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Parallelism and non-determinism are fundamental con-
cepts in the process algebra theory. Combining them
with A-calculus can enlighten the theory of higher-order
process algebras. In recent papers an analysis of a
A-calculus containing parallel and non-deterministic op-
erators was carried on by means of a type assignment
system with intersection and union types. The present
paper answers the problem of determining principal types
for this system.

1. Introduction

Type assignment systems are formal systems to
derive types (if any) for untyped terms. In the
context of programming languages theory, hav-
ing a type assignment system enables one to
check the type (partial specification) of a pro-
gram after its development. This way of deal-
ing with types has several advantages in practice
and it is used in powerful functional program-
ming languages, notably ML and MIRANDA.
A problem which is worth addressing when we
deal with type assignment systems, is definitely
that of the principal typing, i.e. the problem of
looking for a type (the principal type-scheme),
if any, from which all the types that can be in-
ferred for a given term can be derived by means
of suitable operations. Principal typings lie at
the core of any practical type-synthesis semi-
algorithm.

For Curry’s basic functionality theory for A-
calculus [9] this problem was addressed by Hind-
ley in [14]. For this system there exists a pro-
cedure to find the principal type scheme of a

term, if any, and derive all its types by means of
a single operation, namely substitution.

In [5] Curry’s type assignment system was ex-
tended by adding a constant w as a universal
type and a new constructor ‘A’ for the inter-
section of two types. Type assignment systems
with intersection types have been widely inves-
tigated in literature, since they enable to pre-
cisely characterize relevant syntactical property
of the A-calculus, as well as many of its mod-
els [5, 7). In systems with intersection types,
the presence of the A type constructor makes
the principal typing problem much more dif-
ficult to solve than in the basic functionality
theory. In [8, 18, 3] the principal type scheme
problem for systems with intersection types was
solved making an essential use of the notion of
approximant of a term. There are three opera-
tions devised to derive all possible types from
the principal type scheme, that is substitution,
expansion and lifting.

In [15] a theory with both intersection and poly-
morphic types was introduced with the aim
of widening the investigation of filter models
for the A-calculus, filter models being defined
through systems with intersection types. The
principal typing for the system of [15] was
presented in [16|, where a relation on pairs
(basis;type) is used in order to overcome tech
nical difficulties of the expansion operation.

All the systems mentioned above deal with A-
terms. Intersection types, however, can be
of much help also for the investigation of the
functional properties, as well as the models,
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of concurrent functional languages. The par-
allel and non-deterministic A-calculus is an ex-
tension of the standard A-calculus with a non-
deterministic choice operator + and a paral-
lel operator || [10]. Its theoretical significance
in Computer Science is that it allows to carry
out a fine tuned analysis of the interaction be-
tween functional and parallel primitives in view
of their possible integration. The approach
taken in [10] is that of considering the non-
deterministic choice between two processes as
their meet and the parallel of two processes as
their join. This implies that both M and N must
have a property to assure that also M + N has it,
while M||N has a property as soon as either M
or N has it.

The parallel and non-deterministic A-calculus
has been thoroughly investigated in the past
years, both syntactically and semantically, by
using the finitary logical description of its se-
mantics in terms of intersection and union types
111, 12, 2, 13]. Intersection and union types
dually reflect the conjunctive and disjunctive
interpretations of || and +, respectively. This
paper can be viewed as part of the above men-
tioned investigation, since it addresses the issue
of principal typings for the parallel and non-
deterministic A-calculus. An essential use will
be done of the notion of approximant and its
properties, as described in [12]. The approach
of [16] will be taken to derive all possible types
of a term from the principal one.

2. The parallel and non-deterministic
A-calculus

As in [12], let A be the set of pure A-terms
enriched with the binary operators + and ||,
that is the set of expressions generated by the
following grammar:

M =X | AXM | MM | M +M | M||M,

where X ranges over a denumerable set of term-
variables. As usual, FV(M) is the set of vari-
ables which occur free in M. We consider terms
modulo a-conversion. To simplify the notation,
we assume that the abstraction and the applica-
tion take precedence over + and ||.

On A 4| We define a reduction relation, which
is an extension of the B-reduction of classical

A-calculus. More precisely, we make + and
|| asynchronous evaluators of their arguments.
Moreover, since every term in A +|| Tepresents
a function, the application of M op N (op be-
ing + or ||) to L reduces to ML op NL (rules
(+app) and (||app)). This reduction relation was
already introduced in [12].

Definition 2.1. The relation — is the least
binary relation on A || satisfying:

(B)  (AxM)N — M|[N/x|

(u) M—N=IM— LN

(v) M — N = ML — NL

() M — N = AxM — Ax.N

M+N-—-M4+N

!

(+a) MﬁM:}{N+M—>N+M’
/ M|IN — M'||N

() M=M= Ny — N

(+app) (M—i—N)L — ML + NL
(llapp) (M||N)L — MLI||NL.

—» will denote the reflexive and transitive clo-
sure of —, while = its reflexive, transitive and
symmetric closure.

It turns out that + and || behave in the same
way with respect to —. The difference between
them is established by the order we will consider
between approximate normal forms. Let us first
define the set of approximate normal forms by
extending the standard notion [4](p.366) with
terms containing + and ||.

Definition 2.2. (/12]) Let AL q be the lan-
guage obtained from Ay by adding the con-
stant Q. The set of approximate normal forms
A C Ay q is the least one such that:

1. Qe A;

2. Ay, LAEA = XA A A (n20);
3Ac A = Ax.Ac A

4. A, Ay €A = A +43,A |4 € A

We define a preorder relation on approximate
normal forms which generalizes the classical
one taking into account the intended meanings
of + as meet and of || as join. Moreover, ac-
cording to this preorder, an n-redex is always
less than its contractum.
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Definition 2.3. (/12]) Over the set A we de-
fine T as the least preorder which makes A into
a distributive lattice with + as meet, || as join
and Q as bottom, and such that:

1. Ax.Q L Q;

22 ACA = Ax. AC AxA';

3.4 C A, Ay C A, = xAp.. A, C
XA i

4. Ax.(A||A)) C Ax. Al|Ax.A”;

5. Ay.xAq.. Ay CxAy.. Ay, ify ¢ FV(A;)
jorl<i=n

A= A'isshortforA C A’and A’ C A. Cis
a preorder relation on A since A < A. The set
A becomes a lattice only after taking the quo-
tient by the equivalence relation induced by the
preorder L.

Usually [4](p-366), to each pure A-term M we
associate, an approximate normal form ¢(M)
obtained by substituting € for all subterms
which are not head normal forms. The present
definition generalizes the standard one simply
by making ¢( ) distribute with respect to + and

Definition 2.4. The map ¢: Ay — A is de-
fined as follows:

(i) p(Axy. .. xp XMy ... Mpy)
= AX1 ... Xpxp(M1) ... ¢(Mpn);

(i) $(M +N) = (M) + ¢(N);
(iii) ¢(MIIN) = ¢(M)||¢(N);
(iv) ¢p(M) = Q, otherwise.

Definition 2.5. Let M € Ay, then the set
A(M) of approximants of M is defined by:

AM)={Aec A|3IM =MA = p(M')}.
For example, let us consider the terms F0 and
G0, where

F = O(Afx.(x + f (Succx))),
G = O(Af x.(x]|f (Succ x))),

® = (Azx.x(zzx))(Azx.x(zzx)) is the Turing
fixed-point combinator, 0 and Succ are the zero
and successor of Church numerals, respectively.
Let n be the Church numeral for the natural
number #, then it is easy to check that, for any
n!

FO—»0+1+...4+n+ F(Succn).

Sowe have ¢(0+1+...+n+F(Succn)) =
0+1+...+n+Q =< Q,being + the meet.
We get A(F0) = {Q}.
On the other hand .4(G0) is infinite and it con-
tains all the approximate normal forms of the
shape

oljt]l... Infle,

foralln > 0.

The present definition of the sets of approxi-
mants simplifies that of [12], but they can be
easily shown to be equivalent.

3. Atype assignment system for Ao

Our type assignment system is obtained by ex-
tending the standard Curry’s system for simple
types. We enrich the type syntax by adding the
universal type , and the intersection and union
type constructors.

Definition 3.1. Let Var be a countable set of
type-variables and w be a type constant.
The set of types Ty, is defined as the smallest

set satisfying:
1. we Try; Varc TA+H;

2. 0,TteTy = O0—T, OAT, OVTE

+|
TAH\'

In the following the symbol & will be used to
denote a generic element of Var. Symbols like

[ 2

a, 3, u, p, o and T will range over TA+|\' —
will be assumed to associate to the right, and
‘A’ to bind stronger than ‘—’. The notation
Aie; i will be short for o;; A ... A Oy where

I={i1,... i}

Types are thought of as properties of terms. Ac-
cordingly, type inclusion represents logical im-
plication. The system has a universal type o,
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the property which trivially holds of everything.
Therefore, any type will be less than @. As
usual in type assignment systems for A-calculi,
the arrow type is a “function space” construc-
tor. M has type o — T if, for all N having type
o, MN has type T. With respect to the order,
the arrow is co-variant in the second argument
and counter-variant in the first argument. Fi-
nally o A T and o V T have a conjunctive and
disjunctive meaning, respectively.

Definition 3.2.

1. Let < be the smallest preorder over types
such that <TA+” , <) is a distributive lat-

tice (taking the quotient), in which A is the
meet, \/ is the join and w is the top, and
moreover the arrow satisfies:

(a) w < w — w,

D) (c—-u)A(0—=T)<0— uAT

o cagred sp3ved —
.

2. O'= T isshortforo <4 £ o.

It is easy to verify that the relation < on TA+H
is preserved under type-substitution.

Property 3.3.

o % 5= ol i= p) < k= p)

We now turn to the typing rules for non-determin-
istic and parallel operators. Since + is inter-
preted as the meet of its arguments, we type
M + N with o if both M and N can be typed
with ¢. This is also the choice of [1].
Conversely, M||N represents the join of M and
N. It follows that one is entitled to type M||N
with o as soon as M or N (or both) can be typed
with o. See [6] for further motivations.

This suggests the following typing rules

B-M:0 BFN:o
BFM+N:o

B-M:o B-N:o
B-M||N:o BFM||N:o

The inclusion relation < among types turns A
into the meet and V into the join, and we have

both a subtyping and an intersection introduc-

tion rule, namely

BFM:0 o<t BFM:0 B+FM:1
BFM:t BEMuwhy

Therefore the rules for 4 and || above are equiv-
alent to

BFM:0B+FN:t BFM:0BFN:1
BFM+N:ovr BFM|IN:oAT

We have the usual rules dealing with the arrow
type constructor. We add a rule (@) which takes
into account the universal character of w, and
a standard rule of introduction of A. Moreover
we use the preorder on types in a subsumption
rule.

Definition 3.4. (/12])

1. A statement is an expression of the form
M . o, where M (the subject) belongs
1o A q and o (the predicate) is an el-
ement OfTA+\|' A basis B is a set of state-
ments such that subjects are pairwise dis-
tinct variables.

2. The type assignment system is defined by
the following natural deduction axioms
and rules.

(w) BFM:w
(Ax) Bx:olx:o
(—1) Bz ok Mt
_>
BFMM:0—1
BFM:0—-1t BFN:o
(—E)
BFMN: T
(+4) BFM:0B+FN:o
BFM+N:o
BFM:o BFN:o

(h

BFM|N:o B-M||N: o
BFM:0BFM: 1

AN
) BFM:oAT
B-M:.:oco0<7
(<) —,
BFM:t
where B,x : o is short for BU {x : o},

when x does not occur in B.

We shall write B+ M : cif B M : ois
derivable in the above system.
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Remark 3.5. It is easy to verify that rules
(AE) and (VI) defined by:

BFM:oAhNT BFM:0NT
BEM:o BFM:t

 BFM:o BFM:t
Br+rM:ovt BFM:oVvrT

(AE)

(V1)
are derivable. The following rules are admissi-
ble:

BFM:0 BEN:t
BFM+N:ovVT

B+-FM:0 BFEN:71
BFM|IN:oAT

(+V)

(1IA)

Bx:ob-M:t o <o
B,x:0-M:7

(<L)
as proved in [12]. Also the weakening rule is
admissible, since we consider terms modulo o-
COnVersion.

We define Dom(B) = {x | x0 € B& 0 # w}
and we assume x:w € B wheneverx ¢ Dom(B).
This is sound in view of rule (w). Moreover, we
consider equality of bases modulo type equiva-
lence, i.e. when we write B = B’ we mean that
x: 0 € Biffx: o € B with 0 = ¢ and
vice-versa. This is justified by rule (< L).

Notation. In the following we shall sometimes
refer to the stronger basis which can be formed
out of two given bases. This is done by taking
the intersection of the types which are predi-
cates of the same variable:

BYB ={x:oAT|xo€Bandx:TeB}
Accordingly we define:
BeB « 3B".BuB'=8.
Notice that BEB' iff x : o € B impliesx : o' €
B’ for some o/ < o. In particular we have

BWBEBand B {x: w}&EB.

As expected, derivability is preserved under
type substitution, L.e.

Lemma 3.6.
BFM:o=B[¢:=1FM: alad =t

Using a simple reduction on derivations one
can show that all typing rules can be reversed,
i.e. that our type assignment system enjoys the
following structural properties. All points are
proved in [12], but the first one which can be
easily proved by induction on deductions.

Lemma 3.7. (Generation Lemma)

() B-FQ:0= 0=
(i} B-xi7T & Jox:0€eB&o<7;

(iii) BFAxM:T<3u, ..., Uy, V1, -, V. B
n il
FaxeM s Ay (u — vi) & Aimy (i —

Vi) & T
(ivy BFAxM:0 -1t Bx:0o-M: T

(W BH+MN: v &I BlFEM:0—

T& BN : oy

(vi BFM+N:o&BFM:0&BFN:
o

(vii) BFM||IN : T & J0,0. oA0' < T&BF
M:0c&BFN:O.

The invariance of types under subject conver-
sion with respect to = is now an easy conse-
quence of the previous Lemmas.

Theorem 3.8. (Subject Conversion [12]) For
any terms M, N, basis B and type O

BrFrM:oM=N=BFN:oO

Using a variant of Tait’s computability tech-
nique, [12] proves that the set of types which
can be deduced for any term coincides with the
union of the sets of types deducible for its ap-
proximants.

Theorem 3.9. (Approximation Theorem [12])
For any term M, basis B and type O

BrM:o0&JdAc AM).BFA: o
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4. Principal pairs for approximate normal
forms

Following [16], we associate to each approxi-
mate normal form the set of types which can
be deduced for it. Since we also consider open
terms, we need to define sets of pairs (basis;
type). The correctness and completeness of this
definition are proved in Lemma 4.2(ii).

Definition 4.1. Let P be set of all pairs (B; o)
where B is basis and o € TA+H‘ Given A € A,

we define the set AP(A) of pairs admissible for
A as the subset of P inductively defined on the
structure of A as follows:

a) A =Q
AP(A) =pes {(B;y)|B is any basis, y =
w}.

b)A=x
AP(A) =p.s {{B;y)|Bisany basis, y =
w}U{(B,x : 0;T)|B is any basis and o <
]

c) A= AxA;q.
AP(A) =per {{B;y)|Bis any basis, y =
CU} U {<B;T>|3M],...,MH,V],...,V,1.<B,
x:pvi) € AP(Aq) andt > AL (1 —
vi)}

d) A=xAp. A,
AP(A) =p. {{(B;y)|B is any basis, y =
o} U {{Byt)|dor,...,00n([V1 < i <
n.{B;o;) € AP(A;)] and [{(B;o] — ... —
o, — 1) € AP(x)])}.

e) A=A+ A,
AP(A| +A2) =pos {{(B;T)|{B;T) €
AP(A1) N AP(A2)}.

5 A=AqA
AP(A]HAQ) =Def {<B;'U>EO],O'2. T 2
o1 N O3, <B;O']> € AP(A[), <B;O’2> €
AP(A7)}.

Lemma 4.2.

(i) (B;T) € AP(A),B&B’
AP(4).

(i) B;ty € AP(A) & BFA:T

= (B1) €

Proof. (i) Easy, by induction on the definition
of AP(A).

(if) =) Easy, by induction on the structure of
A.

<) By induction on the structure of A.

e A=Q
Immediate by definition of admissible pair
and Lemma 3.7(i).

e A=x
By definition of admissible pair and Lemma
3.7(ii).

e A = Ax.Al
By Lemma 3.7(iii):
(a) 3u1, ..oy Uy V1, .o,V B AxAq
Nizi (b — vi)

(b)) ANimy (i = vi) < 7.

Hence, by (AE), from (a) it follows that,
foralll < i< mn Bk AxA; :w — v
and, by Lemma 3.7(iv), B,x : w; - A; :
vi. By the induction hypothesis, for all
1 <i<n, B,x:u;v,y € AP(A) and
hence, by (b) and the definition of admis-
sible pair, (B; 7) € AP(A).

e A=xA...A,

By Lemma 3.7(v), 30y,...,0, B F x :

O ~¥ e =% Oy -7, B P A 1 i (1L £
i < n). By the induction hypothesis,
(B;o; — ... — 0, — T) €AP(x), (B, o;)

€ AP(A;) (1 £i< n). (B;t) € AP(4)
is now an immediate consequence of the
definition of admissible pair.

e A=A+ Ay
By Lemma 3.7(vi), B~ A : t, B - A, :
7. By the induction hypothesis (B;t) ¢
AP(A1) and (B;t) € AP(A;). It fol-
lows that, by definition of admissible pair,
<B; "E> e AP(A1 +A2)

o A =A||A;
By Lemma 3.7(vii), 301, 05. 01 A 0y <
T,B - A; : 0,i = 1,2. By the induc-
tion hypothesis (B;o1) € AP(A;) and
(B;02) € AP(A;). By definition of ad-
missible pair we get (B; T) € AP(A;]|43).
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We define a relation <4 on P such that a pair
{B;T) relates to itself iff it is admissible for A,
i.e. iff B+ A : 7 is derivable. This is an im-
mediate consequence of the following Lemma
4.4,

In Definition 4.3, the first point takes into ac-
count rule (w). The second point is justified
by Lemma 3.6. Rules (<) and (< L) give us
the third point. Point (4) makes <4 transitive.
Point (5) is due to rule (Af). Notice that all these
points do not change the subject of derivation,
which is here represented by the subscript of
the order relation (i.e. by A in =4). Instead, the
other points change the subscript of the order
relation, and correspond respectively to clauses
(¢), (d), and (e) (f ) of Definition 4.1.

Definition 4.3. For every A € A we define on
P the =4 relation as the least one satisfying the
following conditions:

1. (B;T) € AP(A) = (B;1) =4 (b w).

2. (B;T) € AP(A) = (B;T) =a (B[9
= mprPe= al).

3. <B];'U1> e AP(A), Bi1@B), 1 <1 =
(B1;T1) =4 (B2; 7).

4. {B1;711) =4 {(B2;T2) 24 {B3;713)
= By vy <a {B3 1)

5. {B1;11)=a{Bo; 12, (BY; T4 ) Za{Bh; Ty)
= (B1WB; AT 34 (B2WBy; aAT)).

o. (B],x X CT1;171> =A <B2,x : 0’2;172> =5
(B1; 01 = T1) =jxa {B2; 02 — T

7. (BT =, BiTy (i=1,..,n) =
(W B)W{x : 51 = .. = T —
O}§U> il <(L+J?:] Bi) %Y {x g ri —

. — T, — O}; Oy, for any o.

8. (Bpm) =24, (BT & (Ba; 1) =4,
(Bytyy = (B1WByuTi V) Za44,
(B WBL; TV, ) &(B18B2; TIAT2) =24, ||a,
(B WBy; T ATy,

(B1;T1) =4 {(By; Ty is short for {Bi; Ty
<4 (By; 1) and {B3; 1) =a {B1;71)-

Notice that by (3) of the previous definition, the
relation <4 is reflexive.

Lemma 4.4. {(B1;7) =4 {B2;12) = {B1;
171> € AP(A) & <Bg;’b‘2> € AP(A)

Proof. The thesis follows immediately from
Lemma 4.2 once we show that By = A : 74
and B> F A : 7p. This can be easily proved by
induction on the definition of <4. O

For every A € A, AP(A) can be considered
modulo /4, then <4 becomes a partial order on
AP(A).

The following definition of principal pair is a
generalization to our calculus of the one given
in [8], [18], and [3], where it was used to prove
the principal type property for various intersec-
tion type disciplines.

Definition 4.5. Let A € A. We define pp(A),
the principal pair of A, by structural induction
on A as follows:

a) A=Q

PP(A) =per {0; w);
b) A=x

PP(A) =per {{x:8};9);
c) A= AxA

Let pp(Aq) = {(Bi;m). We distinguish
two cases:

-Ifx € FV(Ay) and By = B,x : uy,
then pp(Ax.A1) =pef (Bs w1 — m1);

-Ifx & FV(A1) then pp(?LxAﬂ =
(By; 0 — m).

d) A =xA1..A,
Let pplds) = {Bieady 0 = Ly n) (i
is possible to assume, w.l.o.g., that such
pairs do not share type-variables.)
Then pp(A) =ps {(Wiey Bi) W{x:m —
.. — Ty, — O} O, where © is fresh.

e) A=A +4A
Let pp(A;) = {(Bi; m), i = 1,2 (it is possi-
ble to assume, w.l.0.g., that such pairs do
not share type-variables.)
Then pp(A1-+A2) =per {B1B2; m V).

f) A= A]HA2
Let pp(A;) = {B;; my, i = 1,2 (it is possi-
ble to assume, w.lo.g., that such pairs do
not share type-variables.)
Then pp(A; 11A2) =Def {(B1 W By; m A ).



136 Principal Typing for Parallel and non-Deterministic A -calculus

We assume that principal pairs are taken up to
renaming of their type variables, so that we may
have a unique principal pair for each approxi-
mate normal form.

Clearly the principal pair of A is admissible for

Lemma 4.6. ForanyA € A: pp(A) € AP(A).

Proof. By an easy induction on the structure of
A, using Lemma 4.2(i) when A = xA;...A,,
A=A +AandA EAlHAz.. g

Now we can prove that the principal pair of A is
the bottom of AP (A) with respect to the relation
A

Theorem 4.7. Let (B; ) be a pair admissible
for a given A € A and (B; ) be the principal
pair of A. Then (B; )y <4 {(B;T).

Proof. By structural inductionon A. If T =
the thesis holds by Lemma 4.6 and Definition
4.3(1),(3).

e A=Q
Easy from Lemma 3.7(i) and Definition
43(3).

e A=x
Then pp(A) = ({x : 3}; ), where 9 is
a type variable, and (B; 1) = (B,x : 0; 1)
with o < 1. Hence

({r: 999 (fx: o} 0)
by Definition 4.3(2)

=<y (B o)
by Definition 4.3(3).

e A = )Lx.A]
Let pp(A1) = {(By;m). We distinguish
two cases:
— x € FV(Ay).

Then By = B, x : u; for some w; and
I = W — 1.

By Lemmas 3.7(7it) and 4.2(ii), T >
Njes(0 — pj) and (B,x : o5 p;) €
AP(A;) for all j € J. We have now

(a> <Blr'ﬂ:l> my <Bax : O:f;pj> for

all j € J, by the induction hypothesis,
and hence

(B;m)=(B;uy — m)
=a (B; 0} — py)
forallj € J, by (a)
and Definition 4.3(6)
=A <B;/\(Oj = 0)7
jeJ
by Definition 4.3(5)
=4 (BT
by Definition 4.3(3).

-x g FV(Ay).
Then = w — ;.
By Lemmas 3.7(iif) and 4.2(ii), T >
Njer(0j — py) and {B,x : oj;p;) €
AP(Aq) for all j € J. We have now
{(Bi;m) =4, (B,x : 0j; pjy, for all
J € J, by the induction hypothesis.
This implies
(a) <Blax : CU;JT]> A <B>x: O}';pj>a
for all j € J, by Definition 4.3(3),(4),
since By, x : @ By, and hence

(Bym)= (B0 — m)
=a {B; 0; — p;»
forallj € J,

by (a) and Def. 4.3(6)

=4 <B; (g7 = p))
jes
by Definition 4.3(5)
=4 (B;T)
by Definition 4.3(3),

o A=xA1...4,
Let pp(A;) = (Bym)y (i =1,...,n).

Then (B;n) = ((W_;B)w{x: m —
coo = m, — 9} 9), where @ is fresh.
Note that the pairs (B;; ), (i = 1,...,n)
do not share type-variables.

By definition of admissible pair, (B; ) €
AP(A) implies that there exist o1, . . ., o,
such that (B; 0;) € AP(A;) and (B; 0; —
... = Oy = T) € AP(x). Now

(a) (Bim)y <4, B;op,(i=1,... , 1) by
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the induction hypothesis and hence
(B;my= (|4 B)) ¢ fxm—. ..~
=1
=35 3)
<4 {(BW {x:01—...—0,— 0} O)
by (a) and Def. 4.3(7)
<4 (BW {x:01—...—0,—T}T)
by Def. 4.3(2).

e A=A +A>

Then (B;n) = {(B1WBy;mVm) where
<Bi;-7-5i> = pp(A[), (i = 132) By defi-
nition of admissible pair, (B; T) € AP(A;)
for i = 1.2
By the induction hypothesis, for i=1,2:
{Bi; m;y =a; (B;T). And hence

(B; Y= (B1 W By my V mp)

X KB
by Definition 4.3(8), (3).

e A= A] 1 |A2
Then (B;n) = (B1WBy;mAm), where
(B> = pp(Ai), (i = 1,2). By defi-
nition of admissible pair, T > 71 A T2, and
(B;T;y € AP(4;) for some 7; and i = 1, 2.
By the induction hypothesis, for i=1,2:
{Bi;m;» =4, {B; T;), and hence
(B; )= {By ¥ By, m Am)
=4 {BWB; T ATy
by Definition 4.3(8)
=<4 (B;T)
by Definition 4.3(3).

O

Now we can obtain the desired result, i.e. an ax-
jomatic characterization of the types which can
be deduced for terms in A}

Theorem 4.8.

(i) Let M be a term in A || such that A(M) is
finite. Moreover, let A = | | A(M).
ThenBFM:1 & pp(A) =4 (B;T).

(ii) Let M be a term in A such that A(M) is
infinite.

ThenB+M:1 < 34 € AM). pp(A)
=4 LB T

Proof. Immediate from Theorems 3.9 and 4.7.
O

5. Conclusions

The present paper answers the problem of de-
termining principal types for the parallel and
non-deterministic A-calculus. This is achieved
by extending existing techniques for the stan-
dard A-calculus.

A natural development of the present research
is to find effective operations for deriving types
from principal pairs following [8, 18, 3]. This
would allow the construction of a typing semi-
algorithms for the parallel and non-deterministic
A-calculus, which generalizes that given for the
standard A-calculus [17].
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