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This research has been motivated by the need to pro-
vide more lucid and effective means for describing and
structuring all the various knowledge related to certain
software engineering tasks, such as a version selection.
Our approach offers means of abstraction for express-
ing various kinds of knowledge involved in the related
process. It also offers techniques for structuring them
according to both generality levels and to knowledge
content, i.e. meta-levels. To illustrate these ideas, we
show how multilevel programming can be used to model
a method for version selection. Our objective was to
achieve an effective automated version selection - which
is an important task in software configuration manage-
ment - by means of incorporating heuristic filters in that
process.
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1. Introduction

Despite several widely recognized advantages
of logic programming such as declarative se-
mantics, or mechanisms of unification and de-
duction, the extent of its suitability for devel-
opment of large software systems is relatively
limited. One of the crucial problems is the lack
of concepts, and consequently of language con-
structs, for structuring of programs, modularity,
sharing and hiding, etc. All of them are impor-
tant means to manage complexity of a particular
domain.

The desire to have in logic programming lan-
guage (such as Prolog) means for dividing a
software system into smaller, relatively sepa-
rated and independent units with transparent

minimal interfaces was responded by several au-
thors. Separated logic databases are called mod-
ules [Giordano et al, 1994, Sannella and Wallen,
1992, Kwon et al, 1993], theories [McCabe,
1992], units [Lamma et al, 1991]. Several au-
thors [Kowalski, 1979, Zaniolo, 1984, Gallaire,
1986, Lamma et al, 1991, McCabe, 1992, Xu
and Zheng, 1995] applied concepts of the object
oriented programming to achieve structuring of
logic programs.

Problems are encountered when trying to com-
bine logic databases (modules). Several ap-
proaches have been tried, e.g. inheritance [Mello,
1991], context switching [Lamma et al, 1991],
introducing implication into goals [Giordano
et al, 1994], different definitions of visibil-
ity of atoms [McCabe, 1992|, using abstrac-
tion in separating the logic database from the
concrete implementation by specifying required
resources and produced results [Sannella and
Wallen, 1992].

Mutual communication among logic databases
has not been solved satisfactorily so far. No gen-
erally applicable strategy has been proposed that
could be used in developing an arbitrary sys-
tem. Moreover, it seems that domain dependent
knowledge plays an important role in deciding
on what is the suitable way of combining logic
databases for a given problem.

The above described difficulty is often approach-
ed with the technique of meta-programming.
A usual straightforward way of using meta-
programming in logic is based on determining
a meta-interpreter that defines explicitly every
logic program processing machine instruction,
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taking into account the chosen level of meta-
interpret’s granularity [Sterling and Beer, 1989].

An alternative approach is to allow direct access
to some specific parts of the abstract program
processing machine’s state. The technique is
called introspection, or reflection. As a con-
sequence, it is not necessary to model at the
meta-level the whole computing process, but
only those of its parts which are to be modified.
The approach is not entirely new [Friedman and
Wand, 1984], but not so much attention has been
paid to it as to meta-interpretation. Using intro-
spection in logic programming allows explicit
representation of knowledge about communi-
cation among logic databases at the meta-level,
while the solution of the problem is defined at
the object (program) level.

We shall present our proposal how to extend a
logic program with a possibility of representing
parts of it at several levels. To illustrate these
ideas, we show how multilevel programming
can be used to model a method for version se-
lection. Our goal in this paper is not to present
the method for version selection [Névrat and
Bielikovd, 1996], but rather to describe a rep-
resentation framework for such a kind of engi-
neering technique in general, and the method
of version selection in particular. Our ap-
proach aims to achieve the following proper-
ties regarding version selection: (1) recogni-
tion of hierarchical levels within the relevant
knowledge, (2) structuralisation of knowledge
which enables better understanding, readabil-
ity and maintenance, (3) extensibility (possi-
bly to improve version selection as the field
evolves), (4) easy combining of different tech-
niques by specifying alternative modules and
meta-modules which control their use in the se-
lection process, and (5) development and ex-
perimental testing of new approaches (e.g., new
heuristic functions which are domain depen-
dent).

The paper is organized as follows. In Section 2,
we give an overview of a multilevel logic pro-
gramming. In Section 3, we describe real life
example of the multilevel programming appli-
cation. We introduce the sample, i.e. application
area which is version selection together with
an outline of our approach to version selection.
Next we describe the main components in the
version selection process in terms of modules
at multiple levels. Representation of several

modules is described in more detail. We show
how modules can be combined together. The
paper closes with our conclusions which also
summarize the results.

2. Reflection and multilevel logic
programming

As we mentioned above, our research has been
motivated by the need to extend and conve-
niently represent a particular software engineer-
ing technique. We concentrate on the way how
to represent different approaches in a uniform
(logic) formalism and how to combine them.
A logic formalism, like any declarative formal-
ism in general, is an excellent tool to express
algorithmic knowledge at a very high level of
abstraction. It is convenient for the developer,
because it aids in reducing the descriptive com-
plexity, it supports rapid prototyping, it makes
future modifications easier etc. We have cho-
sen Prolog as the particular logic language to
provide an evidence of suitability in this kind
of tasks, because it is widely known and used
[Rosenman and Gero, 1994]. The choice of
Prolog is further supported by the possibility of
meta-programming in Prolog.

Our approach is based on the reflection tech-
nique as elaborated by Lamma, Mello, and Na-
tali [Lamma et al, 1991] who used reflection for
combining Prolog databases through contexts
and inheritance.

Rather than (meta-) interpreting the overall be-
haviour of an abstract machine, some parts of
the machine’s state are made available to be
accessed and manipulated directly through re-
flection mechanism. The reflection mechanism
switches the computation from the (object-)
level to the introspective (meta-) level domain
(upward reflection) and vice versa (downward
reflection) [Lamma et al, 1991].

The object level machine’s visible state ought
to be chosen to suit needs of the problem do-
main. Let us assume the visible state is the
triplet (CM, CG,AUX), where CM is the cur-
rent module, CG is the current (sub-)goal, and
AUX is a term representing auxiliary informa-
tion. This is one particular choice of the level
of abstraction for the reflective operations.

Both levels of a program are represented in the
same way - as modules. In fact, this allows
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Fig. 1. Proof of a goal in the module M.

us to apply the reflection concept to a program
designed into many levels, as we shall show
later. Connection between an object level mod-
ule M, and a meta-level module Meta is defined
by the relation connect. If connect(Meta) can
be proved in module M then module Meta is a
meta-module of M.

Now, let us assume the computation takes place
at the object level in a module M. When a mod-
ule Meta becomes a meta-level module of M
by proving the goal connect(Meta), there is an
implicit upward reflection. An attempt to prove
ref lect up([M, Goal, AUX]) shifts the compu-
tation to the meta-level where the visible state
of the abstract machine is explicitly available
through the triplet. The attempt can either suc-
ceed or fail. If it fails, the failure is reported in
the object level in the usual way.

When the computation takes place at the meta-
level, an explicit downward reflection is at-
tempted by the goal ref lect_down([M1, Goall,
AUX1]) (see Figure 1). This causes an object
level computation to start in the module M1
aiming to prove the goal Goall. Again, the at-
tempt can either succeed or fail, similarly to the
above case. If it succeeds, new visible state is
reflected up by an implicit upward reflection.
In such a way, results of the object level com-
putation become available at the meta-level. If
it fails, the failure is reported to ref lect_up goal
at the meta-level which fails, too.

We have deliberately not explained the role of
the third part AUX of the visible state. Syntacti-
cally, it is a term to be processed at a meta-level.
Semantically, the choice is left open to be de-
termined in accordance with the application do-
main of problems being solved [Bielikovd and
Névrat, 1997].

Strictly speaking, we have discussed only two
level logic programs so far. However, it is ap-
parent that the concept of introducing a meta-
level to a given program level can be applied
to the meta-level as well, yielding meta-meta-
level, etc. While conceptually this appealing
idea is quite simple, there are certain more prac-
tical issues which require careful consideration.
We wish to underline that what we are facing at
this stage is in some sense a design problem. It
requires design decisions, based on considera-
tions of various options. The problem may not
have a unique solution.

A multilevel logic (Prolog) program is a mod-
ular logic (Prolog) program in which modules
can be mutually interconnected by defining the
relation connect. The relation connect is used
to establish program levels. At the lowest (i
object, or program) level, program modules are
defined. At higher levels, modules are defined
which determine the way goal is proved in pro-
gram modules. Both, program and meta-level
modules, are represented in the same way, and
therefore further meta-levels are naturally pos-
sible.

In an appendix we present inference rules which
are used by the abstract machine to process a
multilevel logic program. They serve as a basis
for implementing a multilevel Prolog program
interpreter. The proof at the meta-level has the
same procedural semantics as at the program
level. If a module M is connected to some other
module, upward reflection occurs to next higher
level. In particular, upward reflection can occur
during an attempt to satisfy a goal reflect_down,
too. However, if there is connected module to
a given module during an attempt to satisfy a
goal reflect_down, reflection occurs towards a
level determined by a parameter of the term re-
flect_down.
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3. An application of multilevel logic
programming

Multilevel logic programming can be used with
advantage whenever problem domain knowl-
edge is available. After careful analysis, sev-
eral layers of knowledge can usually be rec-
ognized. There is knowledge of the problem
itself. There is also another kind of knowl-
edge which describes structure and properties
of objects, relations, and ways of solving prob-
lems. This is meta-knowledge. It can and, in
fact, it should be structured just as any other
knowledge. Knowledge is better captured, un-
derstood, manipulated, and applied if structured
into interconnected units. But supposing e.g.,
there are several problem solving methods de-
fined at the meta-level, it is very likely that
there is also another kind of knowledge avail-
able, viz. the one evaluating their respective
suitability, applicability, etc. This is already
a meta-meta-level knowledge. It can be ex-
tremely useful in deciding which method to
apply to a particular problem instance. For
example, the Specification-Conceptualization-
Operationalization method [Akkermans et al,
1993| is the method for constructing problem
solving methods, thus being a meta-meta-know-
ledge. Control knowledge which is used to de-
termine how inferences are sequenced is also
to be regarded as one level higher than meta-
knowledge. As another example [Ohsuga, 1993]
modelling is presented as a basis for problem
solving, placing it on the meta-meta-level. This
knowledge can be used to build problem solving
methods (meta-level) for a particular problem
(object level).

It is quite clear that structuring of knowledge
according to such content, i.e. semantically re-
lated hierarchies can be potentially at least as
fruitful as those, more syntactically oriented ap-
proaches.

3.1. Application area

The problem of version selection has been a
topic of much interest in the recent research
within the area of software configuration man-
agement. Solving it is important for achiev-
ing quality of the configuration being built,

but it also influences efficiency of the pro-
cess of building a software system configuration
[Schamp and Owens, 1997].

An approach often used to identify versions of
software components is the use of attribution
models where a version is described implic-
itly by stating properties which it should have
[Cohen et al, 1988, Estublier, 1992, Leblang,
1994, Zeller and Snelting, 1997, Sommerville
and Dean, 1996|. In a change oriented version
model [Lie et al, 1989] the options play a role
similar to the attributes.

A frequently used approach to version selection
is to use conditions restricting properties of ver-
sions [Tichy, 1988, Cohen et al, 1988, Estublier,
1992]. Conditions are often represented by a
logic expression. For example, an expression

(operating system = DOS A
communication language = Slovak)

identifies all such versions which can run un-
der DOS operating system and the communica-
tion with the user is in Slovak language. The
ADELE system [Estublier, 1992] is an example
illustrating this view of version selection. The
language of logic expressions is sometimes en-
hanced by allowing defaults and conditional se-
lections, and by introducing three-valued logic
[Nicklin, 1991] (i.e., true, false, undefined).

For modelling version sets, Zeller and Snelting
[Zeller and Snelting, 1997] propose a unified
approach based on feature logic. Version sets
are identified by their features, i.e. a boolean
expression over (name : value) attributes. This
approach subsumes all the above mentioned ap-
proaches to identify versions of components.

In another work [Bernard et al, 1987], version
selection is based on logical conditions referring
to values of attributes, too. Here, preferences
can be specified as well. Preferences are in fact
logical conditions which act as filters.

Another frequently used approach is to use
rules. Forexample in the system DSEE [Leblang
and Chase, 1987] there is a defined set of rules
which are interpreted sequentially until the com-
ponent being sought is selected. The language
for writing rules allows defining default rules,
dynamic rules (e.g., select the most recent ver-
sion) and conditional rules (if-then). Despite
the fact that such kinds of rules allow powerful
means of selection, their power is limited in the
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DSEE system by the fact that the set of attributes
is set in advance.

3.2. Outline of our approach to version
selection

When either more than one version complies
with the requirements, or none of the versions
does, difficulties in the process of configuration
building can arise. When analyzing the problem
of version selection, there are many similarities
to be observed to problems approached by ar-
tificial intelligence techniques. Specifically, to
evaluate the alternatives a heuristic information
can be employed.

We express requirements for version selection
as a sequence of heuristic functions which re-
duce the set of suitable versions. A relative
importance of a given evaluating criterion can
be expressed by modifying an order in which
the heuristic functions are applied.

We have divided the requirements for version
selection into two parts:

e a necessary selection condition must be
satisfied by every version selected as a po-
tential candidate. The condition can be ex-
pressed by a heuristic function which maps
a set of all versions into a set of admissible
versions,

e a suitability selection condition is used in
step by step reduction of the set of ad-
missible versions aiming to select a single
version. The condition is represented by a
sequence of heuristic functions.

One example of requirements for version selec-
tion may be as follows:

e The necessary selection condition
hg : operating_system = DOS A commu-
nication_language = Slovak

e The suitability selection condition
hq : problem_type = design V algorithm
= simple
hy : programming_language = Prolog
hs : prefer version with a smaller num-
ber of defined architectural relations with
other components

The heuristic functions represent knowledge
about the degree of suitability of the respective
versions. They refer to properties of versions
as defined by their attributes. A heuristic func-
tion can often be evaluated separately for each
version.

It can have the form h : V — {satisfies,
does_not_satisfy }, where V is a set of versions
and £ is a heuristic function.

Heuristic functions can also express knowledge
captured during the software system develop-
ment. Examples of such knowledge are

e prefer a version with the greatest number
of defined attributes,

e prefer a version included in the greatest
number of formed configurations,

e prefer a version which is involved in the
least number of architectural relations with
other components (in the context of the
whole configuration),

e prefer a version which is involved in the
least number of architectural relations with
components which have not been included
in the configuration being built.

The heuristics for version selection described
above, and other similar ones cannot be de-
scribed by a function of the form 4 : V —
{ satisf ies, does_not_satisf y} (which can be ex-
pressed by a logic expression, with atoms repre-
senting relations over attributes of components).
These are the properties of versions which can
only be investigated on sets of versions as a
whole. Therefore we define heuristic functions
to be of the form 4 : 2V — 2V, where V is a set
of versions and % is a heuristic function.

Let us sketch the approach to version selection
[Bielikové and Navrat, 1996] which makes use
of such heuristic functions. First, the set of all
versions will be reduced by applying the neces-
sary selection condition into a set of admissible
versions. Next, version selection continues as a
successive application of the heuristic functions
from the suitability selection condition, serving
as filters until all the functions in the sequence
are exhausted or until by applying one of them,
yields one element set, the element being the
desired version. If, after applying all the filters
we get a set of more then one version, the final



120

Multilevel Logic Programming for Software Engineering

choice must be made in a different way. Some
default procedure must be applied e.g., (i) selec-
tion based on an order of occurence, (ii) random
selection, (iii) selection based on a decision of
the software engineer. Even in this case the set
may indeed become reduced in that the number
of elements is smaller than in the original set
of all versions. Of course, it depends on the
heuristic functions and on actual properties of
versions.

The method for version selection

Input to the method is:

e aset M of all available versions
e requirements on version selection

— anecessary selection condition repre-
sented by a heuristic function kg,

— a suitability selection condition rep-
resented by a sequence of heuristic
functions [h1,hy, . .., h,], where Bl
MM 0<ign

Output from the method is “the most suitable”
version v, (v € M), or failure.

The method can be described by the following
steps:

1. Apply the necessary selection condition
to reduce the set M of all available ver-
sions into a set of admissible versions:
suity = ho(M).

If suity = () then halt, the method has not
been successful.

If suity = {v}, i.e. the set of admissi-
ble versions has exactly one element then
halt, the method has been successful and
the output is the version v.

Otherwise, continue.

2. Apply the heuristic functions [hy, ks, . . .,
hy) in the order of their appearance to the
actual set of admissible versions:

(a) ji=1
(b) apply the heuristic function (filter) A;
to the set suif;_; forming a set
. hj(Sui[j_1), if hj(suitj_]_)#@
Sulfj= : ;
suit;_1, otherwise

(¢) If suit; = {v}, i.e. the actual set of ad-
missible versions has exactly one ele-
ment then halt, the method has been
successful and the output is the ver-
sion v.

(d) If j = n then halt, the method has
been only partly successful so far. To
determine its output, a version v €
suity shall be found using some de-
fault way.

(e) j:=j+ 1 and continue with 2b.

3.3. Modularization of knowledge related
to version selection

Here, we try to identify the main layers (mod-
ules) of the knowledge hierarchy of version se-
lection. We follow the method for version se-
lection described above.

In describing the particular layers, we start with
the software components (versions) which are
to be considered the lowest level, i.e. level 1.

At the level 2 there are strategies of retrieving
attribute’s value along with determining what
kind of attribute it is. The way attribute’s value
is retrieved depends on its nature. To retrieve,
we can make use of an inheritance of values in
a hierarchy of elements of a software system. A
reasonable hierarchy of elements of a software
system could be based on notions of family—
variani—revision. Another hierarchy is defined
by such architectural relations as includes, de-
pends_on. Depending on the nature of a par-
ticular attribute, various ways of inheritance
could be used. For example, attributes date,
time_of _creation should be defined for each soft-
ware component. Therefore, inheriting such at-
tributes does not make sense. Other attributes,
such as author, operating_system, depends_on,
includes can be inherited through unification.
Value of an attribute of an element above in
the hierarchy can be inherited when the present
component does not have a value defined for that
attribute. Still another way is an unrestricted in-
heritance.

A strategy of retrieving attribute’s value com-
prises also the way undefined software compo-
nent attributes are interpreted. One possibility
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Fig. 2. Version sclection knowledge hierarchy.

is to assume that the component does not de-
pend on attribute’s value when it is not defined.
Such a component must satisfy any elementary
condition referring to the attribute with the un-
defined value.

At the level 2, there are also heuristic functions.
Heuristic functions represent our knowledge of
versions’ properties. Moreover, the properties
can be investigated for a set of versions as a
whole. They serve as a selection condition.
Expressing the condition in form of a logic ex-
pression is just one possible alternative.

The next level, i.e. level 3 comprises defini-
tions how each heuristic function is to be eval-
vated. Actual evaluation depends on a ’type’
of the heuristic function. For example, when
the heuristic function is represented by a logic
expression where atoms denote relations over
attributes of particular versions it can be ap-
plied separately to each element of the actual
set of versions.

Method for version selection is represented at
the level 4. At this level the way of heuristic
function application is defined. Here, alterna-
tive methods for version selection can be repre-
sented as well.

The version selection knowledge hierarchy with
its modules outlined above can be depicted as
in Figure 2. Our approach which is based on
the use of multilevel logic programs, allows to
represent modules as well as relations between
them by means of a uniform formalism (i.e.,
logic).

3.4. Representation of the method for
version selection by a multilevel logic
program

In order to present the way the system of ver-
sion selection is represented, modules belong-
ing to the knowledge hierarchy defined above
are briefly described. Their representation in
multilevel Prolog is illustrated.

The above described method for version selec-
tion consists basically of two steps: application
of a necessary selection condition, and appli-
cation of a suitability selection condition. The
method for version selection (level 4) can be
expresed in Prolog as follows.

Version selection is attempted by writing a goal

select_best([Necessary.cond,
Suitability.cond], Versions, Best).

An attempt to satisfy such a goal takes place
within clauses defined in the module version se-
lection. Input to the method is represented by

the first and second parameters. Third (output)
parameter is the selected version.

version_selection ismod
{ select best([Necessary. cond,
Suitability cond], Versions, Best):-
% the necessary condition application
test_cond(Necessary_cond,
Versions, OK Versions),
% the suitability selection
% condition application
select best el(Suitability cond,
OK_Versions, OK Versions, Best).
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% empty actual set of possible versions

% after application of the last filter,

% i.e. by application of the actual filter

% all versions have been deleted and

% the filter is the last one in the suitability
% selection condition

% —> successively return elements from
% previous set of possible versions
select best el([], Prev_set,

[], Best):-

default selection(Prev_set, Best).

% empty actual set of possible versions
% —> apply the next filter to the previous
% set of possible versions
select_best_el([Filterl | Rest],
Prev_set, [], Best):-~
test cond(Filterl, Prev_set,
Actual_set),
select best_el(Rest, Prev set,
Actual set, Best).

%0 one version in actual set of possible

% versions

% —> this is the best version
select_best_el(_, _, [One], One).

% recently used filter is the last and

% the actual set of possible versions

% contains more than one element

% —> successively return elements from

% actual set of possible versions

% by default selection

select_best el([], _, [Versionl,

Version2 | Rest], Best):-
default_selection([Versionl,
Version2 | Rest], Best).

% else apply the next filter

select best_el([Filterl | Rest],
Actual set, Best):-
test_cond(Filterl, Actual set,
New set),

select best_el(Rest, Actual set,
New set, Best).

% if the previous set of possible versions is
% not equal actual set

% —> successively return clements from
% difference as alternative solution by

% default selection

select best_el(_, Prev_ set,
Actual set, Best):-

S

diff(Prev_set, Actual set,
List_of best),
default_selection(List_offbest,
Best) }.

The actual selection of the “best” version is
within the reponsibility of the predicate se-
lect best_el/4. It uses an auxiliary parameter
(the second one) that represents a set of ver-
sions after the last but one reduction (i.e., an
application of a filter). This is required in case
the last applied filter rejects all the versions.

The predicate select_best_el/4 can be satisfied
repeatedly. When backtracking, it returns sub-
sequently less suitable versions, as long as they
exist. As a consequence, the predicate se-
lect_best/3 is repeatedly satisified, too, as long
as there are versions not selected so far that sat-
isfy the necessary selection condition.

In case that an application of all the filters results
in a set of more than one admissible version,
some default method is applied. The simplest
one would be selection according to the order
in which they are written in the list that repre-
sents the set. In that case the method would be
implemented by a predicate member /2. Other
methods are also possible, such as random se-
lection or selection in interaction with software
engineer.

The default method for version selection is de-
fined at a meta-level. In such a way, different
methods can be applied according to an actual
requirement simply by switching the connection
between the level of version selection and the
meta-level of its defaults. The latter level can
be defined as follows:

meta_ order selection ismod
{ reflect up([_, default selection(List,
Element), AUX]):-
reflect_down([methods of selection,
member (Element,List),AUX]) }.

meta question selection ismod
{ reflect_up([_, default selection(List,
Element), AUX]):-
reflect_down([methods of selection,

guestion(List, Element), AUX]) }.

methods_of selection ismod
{ member(x, [X]| 1).
member (X, [_|R]):- member(X, R).

%order selection
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question(List, Element):- ..... % logic expression;
$selection by a question }. % evaluation is defined at object level
% (module test_elem cond)

We present the module for selection accord- reflect_up([_, test cond(Cond, W, OK_N),
ing to the order (module meta_order_selection) AUX]):-
and the module for selection in interaction with is_logic_expression(Cond), !,
software engineer (module meta_question _sele- findall(E, (member(E, N), reflect_down
ction). Both modules use predicates defined in ([test_elem cond, test_cond(Cond, E),
the module methods_of selection. AUX])), OK N).

In this case, the relation between the module
meta_order_selection, and the module meta_ques-
tion_selection represents a simple procedure call.
The version_selection module is connected with
one of these modules by the relation connect.
When attempting to satisfy a goal, there occurs a
reflection and a goal with the functor ref lect_up
is proved as described in Figure 3. In the above
case, there occurs a reflection upwards to the
level where knowledge on how to select is writ-
ten, i.e. to the meta_random_selection module.

in this case a heuristic function is
defined only at the meta-level,

i.e. at the object level no
computation is needed

of df P dP o

downward reflection is done implicitly

% after success of reflect up
reflect_up([_, test cond(max_def attr, N,
OK_N), _]):-

obtain_num of def attr(N, List of num),

max(List_of num, Max),

find(N, Max, OK N).
Now let us turn our attention to implement- —  ......
ing heuristic functions evaluation (level 3). A % similarly for other heuristic functions }.
heuristic function is applied by writing a goal
test_cond/3 (cf. module version_selection above).
Definition of the predicate test_cond/3 should
be separated, however, mainly because there is
a possibility that heuristic functions are of var-

ious kinds requiring different ways of process- ) _ _ _
ing. An attempt to satisfy a goal An evaluation of a heuristic function written as

a logic expression is implemented by a simple
interpreter of logic expressions:

This approach has an advantage in separating
definitions of heuristic functions from their ap-
plications. They can easily be accessed, modi-
fied, or enhanced.

test_cond(Cond, Versions, OK.Versions).

causes always an upward reflection to a meta-
level represented by a module meta_test_ cond.  .ogt elem cond ismod
Here a decision is made about the way a filter

: ) ; g HE S { test cond(true, ).
is applied according to what kind of filter it is.

test cond(false, ):— !, fail.

All this requires, however, that a connection has test_cond((Cl and C2), N)i-

been established between the program level rep- test_cond(Cl, N) , test cond(C2, N).

resented by the module version_selection and test_cond((Cl or €2), N):-

the above mentioned meta-level. test_cond(Cl, N) ; test cond(C2, N).
test_cond(not(C), N):-

meta_test cond ismod test_cond(C, N), !, fail.

{ % heuristic function represented by a test cond(not(C), ).

reflect_up(...default_selection...)

[
‘ version_selection

‘ meta_random_selection

N

connect T

\ reflect_down(...)

Goal
select_best(...)

r methods_of selection

Fig. 3. Proof of the goal select_best.
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test_cond(Elem C, N):-
Elem C =.. [Rel, Attr,
obtain_value of attr(N, Attr, Valuel),
compare(Rel, Valuel, Value) }.

vValue],

The way of retrieving attribute’s value is defined
in the knowledge hierarchy at the level 2 along
with determining what kind of attribute it is. Itis
supposed that each entity of a software system,
be it a family, a variant, or a revision, is repre-
sented in a separate module (level 1). Attribute
named attr with value val is written as a fact
with a functor atfr/] and a single parameter val.
In a similar way, relations in a software system
are represented by facts with relation names as
functors, and with single parameters denoting
entities being related to.

meta_inheritance ismed
{ reflect_up([_, obtain value of attr(N,
Attr, val), AUX]):-
attr type -> non_inherit(Attr),!,
Atom =.. [Attr, Val],
reflect down([N, Atom, AUX]).
reflect up([_, obtain_value of attr(N,
Attr, Val), AUX]):-

attr_type -> overwrite inherit(Attr),!,

ancestor (N, Ancestor),

[Attr, _1,
is_clause(Ancestor, Str_ template),!,
Atom =: s [Attr, Val],
reflect_down([Ancestor, Atom, AUX]).

Str template =..

reflect_up([_, obtain_value of attr(N,
Attr, Val), AUX]):-
attr_type -> full inherit(Attr),!,
ancestor (N, Ancestor),
Atom =.. [Attr, Val],
reflect_down([Ancestor, Atom, AUX]).

ancestor (N, N).

ancestor (N, Ancestor):-
ancestor rel (N, Version),
ancestor(Version, Ancestor) }.

attr type ismod
{ non_inherit(date).
non_ inherit(time).
overwrite inherit(author).
overwrite_inherit(op syst).
overwrite_inherit(depends on).
overwrite inherit(consist of).

full inherit(project).
full inherit(created from).

In the example above, standard Prolog mech-
anism is used to retrieve values of attributes.
‘When there occurs reflection to a module which
defines properties of the module, it may very
well happen that an attempt to retrieve a value
of an attribute with an undefined value fails.

Our solution is the following: for all the mod-
ules defining properties of elements of a soft-
ware system, we define a connection to a meta-
level meta_solve which determines the way val-
ues of attributes are retrieved.

meta_solve ismod
{ reflect_up([Module, Goal, AUX]):-
reflect_down([Module, Goal, AUX]).
reflect_up([Module, Goal, AUX]):-
Goal =.. [Attr, undefined] }.

It is supposed, as we stated above, that the at-
tribute named attr with value val is written as
a fact with a functor attr/1 and a single pa-
rameter val. The first clause attempts to re-
trieve the value in the defined Module. When it
fails, the attribute value is not defined (the value
undef ined is returned).

Furthermore, it is necessary to include into eval-
uation the specific knowledge that an unde-
fined attribute satisfies any condition (cf. meta-
module meta_compare, predicate compare/3).

meta ccmpare ismod
{ reflect_up([_, compare( ,
undefined, _), _]):- !.
reflect up([M, compare(Rel, Vall,
Val), AUX]):-
reflect down([M, compare(Rel,

Vall, val), AUX]) }.

Predicate compare/3 is supposed to be defined -
in the program module which is connected to
the module meta_compare (e.g., in the module
test_elem_cond defined above).

4. Conclusions

We have presented our proposal of a multilevel
logic programming technique. Our approach is



Multilevel Logic Programming for Software Engineering

125

based on the reflection technique [Lamma et al,
1991]. The technique has been implemented in
Prolog. The prototype is meta-interpreted.

The proposal of a multilevel logic programming
technique falls into the area of the methods of
structuring of logic programs [Bugliesi et al,
1994]. Program can be divided into modules.
Moreover, it can be organized into levels. Di-
viding programs into modules is the well known
technique which helps cope with the complex-
ity of the problem. Frequently, development of
modules refers to levels of abstraction.

Organizing programs into (meta-)levels refers
to knowledge content. A need to structure
programming knowledge according not only to
abstraction and generality levels, but to meta-
levels as well has been stressed by Navrat [Navrat,
1996]. The fact that meta-knowledge can also
be written in modules aids to modifiability and
reuse. Meta-level can be used to write a mod-
ule defining various ways of processing goals
from the object level. Meta-meta-level would
be suitable to write a module defining method
of selecting the proper way of processing.

From a more general perspective, the role of
meta-knowledge in the context of knowledge
structuring was recognized a relatively long
time ago. For example, Coyne and Gero [Coyne
and Gero, 1986] proposed to describe domain
knowledge by grammars and noted that control
knowledge could be made explicit in the form
of meta-grammars.

Our approach allows also to connect an object
level program to several modules at the same
meta-level. Similar question was tackled by
Sterling [Sterling and Beer, 1989] who proposed
two strategies of combining meta-interpreters.
In the paper, we have described application of
multilevel programming to the problem of ver-
sion selection. Another application that we at-
tempted was for representation of a rule-based
query optimizer for object-oriented databases
[Bielikova et al, 1997]. Multilevel logic pro-
gramming is used to model both query rewriting
and planning, as well as search strategies.

Appendix

Inference rules used by an abstract
machine to process a multilevel logic
program

Let P be a multilevel logic program, G be a
conjunctive formula, A, A’ be atomic formulae,
T, 3, 0 be substitutions, ¢ be an empty substi-
tution. Composition of two substitutions is de-
noted by concatenation. Gt denotes an applica-
tion of the substitution = to G. Let mgu(A,A")
denote the most general unifier of two atomic
formulae A and A’. Let mod(P) denote a set of
names of modules of program P and [M| denote
a set of clauses defined in module M.

A goal G is provable in a multilevel logic pro-
gram P in a module named M with substitu-
tion 7 if there exists a proof of the formula
P t(M,G,[]).

Proof of a formula G in a module M of a
multilevel logic program P can be written as
a sequence of formulae P + ;(M;, G;,AUX;),
where M; is the name of a module in program
P, G; is a goal, AUX; is a term, and T; is a
substitution. Initially, we start from an empty
auxiliary memory AUX, i.e. AUX; = []. Next
formula of a proof is obtained by applying a
suitable inference rule. The goal is proved if a
formula is inferred with true in place of a goal
after a finite number of steps.

The inference rules are written in form
premises

conclusion
Inference rules:

1. Truel

PF e(M, true, AUX)
2. True II
P+ e(M, true)
3. Conjunction I

P+ ©(M,A,AUX), P+ 8(M,Gt,AUX)
P+ (M, (A,G),AUX)

4. Conjunction IT
PFt(M,A),PF 6(M,GT)
P 16(M,(A,G))
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5. Atomic formula I (no reflection)
M € mod(P),A’ : —G € M|,
T = mgu(A,A'),
P 8(M,Gr)
P t6(M,A)

6. Atomic formula II (upward reflection)

Meta € mod(P),M € mod(P),
P o(M, connect(Meta)),
A': —G € |Metal,
T € mgu(ref lect up([M,A,AUX]),A’),
P+ 8(Metao, Gt,AUX1)

Pt t80(M,A,AUX)

7. Atomic formula III (connect not defined)

M € mod(P),
~(Meta € mod(P) A
P - o(M, connect(Meta))),
A -G e M|,
v = mgu(A,A")
P+ 8(M,Gt,AUX)

P+ 18(M,A,AUX)

8. Atomic formulalV (downward reflection)

Meta € mod(P),
—(Metal € mod(P) A

P o(Meta, connect(Metal))),
M € mod(P),A" : -G € |M]|,

T = mgu(A,A’),

P (M Gt AUX)
PHtd(Meta,
ref lect_down([M,A,AUX]),AUX1)

The rules 2, 4, 5 define procedural semantics of
a modular logic program. These rules are nec-
essary in order to determine which module is a
meta-module with respect to a given program
module (the relation connect).
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