.78 50.40 49.65| 91.72 72.62 72.27 78.87 0.630
884 | 83.24 81.57 92.80 85.877 1 105.28 109.27 112.68 109.08 0.787
885 | 208.70 209.11 219.18 212.33 | 336.32 425.72 419.75 393.93 0.539
895 | 456.93 458.46 456.46 45728 | 457.33 456.60 516.17 476.70 0.959
993 | 13.64 13.64 15.60 1429 | 25.29 26.36 26.28 25.98 0.550
Average Speedup = 0.612
Std Deviation = 0.183

Table 1. Computational Runs of the parallel branch-and-bound algorithm implementation, PMAST, on the RISC/6000 Cluster
on four different processors, two RISC/6000 Model 390’s, one Model 550 and one Model 560, running four Slave Processes

concurrently, i.e., NPROC = 4.

The Problem number, mmt, means n people, m jobs and ¢ time periods (558 = 5 people, 5 jobs, 8 time periods). Each problem is

solved three times (Run 1, Run 2, and Run 3).

Column MAST is the CPU time (in seconds) of the serial implementation on a RISC/6000 Model 590, the fastest in the cluster.

Column PMAST is the wall clock time (in seconds) of the parallel implementation.

using four Slave Processes was 1.825 with a
standard deviation of 0.382 (see Table 2). As
we can see, the average speedup is much lower
than the desired perfect 4.000 (the case of a
linear speedup). However, using a single pro-
cessor, a speedup exceeding 1.0 was attained.

Firstly, running the four Slave Processes on a
single processor is a time-shared type of pro-
cessing environment rather than true parallel
processing. In effect, we are broadening the
branch and bound search, where four searches
are running in time slices. Thus, letting the

PMAST on a single

cluster processor (NPROC=4)

MAST MAST PMAST PMAST Sleﬁidl’ip
Prob-| Run1 Run2 Run3 Average| Runl Run2 Run3 Average S

lem | Time Time Time Time Time Time Time Time | /PMAST
558 9.74 10.11 13.45 11.10 4.74 537 5.64 525 2.114
665 | 46.92 46.16 44.61 4590 | 33.33 29.95 31.66 31.65 1.450
666:| 7899, FIAD . 1183 78.04 | 47.78 53.63 43.66 48.36 1.614
7751 46.77 51.78 50.40 49.65 | 25.62 47.67 29.00 34.10 1.456
884 | 83.24 81.57 92.80 85.87| 43.13 3255 36.57 37.42 2.295
885 208.70 209.11 219.18 212.33|149.50 150.86 114.96 138.44 1.534
895 | 456.93 458.46 456.46 457.28|166.73 226.97 159.75 184.48 2.479
993 | 13.64 13.64 15.60 14.29 8.87 8.00 9.04 8.64 1.855
Average Speedup = 1.825
Std Deviation = 0.382

Table 2. Computational Runs of the parallel branch-and-bound algorithm implementation, PMAST, on the RISC/6000 Cluster.
PMAST is running 4 Slave Processes (NPROC = 4) on a single processor, a Model 590 machine.

The Problem number, nmt, means n people, m jobs and ¢ time periods (558 = 5 people, 5 jobs, 8 time periods). Each problem is
solved three times (Run 1, Run 2, and Run 3).

Column MAST is the CPU time (in seconds) of the serial implementation on a RISC/6000 Model 590, the fastest in the cluster.
Column PMAST is the wall clock time (in seconds) of the parallel implementation.

Parallel Multiperiod Assignment

111

operating system and PVM control the data
structures, solution management and the search
through the communication system, a speedup
of 1.825 was attained. Secondly, the effects
of heavy network traffic and time-sharing with
other users explain why the speedup was worse
when PMAST ran on four different machines in
the cluster than when it ran on a single proces-
SOf.

To test the above premise and the efficacy of
our parallel algorithm, we solved four large
problems on the IBM Scalable PowerParallel
System (SP-2), a dedicated parallel machine
(no other users or time sharing). We solved
problems with both MAST and PMAST on the
SP-2. The set of problems that we solved on
the cluster was small. They ran so fast on the
SP-2 (0.5-9.0 CPU seconds) that we could not
observe any speedup factors (an SP-2 node is
14% faster than a Model 590 machine, as our
early empirical tests indicted). Therefore, we
decided to solve a different set of problems on
the SP-2. These problems were much larger
and much more difficult to solve; in fact, due
to time limitations we cannot solve them on the
cluster. The computational results are shown in
Table 3. The average speedup with four Slave
Processes on the SP-2 is 4.726 with a standard
deviation of 0.906. Thus, we obtain a superlin-
ear speedup when our parallel implementation
of the multiperiod assignment method runs in

a dedicated parallel environment for these test
problems.

6. Summary and Conclusions

We have presented a computational comparison
of a new, parallel branch and bound algorithm
for solving the multiperiod assignment problem
using the Parallel Virtual Machine (PVM) soft-
ware system for communication on a cluster of
IBM RISC/6000 POWERStations and on an
IBM Scalable PowerParallel System (SP-2).

The results indicate that a large-grain paral-
lelization and problem partitioning, which in-
volves transmitting large problem tree segments
(with minimal actual data transfer) to be solved
independently, is very effective. This is in-
teresting in its own right, because reports in
the literature indicate that fine-grain paralleliza-
tion and problem partitioning where individual
nodes of the branch and bound tree are solved
on Slave Processes and coordinated by the Mas-
ter Problem, are less effective and that sublinear
performance is typically attained (Gendron and
Crainic, 1994).

The results further indicate that it is ineffec-
tive to utilize multiple processors in a cluster,
yet, parallel code running of multiple processes

PMAST on a 4 different
SP-2 processors (NPROC=4)
MAST MAST PMAST PMAST | Speedu
Prob- | Run1 Run2 Average | Runl Run2 Run3 Average AS

lem | Time Time Time | Time Time Time Time | /PMAST
1103 288 288 288 56 56 57 56.33 5112
884 167 167 167 50 54 S 52335 3.191
T 476 475 475.5 92 96 94 94.00 5.059
779 | 11445 11405 11425 | 1922 2383 1879 2061.33 5.543
Average Speedup = 4.726
Std Deviation = 0.906

* % 1103 = 10 people, 10 jobs and 3 time periods.

Table 3. Computational Runs of the parallel branch-and-bound algorithm implementation, PMAST, on the dedicated SP-2.
PMAST is running 4 Slave Processes (NPROC = 4) on 4 processors.

The Problem number, nmt, means n people, m jobs and ¢ time periods (558 = 5 people, 5 jobs, 8 time periods). Each problem is
solved twice for MAST (there was virtually no variation) and three times for PMAST.

Column MAST is the CPU time (in seconds) of the serial implementation on a single SP-2 processor (comparable to a RISC/6000
Model 390, about 14% slower than the Model 590). Column PMAST is the wall clock time (in CPU seconds) of the parallel

implementation.

112

Parallel Multiperiod Assignment

on a single processor can broaden the search
tree and attain speedups exceeding 1. However,
a dedicated multiprocessor is, by far, the best
computational platform to use (e.g., see Ken-
nington and Zhang (1988) who report on solv-
ing pure assignment problems in a dedicated,
shared memory computing environment).

The computational results demonstrate that su-
perlinear speedups can be achieved (unlike sub-
linear speedups reported in the literature, see
Gendron and Crainic, 1994), given the right
implementation of the parallel algorithm, with
its solution /search parameters set carefully and
matched to the proper parallel architecture. The
results may be generalized to any branch and
bound method that utilizes a similar tree search
strategy.

Further work will focus on more extensive test-
ing of this algorithm and on developing methods
for solving similar, difficult large-scale combi-
natorial optimization problems. Other work can
focus on parallel implementations of methods
for related problems (e.g., see Hofstra 1990).

Acknowledgement The authors would like to ex-
press their appreciation to Dr. Alan M. Ferren-
berg for his invaluable assistance in facilitating
the use of the hardware platforms and PVM.

References

ARONSON, J. E., The Multiperiod Assignment Problem:
A Multicommodity Network Flow Model and Spe-
cialized Branch and Bound Algorithm, European
Journal of Operational Research, 23, 3 (1986),
367-381.

BEGUELIN, A., J. DONGARRA, A. GEIST, R. MANCHEK
AND V. SUNDERAM, A Users’ Guide to PVM Par-
allel Virtual Machine, Oak Ridge National Labo-
ratory lechnical Memorandum, Oak Ridge, TN,
July 1991.

DE BRUIN, ARIE, A. H. G. RINNOOY KAN AND HARRY
W. J. M. TRIENEKENS, A Simulation Tool for the
Performance Evaluation of Parallel Branch and
Bound Algorithms, Mathematical Programming,
42,2 (1988), 245-271.

ELNIDANI, M. A., The Multicommodity, Multiperiod As-
signment Problem, Doctoral Dissertation, Depart-
ment of Operations Research and Engineering
Management, Southern Methodist University, Dal-
las, TX, 1986.

ELNIDANI, M. A. AND J. E. ARONSON, The Multicom-
modity, Multiperiod Assignment Problem I: A
Specialized Branch and Bound Algorithm, Work-
ing Paper 89-276, Department of Management,

Terry College of Business, The University of Geor-
gia, Athens, GA, 1990a.

ELNIDANI, M. A. AND J. E. ARONSON, The Multicom-
modity, Multiperiod Assignment Problem I1: The-
oretical Results, Working Paper 89-277, Depart-
ment of Management, Terry College of Business,
The University of Georgia, Athens, GA, 1990b.

ELNIDANI, M. A. AND J. E. ARONSON, The Multicom-
modity, Multiperiod Assignment Problem III:
Variations for Facility Location and Personnel
Planning, Working Paper 89-278, Department of
Management, Terry College of Business, The Uni-
versity of Georgia, Athens, GA, 1991.

FRANZ, L. S. AND J. L. MILLER, Scheduling Medical
Residents to Rotations: Solving the Large-scale
Multiperiod Staff Assignment Problem, Opera-
tions Research, 41, 2 (1993), 269-279.

GENDRON, B. AND T. G. CrAINIC, Parallel Branch-and-
Bound Algorithms: Survey and Synthesis, Opera-
tions Research, 42, 6 (1994), 1042-1066.

GILBERT, K. C. AND R. B. HOFSTRA, An Algorithm for a
Class of Three-Dimensional Assignment Problems
in Scheduling Applications, Institute of Industrial
Engineers Transactions, 19 (1987), 29-33,

GILBERT, K. C. AND R. B. HOFSTRA, Multidimensional
Assignment Problems, Decision Sciences, 19
(1988), 306-321.

GILBERT, K. C. AND R. B. HOFSTRA, A New Multiperiod
Multiple Traveling Salesman Problem with Heuris-
tic and Application to a Scheduling Problem, De-
cision Sciences, 23 (1992), 250-259.

GUPTA, B., A Parallel Multiperiod Assignment Algo-
rithm, Doctoral Dissertation, Terry College of
Business, The University of Georgia, Athens, GA,
1995.

HOFSTRA, R. B., “A New Multiperiod Multiple Travel-
ing Salesman Problem with Heuristic and Appli-
cation to a Scheduling Problem,” Proceedings of
the Annual Decision Sciences Institute Southeast
Regional Meeting {February 21-23, 1990).

KENNINGTON, I. L. AND Z. WANG, “Solving Dense As-
signment Problems on a Shared Memory Multipro-
cessor,” Technical Report 88—OR—16, Department
of Operations Research and Engineering Manage-
ment, School of Engineering and Applied Sci-
ences, Southern Methodist University, Dallas, TX
(October 1988).

KINDERVATER, G. A. P. ANDJ. K. LENSTRA, Parallel Com-
puting in Combinatorial Optimization, Annals of
Operations Research, 14, 4 (1988), 245-289.

PIERSKALLA, W. P., The Multidimensional Assignment
Problem, Operations Research, 16,2 (1968), 422
431.

SUNDERAM, V. S., PVM: A Framework for Parallel Dis-
tributed Computing, Concurrency: Practice and
Experience, 2, 4 (1990), 315-339,

Parallel Multiperiod Assignment

113

SUNDERAM, V. S. AND G. A. GEIST, The PVM System:
Supercomputer-Level Concurrent Computation on
a Network of IBM RISC System /6000 POWER-
stations, Reprinted from Scientific Excellence In
Supercomputing: The 1990 IBM Contest Prize
Papers, Volume 2, Billingsley, K., H. Brown and
E. Derohanes (eds.), The Baldwin Press, The Uni-
versity of Georgia, Athens, GA, 1992, 779-804.

Received: June, 1995
Accepted: May, 1997

Contact address:

Babita Gupta

Assistant Professor of Management
Institute for Management

and International Entrepreneurship
California State University—Monterey Bay
Seaside, CA 93955

USA

Phone: 408/582-4186

Fax: 408/582-3585

Email: babita@seal.monterey.edu

Jay E. Aronson

Department of Management

Terry College of Business

The University of Georgia

Brooks Hall

Athens, GA 30602-6256

USA

Phone: 706/542-0991

Fax: 706/542-3743, 706/542-7196
Email: jaronson(@blaze.cba.uga.edu

BABITA GUPTA is Assistant Professor of Management Information Sys-
tems at California State University — Monterey Bay. Previously she
was an Assistant Professor of Business and Economics at Missouri
Western State College. She earned her Ph.D. in Management Scicnces
from The University of Georgia. Her research interests include parallel
network optimization, tabu search, expert systems and others,

Jay E. ARONSON is Associate Professor of Management at Terry Col-
lege of Business at The University of Georgia. Previously, he was As-
sociate Professor of MSIT at UGA, and Assistant Professor at Southern
Methodist University. He earned his Ph.D. in Industrial Administration
from Carnegie Mellon University. He has published in major journals
on neural computing, executive information systems, group support sys-
tems, systems analysis and design, and parallel network optimzation.

