Journal of Computing and Information Technology - CIT 5, 1997, 1, 33—-48 33

Software Reuse: Principles, Patterns,

Prospects-

Maria Smolarova and Pavol Navrat

Slovak University of Technology, Bratislava, Slovakia

A closer look is presented at reusability in software
development. In particular, object-oriented design is dis-
cussed. However, before turning to reviewing the recent
results in object-oriented software reuse, such as design
patterns, a survey of general principles and methods in
software reuse takes place. Prospects of software reuse
and its impact on software development in becoming an
engineering discipline are stressed. Prospects connected
and implied by using the Java language for a possible
world wide reuse are shortly discussed.

Keywords: software reuse, design pattern, software en-
gineering, software architecture, object-oriented method-
ology, Java, world wide reuse

1. Introduction

Promises of software reuse to significantly in-
crease the productivity of software developers
and to enhance software quality have not been
fulfilled yet. There is still a lot of work to be
done in order to overcome technical and non-
technical obstacles hindering software reuse.

In this paper, a closer look is presented at
reusability in software development. In partic-
ular, object-oriented development is discussed.
There are different opinions about how object-
orientation influences software reuse. On one
side, there are beliefs that object-orientation
improves reuse significantly [Mey88b, Pre91,
LHKS91, Coa92, Huf92, .dC93, LW93, Kar95,
GR95]. On the other side, many examples of
non object-oriented reusable systems show that
objects are neither necessary nor sufficient for
software reuse [Tra93, Gri95]. Unfortunately,

only a few empirical studies about the impact of
object-orientation on software reuse have been
conducted [LHKS91, BZ95]. The assumptions
are based more on intuition than on scientific
experimental evidence.

Our aim is to review the current trends in the
area of software reuse[SN96]. We shall be con-
cerned with principles, as well as with methods
for software reuse. After reviewing them in gen-
eral, we shall concentrate on questions related
to object-oriented software development.

2. Software reuse principles

In software development, similar problems are
solved again and again. The basic principle
of reuse i.e., not to repeat solving of what
has already been solved, seems to be straight-
forwardly applicable in software development.
Many libraries of reusable components, meth-
ods for their retrieval and adaptation, and meth-
ods for building new software systems based
on previously developed components were pro-
posed. There has been a great expectation
that practice of software engineering can be
improved through systematic development of
reusable software components. Estimated po-
tential for software reuse is enormous, the rates
ranging from 15% to 85%, depending on the
application area.

Despite the wide-spread interest and reasonable
progress in reuse, it is hardly, if ever, practised
as a standard method for software development.
Reusing software does not automatically mean

* The work reported here was partially supported by Slovak Science Grant Agency, project Methods and Tools for Development

of Software Systems.

Software Reuse: Principles, Patterns, Prospects

the task has become easier: reuse is an extra
work. To build reusable units requires identi-
fying, extracting, organising and representing
reusable information in a way that it is easy to
understand and manipulate. To find the soft-
ware which is close to the requirements, to ad-
justitand to integrate previously built assets into
anew system can become more difficult than to
develop new software from scratch. A soft-
ware, in order to be reusable and reused, must
be designed, documented and implemented for
reuse [Tra88]. Moreover, it must be written and
stored in a way that allows easy comprehension,
indexing, and retrieving.

2.1. Software reuse scope

At the NATO Software Engineering Conference
in 1968, the concept of systematic, formal reuse
was proposed. Mcllroy who first introduced
the term software reuse wanted to change the
craft of software developers to an industry of
software engineering and so overcome a soft-
ware crisis. He proposed the factory of off-the-
shelf source code components and envisioned
the construction of complex target systems from
small building blocks available through cata-
logues of reusable components. But his vision
has not been fulfilled yet.

Subsequently, the concept of software reuse be-
came broader. Later, the term “reusable asset”
was introduced. A reusable asset is any item
of interest that is stored in a reuse library, such
as design documentation, specifications, source
code, test suites, etc., or any other unit of po-
tential value to a reuser. Reusable asset en-
compasses all the resources used and produced
during the development of software, including
knowledge. In the broadest sense software reuse
involves organising and encapsulating experi-
ence and setting all mechanisms and organi-
sational structures to support it. However, it
should be noted that for a standard engineering
discipline, reuse is a typical practice. Undoubt-
edly, software engineering has been developing
- consciously or not - along similar lines.

2.2. Reuse potential

Software reuse is believed to have the potential
to improve the practice of software engineering

significantly. Benefits expected from reuse are
mostly of an economic nature and fall into two
categories:

e Software development productivity incre-
ase. The productivity will increase be-
cause [CJ92] the development time will
be shortened when software does not have
to be built from scratch, and development
cost will be reduced because less software
has to be developed.

e Software quality enhancement. The soft-
ware quality will be enhanced because
the reused components have already been
tested and presumably contain fewer errors
than the new components. Also, mainte-
nance costs will be reduced.

The economic impact of reuse on the soft-
ware development process is estimated intu-
itively rather than on the basis of cost evalu-
ation. Economic models that quantify produc-
tivity increase as well as quality enhancement
are needed.

2.3. Required characteristics

According to [MMM95], reusable software must
be:

e useful 1.e., it addresses a common need;

e (re)usable i.e., it is of sufficiently good
quality, easy enough to understand and use
in new software development.

In [Kar95], a reusability model was proposed.
In this model, reusability was divided into:

e Adaptability: Itis sometimes referred to as
flexibility; it is the ease with which a com-
ponent can be adapted to fulfil a require-
ment which differs from that for which it
was originally constructed. Adaptability
can be divided to modularity, i.e. how well
it is possible to split the solution into dis-
joint subfunctions, and to generality, i.e. a
component’s degree of independence from
the rest of software.

Software Reuse: Principles, Patterns, Prospects

35

e Understandability: Attributes of software
bearing on the user’s effort to recognising
the logical concept and its applicability.

e Portability: The ease with which a soft-
ware can be transferred from one computer
system or environment to another. This in-
dicates environmental independence of the
software, i.e. the degree of its dependence
on environment-specific features.

e Confidence: The probability that a mod-
ule, program or system also performs its
defined purpose without failure in a differ-
ent environment from that for which it was
originally constructed and/or tested.

Also, the fact that reusable software must be of
good quality has been pointed out and a quality
model was developed as well. Software quality
involves reliability and maintainability.

2.4. Restricting factors

There are non-technical as well as technical rea-
sons for only a limited success of software reuse
in practice. No agreement exists among the
authors which of the factors affects software
reusability more significantly. Some authors
believe in the significance of non-technical rea-
sons [Tra95, PD91], the others accept the ex-
istence of non-technical problems but they be-
lieve these can be removed in the future and the
only problems playing a significant role in the
failure of software reuse are the technical ones
[Mey88al.

Non-technical reasons include [Mey88a, PD93|:

e Economical issues. Because an extra ef-
fort is needed to achieve software reuse,
economic models that would help measure
reuse investment cost and return on that in-
vestment must be developed and validated.

e Organisational issues. The ways reusable
assels are to be distributed, searched for
and sold must be found. Even the best
reusable component is useless if nobody
knows about it, if it takes a long time to
obtain or if it is too expensive to buy it.

e Educational issues. Not only does the
way to build reusable software have to be

taught, but training in building software
from an existing one is also necessary.

e Psychological issues. The reuser must
trust reusable software assets. The famous
“Not Invented Here” syndrome is the most
common psychological barrier in reuse ac-
ceptance.

e Managerial issues. Management struc-
tures and practices are mostly inadequate.
Management support at least has to iden-
tify different roles in the reuse project and
to fill them with suitable people.

Software reuse is significantly restricted by tech-
nical factors. Among them the most important
ones are:

e the immaturity of software development as
an engineering discipline:

— no standards for representing reusable
software components exist,

— standard architectures are not suffi-
ciently available,

e the lack of reusable component libraries
with acceptable retrieval support,

e the lack of methodologies incorporating
reuse as a standard development practice,

e the lack of appropriate tools supporting
software reuse.

2.5. Diversity

Software reuse suffers from the lack of stan-
dard terminology. No standard definition of it
exists. Different authors have given their own
intuitive definition of software reuse, if any def-
inition is given at all. This diversity has led
to different streams in software reuse. Differ-
ent approaches to software reuse are categorised
along five more or less orthogonal axes [Dus92]:

e Transformational (sometimes also called
generative) versus compositional reuse. In
transformational systems, the result is ob-
tained via transformations from a given
high level specification of the desired sys-
tem. In the compositional approach, choos-
ing components and their combining is
done by a software engineer.

Software Reuse: Principles, Patterns, Prospects

Problem Development Problem
< ¥ descriptions transformation descriptions +— ..
at level i i—i+1 atleveli+ 1

Fig. I. One step of software development process

e Black box versus white box reuse. In the
black box approach, reusable products are
used as-is, whereas in the white box ap-
proach products are modified and adapted
to the specific application.

e Abstraction level. Reuse can be applied
at the level of code, design, tests, require-
ments, etc., although it is generally con-
cerned with code reuse.

e Product versus process reuse. Is just the
product reused or is the knowledge why
and how to do things in a certain way also
reused?

e Development of reusable things versus the
application of reuse.

In [PD93], another dimension of software reuse
is pointed out:

e Vertical versus horizontal reuse. Vertical
reuse takes place within the same applica-
tion area or domain while horizontal reuse
means that reusable parts produced in one
application area are reused in a different
one.

Reuse always takes place somewhere in such
a multidimensional space. Typically, it is not
placed at an extremal point on an axis. Rather,
reuse is a mixture of various approaches. So,
an unambiguous classification of different soft-
ware reuse approaches is difficult, if possible at
all.

3. Software reuse methods

Software development has been traditionally di-
vided into stages such as analysis, design, im-
plementation, testing and maintenance, so dif-
ferent life cycle models have been proposed in

order to help manage the difficulty of software
development processes.

In this paper, we have adopted a process-center-
ed view on software development as it helps us
survey software reuse methods. Software de-
velopment is a process consisting of a sequence
of partially ordered steps, starting from more
or less formal specifications and leading even-
tually to an executable code [Che94, DvK95].
Each step in this process is a transformation of
a problem description at level i into the problem
description at level i + 1 (Fig. 1).

With such a view on software development,
reuse methods can be divided into two groups
[RGP88, BR89:

e generative methods which concentrate on
reusing the transformations of problem de-
scriptions, and

e compositional methods which concentrate
on reusing the problem descriptions as
building blocks for current software de-
velopment.

3.1. Generative reuse methods

Generative reuse methods automate one part
of the software development process, i.e. some
of the transformations designed and performed
during the software development. The idea of
generative approaches is very similar to that of
automatic programming - a high-level formal
specification should be compiled into an im-
plementation. However, while automatic pro-
gramming tries to automate the software devel-
opment from specification to implementation,
generative reuse either gives up the goal to au-
tomate the whole sequence of transformations
during the software development process or the
application domain is narrowed.

There are three reuse approaches of generative
nature [BR89, Kru92]:

Software Reuse: Principles, Patterns, Prospects

k7

e language-based systems;
e application generators;

e transformational systems.

LANGUAGE-BASED SYSTEMS. Language-
based systems are also known as executable
specification languages or very-high level lan-
guages (VHLLs). They typically use mathe-
matical model such as a set theory or constraint
equations that embody reusable patterns in a
high level language. Automation of the map-
pings from VHLL constructs to high level lan-
guage implementation patterns is possible usu-
ally only at the expense of code efficiency and
design quality. The problem with VHLLs is in
the fact that they have the advantage of being
generally applicable to software development
but the semantic gap between mathematical ab-
straction used in model and software develop-
ment is still too large.

SETL [DFCS89] is a wide spectrum VHLL
based on the set theory. Data types in the lan-
guage are either atomic types (integer, real or
Boolean values) or composite data types (sets
or tuples). The set operations union, intersec-
tion, difference and power set as well as the set
iterators are defined in the language. Maps in
SETL correspond to functions in the set theory.
A map binds the elements in the domain to those
in the range.

MODEL [PL89] isa declarative constraint VHLL
based on simultaneously solving a collection
of constraint equations. The language contains
constructs for data declarations and consistency
equations. A compiler performs an analysis to
determine if the consistency equations can be
satisfied and to find the order of computations
that will assign consistent values to the data ob-
jects. The MODEL compiler checks for the
completeness and consistency of the specifica-
tions.

APPLICATION GENERATORS. Application
generators automate the whole development pro-
cess in a very narrow application domain. An
application generator is a tool that takes in-
put specifications and produces executable pro-
grams as output. Specifications are typically
high-level abstractions in a specific application
domain.

To build an application generator is difficult, as
it requires [Cle88] identifying appropriate do-
mains, to define domain boundaries and under-
lying computational model for the application
domain, to define variant and invariant parts of
an application family, to define the specification
input method and to define products generated
by the application generator.

To be able to build an application generator re-
quires not only an intimate knowledge of the ap-
plication domain [Cle88], but also, the domain
must be narrow, well-understood, with slowly
changing technology [Big92].

TRANSFORMATIONAL SYSTEMS. Trans-
formational systems do not fully automate the
software development process. Software devel-
oper’s assistance is needed in selecting among
applicable transformations. With transforma-
tional systems, software is developed in two
phases. First, the semantic behaviour of a soft-
ware system is described in a specification lan-
guage and second, the user-guided transforma-
tions are applied to the specification.

Paddle [Bal89] is a transformational system that
stores a development history as a sequence of
applied transformations. Paddle provides the
program, i.e. the structure of the sequence of
transformations needed to implement some ap-
plication. Design decisions that lead to writing
the program are not saved, so the transforma-
tions are difficult to understand and modify.

Glitter [Fic85] is a transformational system that
encodes into transformational rules the deci-
sions that a software developer has made during
their applications. To select from a collection
of reusable transformations, expert system tech-
nology has been used. The rules embody expert
knowledge about how to accomplish goals dur-
ing program transformations. Each rule consists
of a goal, strategies and a selection rationale
part. Glitter automates as much of the transfor-
mation process as possible. If the strategies are
incomplete or selection rationale fails, the sys-
tem asks the software developer for guidance.

3.2. Compositional reuse methods

Compositional reuse is the most common form
of software reuse. It is based on reusing com-
ponents from earlier software development as

38

Software Reuse: Principles, Patterns, Prospects

the building blocks for new software develop-
ment. Components stored in reusable libraries
may contain any units that are of potential value
for a reuser, such as source code, subsystems,
test data, user documentation, design, develop-
ment plan, architecture, installation instruction,
etc.

When considering a transformational model of
software development (Fig. 1), reused compo-
nents are equivalent to problem descriptions at
one of the levels during the software develop-
ment process. The main idea behind this ap-
proach - reuse of any previously developed soft-
ware components - is straightforward, but there
is a lot of potential difficulties with its applica-
tion. To discuss crucial parts of compositional
reuse more precisely, the following aspects of
this approach to software reuse are taken into
account:

identification of reusable components,
e component description,

e retrieval of reusable components,

e adaptation of components to specific needs,

e component integration into current soft-
ware developed.

IDENTIFICATION. Identification of reusable
parts is the first step towards systematic and ef-
fective software reuse [PD90]. To foresee the
future reuse opportunities is difficult. It requires
development experience. Also, thorough do-
main knowledge gained on the basis of domain
analysis is necessary. Many aspects must be
considered when reusable units are identified.
Among them are:

o Granularity. The granularity (also called
size) of a component is important. The
larger the reusable component, the greater
reuse productivity improvement. But a
larger reusable unit involves many func-
tions that make such a component more
difficult to reuse because its complex func-
tionality may not exactly fit into the re-
quired one.

e Categories. A reusable component may
be any concrete intermediate product of
the software development process, i.e. not

only the source code but also design, spec-
ifications, requirements, tests, documen-
tation. The earlier in the software devel-
opment process, the higher the reusability
leverage.

e Generality. Generally, application-inde-
pendent components that can be applied to
a broad range of application domains are
presumed to be reused more frequently, but
they tend to be more difficult to reuse be-
cause of the generality they offer [BR89].

It is still far from being clear what a reusable
component should be and how to identify it.
Rather than to be able to recognise reusable
components from the first principle, their incre-
mental identification and building seems to be
the way the software reuse must be conducted.

DESCRIPTION. Component description fa-
cilitates understanding of component function-
ality. A good component description should
express what a component does without know-
ing how it does that [WOZ91]. Besides be-
ing abstract, a component description should be
clear, unambiguous and understandable. Also,
it should permit a wide variety of reusable com-
ponents to be described [RW89).

In the software reuse community, two approaches
to component description can be seen:

e Component models. A component model
is an abstract description of the compo-
nents in a given domain [Whi95] that de-
picts all attributes a reusable component
should have. Efforts are made to find a
generally acceptable model.

Up to now, the 3C reference model [Edw92,
Whi95] received most acceptance. The 3C
model distinguishes different aspects of a
reusable component: its concepti.e. an ab-
stracted description of what functionality
the software component provides; its con-
tent, i.e. an implementation that says how
the component achieves the functionality
described in its concept; and its context
that describes the component relationship
to other components on which it depends.

The REBOOT (Reuse Based on Object-
Oriented Techniques) component model
[FM92, Kar95] is based on a facet classi-
fication. Four facets particularly relevant

Software Reuse: Principles, Patterns, Prospects

In fcr‘:}\

requirements

concretzation
Descnption

formalization

b

maiching

i
i

Components

abstraction

formalization

¥

Query ¢

process

Classification

Fig. 2. Component classification and retrieval

to reuse have been proposed: Abstraction, = Major approaches used for component retrieval
Operations, Operates On and Dependen- include [FP94]:

cies. Each facet can have an arbitrary
number of terms in its restricted vocabu-
lary. A component can be considered as a
combination of the terms within its facets.

e Component description languages. Ei-
ther at the implementation level or at the
design level, these languages try to capture
the essential attributes of components. A
survey of languages aimed at describing
reusable components in the design stages
of development is given in [Whi95].

The goal of a component description lan-
guage is to provide semantics of the com-
ponent functionality. In fact, there are
two main approaches to formal specifi-
cations: an algebraic and a model-based
approach [Som92]. An algebraic formal
specification describes syntactic interface
by names and signatures for all of the com-
ponent’s operations and states the relations
among the operations. A model-based for-
mal specification defines postconditions
and preconditions for each operation.

RETRIEVAL. Reusable libraries may grow to
a large collection of components. In order not to
become a write-only medium, they must be well
organised. In particular, methods for compo-
nent retrieval that would encode abstract com-
ponent description and match it against reuser’s
requirements must be added to the library (2).

¢ Library and information science. There

are two groups of methods used in library
and information science: one that uses
a controlled vocabulary i.e. enumerated,
facet and attribute-value classification, and
the other one that does not restrict vocab-
ulary, also called free-text retrieval.

Enumerated classification uses short, usu-
ally one word metaphorical descriptions to
break a subject area into mutually exclu-
sive classes that form a hierarchical struc-
ture. This is possible only in well un-
derstood, narrow application domains with
one word abstractions that embody a big
amount of domain knowledge so that they
are universally understood. Classification
provides a natural way for searching when
domain is well analysed and exclusive hi-
erarchical categories exist. A disadvan-
tage of enumerated classification is the dit-
ficulty connected with changing it.

Multifaceted classification organises terms
of a subject area into facets. The develop-
ment of facets is accomplished by iden-
tifying important vocabulary in a domain
and grouping terms together into facets.

Attribute-value classification uses a set of
attributes and their values to describe a
component in the library. It is similar
to facet classification because it uses at-
tributes and values as facet classification

40

Software Reuse: Principles, Patterns, Prospects

uses facets and values. The differences
are that attribute values are not restricted
to having predefined values as facets and
there is no limitation as to the number of
attributes being used for component de-
scription.

Controlled vocabulary approaches have a
disadvantage as the vocabularies of reuser
and developer can diverge. Usually, a the-
saurus of synonyms is provided in order to
eliminate this diversity.

The free-text retrieval is based on natural
language. The textual representation of
the component is used as a component de-
scription. The advantage of the free-text
retrieval is that no encoding is required
and queries in natural language are easy
to formulate because of the closeness to
the reuser. But the natural-language am-
biguity, incompleteness and inconsistency
make the component retrieval less precise.
Natural language descriptions for reusable
library have been used in e.g., [WS88].

Knowledge-based retrieval. Knowledge-
based retrieval [KV95, DBSB91, Pol87|
uses various kinds of reasoning that relate
the new query to an old one or match the
query with the components. These meth-
ods need a knowledge base for the appli-
cation domain and for the decisions taken.
They require more human resources, espe-
cially for development of the knowledge
base, but they have a potential to be more
powerful because of capturing query and
component semantics.

Hypertext based retrieval. Hypertext re-
trieval [GS89] organises information non-
linearly into a network of nodes and links.
A reuser can access the stored informa-
tion by navigating along the links. To be
able to design a hypertext network, one
should first carefully study the application
domain and find an optimal set of relations.
It can also be difficult to add a new compo-
nent, because it requires studying exhaus-
tively the links between the new compo-
nent and the old ones. Hypertexts are easy
to use and may lead to the right compo-
nent quickly. But the user may also get
lost during the navigation or some infor-
mation may even be inaccessible because

the path he has chosen to follow has no
link to the required information.

e Specification-based retrieval. Specifica-
tion-based approaches use formal compo-
nent descriptions as the basis for partial
ordering of the components in the library.
These methods differ mostly in the expres-
siveness of the specification language and
also in how fully they take advantage of the
specification language. Some make use of
component signatures only, i.e. syntac-
tic interfaces; the others also handle the
semantics of specifications. Examples of
retrieval methods based on formal specifi-
cations are [CJ92, JC93, ZW93].

No agreement exists about which retrieval
method is the most appropriate. [FP94] com-
pared four different representation methods for
the component libraries (attribute-value, enu-
merated, faceted, and keyword). They conclude
that a single retrieval method is not sufficient for
finding all the relevant components for a given
search query. Different individual users prefer
and are more successful with different methods.
There were no significant differences between
the compared methods in search effectiveness
measured in terms of recall (the number of rel-
evant components retrieved over the number of
relevant components in the library) and preci-
sion (the number of relevant components re-
trieved over the total number of components re-
trieved). However, the differences in effective-
ness measured by search time were significant;
the search with enumerated classification took
60% less time than with the keyword method.
None of the methods supports the component
understanding more than moderately. To de-
vise retrieval methods best suited for reusable
components remains a challenge.

Query formulation is another important issue
in the retrieval method. Here, the unwilling-
ness of a reuser to formulate long and precise
queries should be taken into account. A reuser
would prefer an interactive query formulation
where a system assists to define the query. In
[Hen94], the fact that a reuser is often not able
to completely formulate his query at the begin-
ning of the retrieval process is stressed out and
the incremental query construction is proposed.
Also, a relaxed or approximate retrieval should
be considered. Whenever an exact match fails,

Software Reuse: Principles, Patterns, Prospects

41

components that are closest to the requirements
should be retrieved.

ADAPTATION. One of the important basic
characteristics of a reusable component is its
generality [Kar95|, i.e. its applicability is not
limited to one specific use. Generality supposes
that the component is open [Mey88a], i.e. it is
still available for extension. Each general com-
ponent has a variable part that must be replaced
according to specific needs [Kru92|. This act is
called component adaptation or specialisation.

Component adaptation may be done using dif-
ferent techniques [Hal88]:

¢ Parameter substitution. Parametrization
allows to build generic components, i.e.
components with parameters that are adapt-
ed to specific needs by setting values to its
parameters.

e Inheritance. Inheritance is a mechanism
that allows adding new properties to ex-
isting classes (substantial feature of the
object-oriented paradigm). It is an ex-
ample of incremental programming when
subclasses are defined by stating how they
differ from the existing ones.

e Modifications. Modifications of compo-
nent code is a white-box reuse that re-
quires understanding all the implementa-
tion details. Also, this technique can in-
validate correctness of the original com-
ponent [Kru92].

INTEGRATION. In order to develop a com-
ponent for reuse and to subsequently reuse the
component, not only the component, but also its
relationship to other components must be well
understood [Whi95]. Effectiveness of reuse
highly depends on the way those components
are combined [Sha95]. There are not only a
number of diverse composable software enti-
ties such as functions, classes, templates, mod-
ules, processes, but, consequently, also a num-
ber of component styles for combining the soft-
ware systems from these components. Differ-
ent styles expect different ways of component
packaging and different kinds of interactions
between them [NM9Y5].

The most common way to describe component
integration is to use module interconnection lan-
guages [PDN86]. Module interconnection lan-
guages describe modules in terms of exported

operations that a module implements and im-
ported operations that a model uses. Modules
are assembled into a system by interconnecting
them through appropriate exports and imports
[Kru92].

In [Bea92), declarative languages are suggested
to be used for describing the component in-
terconnection. By standardising certain mech-
anisms for component interaction, declarative
languages can be used to describe the ways
components are connected. The main advan-
tage is that the interactions of components need
notbe described in details and only relationships
among components are stated. Also, declarative
languages may be invertible so the same rela-
tionships may be interpreted in different ways.

So far, most of the emphasis has been put on
components and only very little of it on how
they are composed [NM95]. More investigation
is needed on how to compose software from
computational elements. A lot of recent work
has been done in areas such as module inter-
face languages, domain-specific frameworks,
and software architectures [GP95]. In partic-
ular, software architecture as a high-level de-
scription of how specific systems are composed
from its components has been recognised as a
critical aspect of the design for any larger soft-
ware system and it has gained significant atten-
tion recently [SG96, BMSS96].

4. Reuse within object-oriented
methodology

Recently, many researchers and practitioners in
the software reuse area devoted their attention
to object-oriented software development. It is
believed that object-oriented (OO) languages
facilitate development of software that can be
reused. Here, a strong impetus could recently
be observed in development and rapid spreading
of Java programming language.

There are, in fact, different reuse levels of-
fered in OO software development. Objects
and classes are basic reusable units. But they
alone would not be enough for an effective
reuse. Not the components themselves, but
the way those components are combined, af-
fects software reuse significantly. In fact, OO

42

Software Reuse: Principles, Patterns, Prospects

methodologies gave birth to application frame-
works and, more recently, design patterns for
building OO applications. Application frame-
works provide generic designs for building ap-
plications [Pre91]. Design patterns communi-
cate solutions to recurring design problems in
OO development. Both frameworks and pat-
terns elevate reuse to a higher level because of
supporting especially the design reuse.

While it is probably fair to say that whether
the claim that object-orientation fosters reuse is
justified remains, at least for some time, to be
seen, it can be stated already now that has been a
rather substantial progress achieved in seeking
concepts and forms that allow expressing stan-
dard software design within the object-oriented
methodology.

4.1. Reusability of objects

The fundamental unit in object-oriented devel-
opment is the object. Basic concepts involved in
the notion of object are data abstraction, infor-
mation hiding and encapsulation. Objects are
defined in terms of abstract data types where
each type defines also a set of methods. An
object has its internal state (data) and its oper-
ations (methods). The only way other objects
interact with an object is through sending mes-
sages (requests) to it.

The following characteristics of an object foster
its reusability [GR95]:

o Objects separate interface from the imple-
mentation.

e Objects often closely map the real world.

e Objects come in different sizes and ab-
straction levels.

e Objects live all the way down during soft-
ware development.

4.2. Reuse of classes

Class is a common template for similar objects.
Class defines interface as well as behaviour of a
set of objects. Objects instantiated from a class
perform common methods and share common
structure while each object within a class retains
its own states.

The OO programming languages usually offer
a library of predefined classes. Classes in the
library are related through inheritance relation-
ship. Inheritance, a built-in mechanism, has two
possible uses:

¢ Instantiation creates a specific object from
a class template by setting values to vari-
ables defined in the class. That is why
objects are sometimes called instances of
the class. When an object is created, its
internal data are allocated according to the
class structure and the class operations are
associated with these data. Many objects
may be created by instantiating the same
class.

e Subclassing allows the derivation of new
classes by modification of existing classes
L.e. by stating how they differ from them.
Subclassing involves two types of relations
between class and subclass:

— Specialisation. Specialisation adds
new functionality to subclasses. It re-
tains interface semantics i.e., a sub-
class interface is a subtype of its su-
perclass interface.

— Overriding. Overriding may refine,
redefine, or even hide the parent’s
functionality. Redefinition and hid-
ing breaks interface semantics.

Benefits of class reuse include less code to de-
velop, less code to maintain, and not having
to redesign the same items repeatedly. Inher-
itance makes it easier to include existing code
by extending the original classes and adding
new ones. But inheritance allows also redefini-
tion and hiding that may have harmful effects on
reuse. Such diverse uses of the same inheritance
mechanism cause difficulties in class reuse.

One useful mechanism that inheritance permits
is to define abstract classes. An abstract class
has no implementation for its methods, so it can-
not be instantiated. An abstract class defines a
common interface for its subclasses whilst the
concrete definitions are left to the subclass it-
self. This helps define families of interchange-
able classes with common interface.

Abstract classes make object-oriented class li-
braries more reusable and easier to understand.

Software Reuse: Principles, Patterns, Prospects

The mechanism that abstract classes provide 1s
one of the most important ones: classes should
be derived from abstract superclasses as often as
possible and all subclasses of an abstract class
should only add or refine but not override oper-
ations of the parent class [GHIV9S5|. Then, all
subclasses can respond to the identical interface
i.e., they all are subtypes of the same abstract
class.

The different views of an implementor and a
reuser that may cause diversity in class hierar-
chy should be pointed out. An implementor is
mostly concerned with quick derivation of a new
class implementation from the existing ones. A
reuser is interested more in the interface inheri-
tance that says when a class can be used in place
of another one [Edw92].

Another source of potential difficulties is that
class libraries may become vast. Reusing classes
from such a hierarchy may be a time consuming
laborious task. It is necessary to look at class
names, at names of methods, or in the worst
case at implementation of methods in order to
investigate reuse opportunities. Inheritance is
a white-box reuse that requires all the internals
of a parent class to be visible to its subclass
[GHIV95]. OO environments usually facilitate
reuse by visualisation of the structure of class
hierarchies and by supporting easy class brows-

ing.

4.3. World wide reuse

The Internet, a rapidly growing collection of
networks, and the World Wide Web, a hypertext
information and communication system, gave
birth not only to new ways of people’s com-
munication but they also changed the software
industry significantly.

Internet and Web ultimately require new ap-
proaches to software development. The ability
to run on heterogeneous and distributed plat-
forms is the necessity for all future software sys-
tems. With having such a platform-independent
software, the reuse increases by a significant
rate. No more environment specific code rewrit-
ing is needed. The same piece of software is
reused across a wide variety of computer sys-
tems, hardware platforms, and operating sys-
tems.

Java, a new programming language gaining a
considerable popularity recently, has been de-
signed to make full use of advances in dis-
tributed networking. Java is a language that
brings a new dimension to software reuse, too.
Undoubtedly, Java’s key feature that aids to the
code reuse is its genuine object-oriented nature.
But Java introduces additional capabilities that
support reuse [NS96]:

e Javais architecture-neutral. Java bytecode
is able to run on any platform that has the
Java runtime environment. With Java, the
capability of reuse is enhanced by having a
single application that is immediately us-
able on multiple platforms.

e Java is portable. Java language specifica-
tion defines standard behaviour applied to
the data types across heterogeneous plat-
forms. Reuse is enhanced because imple-
mentation is no more hardware-dependent.

e Javais dynamic and robust. Dynamic link-
ing of classes at runtime and checking data
structures at both compile time and run-
time cause that Java code can be reused
without recompilation even if the environ-
ment has changed.

There is another Java feature that should be fo-
cused on - Java code can be an executable part
of the Web document. Java applets i.e., small
applications that are downloaded directly from
Web pages, bring richness, interactivity and
enhanced information delivery to Web pages.
Through the Internet, the reuse is fostered world
wide.

4.4. Application frameworks

A framework is a reusable design for solutions
to problems in some particular problem domain.
An object-oriented application framework is a
set of classes that, taken together, represent an
abstraction or parameterized skeleton of an ar-
chitecture [Big92]. Frameworks group classes,
objects and relations together in order to build
a specific application [Coa92|. A framework
is a generic software architecture together with
a set of generic software components that may

be used to realise specific software architecture
[NMOs5].

44

Software Reuse: Principles, Patterns, Prospects

An OO framework consists of a set of ab-
stract and concrete classes that extensively com-
municate through messages. An ideal frame-
work would provide all concrete classes from
which new application would be composed in
its class library. In real software development
based on frameworks, some of the application-
specific classes must be constructed. They are
typically derived by subclassing from abstract
classes provided in the framework. Here, ab-
stract classes depict variable parts of the frame-
work that are configured according to the spe-
cific needs of an application [Kar95].

There are many different OO frameworks avail-
able. Among them, one of the best known is
the Model-View-Controller (MVC) framework
built in the Smalltalk-80 system. MVC is a user
interface framework that provides a uniform ar-
chitecture for interactive applications [Deu89).
An abstract class view converts some interest-
ing aspects of the model to visible form. A
controller knows how to interpret commands
inserted by a user. A model itself accesses and
updates the application.

Designing a framework requires thorough do-
main analysis as well as experience from dis-
tinct projects [EG92]. The most critical issue in
designing a framework is to achieve its flexibil-
ity i.e. easy adaptation to all applications in the
domain, and its extensibility i.e., the ability to
cover all applications in the domain [GHJV95].
Also, low sensitivity to domain evolution is nec-
essary. '

New applications can be built faster when frame-
works are reused. Another important fact is that
all applications in the domain then have simi-
lar structures and are easier to understand and
maintain [GHIV95].

However, frameworks may introduce additional
complexity and constraints to OO software de-
velopment. Each framework achieves its func-
tionality by a co-operation of single compo-
nents. Understanding and mastering of a single
component may become more difficult because
it depends on its relationships with other com-
ponents as well [SSP95]. Besides this, frame-
works provide “frame” solutions to the problem
that may not necessarily fit to the current prob-
lem.

4.5. Design patterns

Design patterns proposed by [GHIV95] (col-
lected in a catalogue referred to as G4 hence on)
introduce a new mechanism for expressing de-
sign knowledge that experienced developers use
over distinct applications. Each design pattern
systematically identifies, names and explains a
recurring design problem and presents good and
elegant solution to it. Design pattern is a mi-
cro architecture, a small grouping of classes
describing responsibilities of elementary parts
as well as the relationships and collaborations
among them.

Patterns are built by observation and by gather-
ing experience during the development of many
OO applications. A pattern template involves:

e Paitern: name, synonyms, one sentence
description, title, nicknames.

e [nteni: goal, motivation.
o Applicability: context, examples.
o Consequences: the end-situation, results.

o Constraints: interdependences, forces, af-
fecting factors.

e Resolution: structures, actions.

e Implementation: code fragments, practi-
cal concerns to be aware of.

e Applications: known uses.

e Risks: indications of potential difficulties
in use.

o Related patterns: references to other pat-
terns.

The uniform template used for pattern descrip-
tion makes them easier to learn, compare and
use.

Each pattern explains a solution to a problem
comprehensively so that no essential informa-
tion is lost to the readers. The pattern descrip-
tion uses a template which is a structure of at-
tributes. The template contains four essential
elements: a pattern name, a problem, a solu-
tion, and consequences. Class diagrams, object
diagrams and interaction diagrams are used for

Software Reuse: Principles, Patterns, Prospects

45

problem illustrations. Beside graphical nota-
tions, natural language describes decisions, al-
ternatives, examples, and trade-offs that led to
the proposed design pattern.

Patterns divide solutions into their elementary
parts which can be later recombined and reused
[Vil95]. Patterns thoroughly describe a single
atomic solution. Descriptions of the combina-
tions may become simplified because they can
refer to the already described and stored pat-
terns. :

Application frameworks and design patterns are
often confused. The main differences between
frameworks and patterns are [GHIV95]:

e Design patterns are more abstract than
frameworks. Frameworks can be embod-
led in code, but only examples of patterns
can be embodied in code.

e Design patterns are smaller architectural
elements than frameworks. A typical frame-
work contains several design patterns, but
the reverse is never true.

e Design patterns are less specialised than
frameworks. Frameworks always have a
particular application domain. In contrast,
design patterns can be used independently
from an application.

Patterns occur outside OO methodologies, too.
Design patterns vary in their granularity and
level of abstraction. Patterns may abstract an
analysis, a design or a process [FLM95].

Patterns could be organised into families of re-
lated patterns in order for the reuser to be able
to learn and find them more easily. When col-
lecting patterns, the way to categorise patterns
in a collection should be proposed as well.

The G4 catalogue of reusable design patterns
records 23 design patterns that were recognised
by expert object-oriented designers. Two di-
mensions for pattern categorising are proposed:
scope and purpose. The scope specifies whether
the pattern applies primarily to classes or to
objects. The purpose reflects what a pattern
does. Creational patterns concern the process
of object creation, structural patterns deal with
the composition of classes and objects, and
behavioural patterns characterise the ways in
which classes or objects interact and distribute
responsibility.

5. Conclusions and future work

We have presented an overview of the important
issues related to software reuse. We give spe-
cial stress to the key concepts among principles
as well as methods of reuse. Those aspects of
object-oriented software development that can
support reusability as well as those that make
reuse difficult have been outlined. Among the
factors having positive influence on reuse are:

e objects separate interface from implemen-
tation;

e classes are reusable building blocks the
OO software systems are constructed from;

e abstract classes can be used to define fam-
ilies of classes with common interfaces;

e inheritance makes code reuse an integrated
part of OO programming;

e classes are reusable building blocks the
OO0 software systems are constructed from;

e application frameworks provide design reuse
thatis embodied in domain specific generic
architectures;

e design patterns offer approved solutions
for recurring OO design problems.

The factors hindering reuse include:

e inheritance is a white-box reuse;

e inheritance exposes a subclass to know
about all internal details of its parents;

e class hierarchy reflects implementation in-
heritance, not interface inheritance.

Software development based on object compo-
sition makes the system’s behaviour dependent
on interrelationships among objects. Inheri-
tance is a built in mechanism that is not at all
sufficient to model different interconnections
between objects. In OO design, some stereo-
typical problems for object composition have
been recognised. Good solutions of recurring

46

Software Reuse: Principles, Patterns, Prospects

problems have been recorded into design pat-
terns. When they are applied, design knowledge
is reused.

The situation today is such, that first catalogues
of OO design patterns already exist [Coa95,
GHIV95]. To use them and apply them does
not seem to be an easy task at all. In their
book [GHJV95], the authors point out that pat-
terns can hardly be understood completely on
the first reading. A designer will have to refer
to them again and again. Successful application
of a pattern requires knowing about the pattern,
comprehending it and examining it. After that,
design patterns can be applied repeatedly by
analogy. The statement also hints what the open
problems are in standardising software design,
which in turn is the core of software reuse as
a major vehicle for turning software develop-
ment into a standard engineering. As we have
discussed in this paper, the identification, de-
scription, retrieval, adaptation and integration
of software assets are all important issues and
achieving progress in any of them will be a step
towards effective reuse. For a future work, we
wish to single out at least these three subgoals:

o To propose a formalism for representation
of design patterns, frameworks and soft-
ware architectures that would primarily
serve to retrieve and apply them in soft-
ware design.

e To propose a tool that would support the
user in retrieving and applying design pat-
terns, frameworks and software architec-
tures in software design.

e To investigate possibilities of incorporat-
ing design patterns, frameworks and soft-
ware architectures into a design/imple-
mentation language.

Obviously, these are only a few of the open
problems. The whole area of software reuse
1s much broader: it does not encompass only
design, but the whole life cycle process, and it
does not relate only to design with reuse, but
also design for reuse.

Seen from a more general perspective, the re-
cent endeavours should be considered as steps
in the right direction. If the discipline of soft-
ware development is to turn from art into engi-
neering, then software reuse is definitely one

of the major factors influencing the change.
With catalogues of typical solutions, standard-
ised methodologies, languages, etc. we wit-
ness an emerging engineering discipline; and
the prospects of it are rather promising, de-
spite the length of the road that is still ahead.
One of the promises originates in the poten-
tial of the object-oriented methodology, which
offers better expressive and structuring capa-
bilities when compared to other programming
paradigms [Nav96]. The OO paradigm itself, in
turn, is developing with one of the main motiva-
tions being increasing reusability. In the future,
new paradigms may emerge e.g., the proposed
generative programming [Eis97).

References

[Bal89] R. Balzer. A fifteen-year perspective on au-
tomatic programming. In T. J. Biggerstaff and
A. L. Perlis, editors, Software Reusability. Volume
Il - Applications and Experience, pages 289-312.
Addison-Wesley, 1989,

[Bea92] B. W. Beach. Declarative programming for
component interconnection. In 5th Annual Work-
shop On Software Reuse WISR'92, 1992,

[Big92] T. J. Biggerstaff. An assessment and analysis
ot software reuse. In Advances of Computers, vol-
ume 34, pages 1-57. Academic Press, New York,
1992.

[BMSS96] F. Buschmann, R. Meunier, P. Sommerlad,
and M. Stal. Pattern Oriented Software Architec-
ture: A System Of Patterns. John Wiley & Sons,
1996.

[BR89] T. J. Biggerstatf and Ch. Richter. Reusability
framework, assessment, and directions. In T. J. Big-
gerstaff and A. 1. Perlis, editors, Software Reusabil-
ity. Volume I - Concepts and Models, pages 1-18.
Addison-Wesley, 1989.

[BZ95] I. M. Bieman and J. X. Zhao. Reuse through
inheritance: A quantitative study of C++ soft-
ware. ACM SIGSOFT, Proc. of the Symposium
on Software Reusability SSR’95, 20(special issue
August):47-52, 1995.

[Che94] J. Cheng. A reusability-based software de-
velopment environment. ACM SIGSOFT Software
Engineering Notes, 19(2):57-02, 1994,

[CJ92] B. H. C. Cheng and J. J. Jeng. Formal meth-
ods applied to reuse. In 5th Annual Workshop On
Software Reuse WISR’92,1992.

[Cle88] J.C. Cleveland. Building application generators.
IEEE Software, 5(4):25-38, 1988.

[Coa92] P. Coad. Object-oriented patterns. Communi-
cations of the ACM, 35(9):152-158,1992.

Software Reuse: Principles, Patterns, Prospects

47

[Coa95] P. Coad. Object Models. Strategies, Patterns,
and Applications. Yourdon Press, 1995,

[DBSBY1| P. Devanbu, R. J. Brachman, P. G. Self-
ridge, and B. W. Ballard. A knowledge-based
software information system. Communications of
ACM, 34(5):34-39, 1991.

[Deu89] L. P. Deutsch. Design reuse and frameworks in
the Smalltalk-80 system. In T. J. Biggerstaff and
A. 1. Perlis, editors, Software Reusability. Volume
Il - Applications and Experience, pages 57-71.
Addison-Wesley, 1989,

[DFCS89] E. Dubinsky, S. Freudenberger, E. Chonberg,
and T. Schwartz. Reusability of design for large
software systems: An experiment with the SETL
optimizer. In T. J. Biggerstatt and A. J. Perlis, edi-
tors, Sofiware Reusability. Volume Il - Applications
and Experience, pages 275-294. Addison-Wesley,
1989,

[Dus92] E. M. Dusink. Reuse is not done in vacuum. In
5th Annual Workshop On Software Reuse WISR'92,
1992.

[DvK95] E. M. Dusink and J. van Katwijk. Reuse di-
mensions. ACM SIGSOFT, Proc. of the Symposium
on Software Reusability SSR’95, 20(special issue
August):137-149, 1995,

[Edw92] S. H. Edwards. Toward a model of reusable
software subsystems. In 5th Annual Workshop On
Software Reuse WISR’92, 1992,

[EG92] T. Eggenschwiler and E. Gamma. ET++
Swapsmanager: Using object technology in the
financial engineering domain. SIGPLAN Notices,
Proc. OOPSLA’92,27(10):166-177, 1992,

[Eis97] U. W. Eisenecker. Generative programming
(GP) with C++. In H. P. Méssenbock, editor,
Modular programming languages, volume 1204 of
LNCS, pages 351-365. Springer Verlag, 1997.

[Fic85] S. F. Fickas. Automating the transformational
development of software. IEEE Trans. on Software
Engineering, 11(11):1268-1277, 1985.

[FLMO95] S. Fraser, D. Leishman, and R. McLellan.
Patterns, teams and domain engineering. ACM
SIGSOFT, Proc. of the Symposium on Software
Reusability SSR’95, 20(special issue August):222—
224, 1995.

[FM92] J. Faget and J. M. Morel. The REBOOT ap-
proach to the concept of a reusable component. In
Sth Annual Workshop On Software Reuse WISR'92,
1992,

[FPO4] W. B.. Frakes and T. Pole. An empirical study of
representation methods for reusable software com-
ponents. [EEE Trans. On Software Engineering,
20(8):617-630, 1994,

[GHIV95] E.Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns. Elements Of Reusable
Object-Oriented Software. Addison-Wesley, 1995,

|[GP95] D. Garlan and D. E. Perry. Introduction to
the Special Issue on Software Architecture. [EEE
Trans. on Software Engineering, 21(4):269-274,
1995.

[GRI5] A. Goldberg and K. S. Rubin. Succeeding With
Objects. Decision Frameworks For Project Man-
agement. Addison-Wesley, 1995.

[Gri95] M. Griss. Systematic software reuse: Objects
and frameworks are not enough. ACM SIGSOFT,
Proc. of the Symposium on Software Reusability
SSR’95, 20(special issue August):17-18, 1995,

[GS89] P. K. Garg and W. Scacchi. Ishys, Designing an
intelligent software hypertext system. [EEE Expert,
4(3):52-63, 1989,

[Hal88] P. A. V. Hall. Software components and re-use.
Software Engineering Journal, 3(10):171, 1988,

[Hen94] S.Henninger. Using iterative refinement to find
reusable software. [EEE Software, 11(5):48-59,
1994,

Huf%2] S.Hufnagel. Formally specificd object-oriented
g P] o
approach to reuse. In 5th Annual Workshop On Soft-
ware Reuse WISR’02, 1992,

[JC93] J. Jeng and B. H. C. Cheng. Using formal
methods to construct a software component li-
brary. In I. Sommerville and M. Paul, editors,
Proceedings of 4th Software Engineering Confer-
ence, volume 717 of LNSC 717, pages 397-417,
Garmisch-Partenkirchen, 1993. Springer Verlag.

[Kar95] E. A. Karlsson. Software Reuse. A Holistic
Approach. John Wiley & Sons, 1995.

[Kru92] Ch. W. Krueger. Software rcuse. ACM Com-
puiing Surveys, 24(2):131-183, 1992,

[KV95] P. Katalagarianos and Y. Vassiliou. On the reuse
of software: A CASE-based approach employ-
ing a repository. Automated Software Engineering,
1(2):55-86, 1995.

[LdC93] D. Lea and D. de Champeux. Object-oriented
software reuse technical opportunities. In 6th An-
nual Workshop On Software Reuse WISR'03, 1993,

[LHKS91] J. A. Lewis, S. M. Henry, D. G. Kafura, and
R. S. Schulman. An empirical study of the object-
oriented paradigm and software rcuse. SIGPLAN
Notices, Proc. OOPSLA’91,26(11):184-196,1991.

[LW93] H. C. Liao and F. J. Wang. Software reuse based
on a large object-oriented library. ACM SIGSOFT,
18(1):74-80, 1993,

[Mey88a] B. Meyer. Object-Oriented Software Con-
struction. Prentice Hall, 1988.

[Mey88b| B. Meyer. Reusability: The case for object-
oriented design. In W. Tracz, editor, Software Reuse:
Emerging Technology, pages 201-215. IEEE Com-
puter Society Press, 1988.

[MMM95] H. Milli, F. Milli, and A. Milli. Reusing soft-
ware: Issues and research directions. [EEE Trans.
On Sofiware Engineering, 21(6):529-561, 1995.

48

Software Reuse: Principles, Patterns, Prospects

[Ndv96] P. Navrat. A closer look at programming exper-
tise: Critical survey of some methodological issues.
Information And Software Technology, 38(1):37-
46, 1996.

[NM95] O. Nierstrasz and T. D. Meijler. Research di-
rections in software composition. ACM Computing
Surveys, 27(2):262-264, 1995.

[NS96] P. Norton and W. Stanek. Peter Norton’s Guide
to Java Programming. SAMS.NET, 1996,

[PD90] R. Prieto-Diaz. Domain analysis: An introduc-
tion. ACM Sigsoft, 15(2):47-54,1990.

[PD91] R.Prieto-Diaz. Making software reuse work: An
implementation model. ACM Sigsoft, 16(3):61-68,
1991.

[PD93] R. Prieto-Diaz. Status report: Software reusabil-
ity. IEEE Software, 10(3):61-66, 1993.

[PDN86] R. Prieto-Diaz and M. Neighbors. Module in-
terconnection languages. Journal Of Syst. Software,
6(4):307-334, 1986.

[PL89] N. S. Prywes and E. D. Lock. Use of the
- model equational language and program generator
by management professionals. In T. J. Bigger-
staff and A. . Perlis, editors, Software Reusability.
Volume II - Applications and Experience, pages
103-129. Addison-Wesley, 1989,

Pol87] S. Pollitt. Cansearch: An expert systems ap-
P ¥ p
proach to document retrieval. Information Process-

ing And Management, 23(2):119-138, 1987.

[Pre91] W.Pree. Reusability problems of object-oriented
software building blocks. In A. Mrazik, editor, Eas-
tEurOQOP 9] Proceedings, pages 15-20, Bratislava,
1991. ArtlnAppleS.

[RGP88] C. V. Ramamoorthy, V. Garg, and A. Prakash.
Support for reusability in Genesis. [EEE Trans. On
Software Engineering, 14(8):1145-1154, 1988.

[RW89] Ch. Rich and R. C. Waters. Formalizing
reusable software components in the Programmer’s
Apprentice. In T. J. Biggerstaff and A. J. Perlis, ed-
itors, Software Reusability. Volume II - Applications
and Experience, pages 313-344. Addison-Wesley,
1989.

[SGY6] M. Shaw and D. Garlan. Software Architecture
- Perspectives Of An Emerging Discipline. Prentice
Hall, 1996.

[Sha95] M. Shaw. Architectural issues in software reuse.
ACM SIGSOFT, Proc. of the Symposium on Software
Reusability SSR°95, 20(special issue August):3-6,
1995.

[SN96] M. Smoldrovd and P. Nivrat. Recent direc-
tions in software development with reuse: Design
patterns and beyond. In Proc. of the Conference
on Electronic Computers and [nformatics, Kosice,
1996.

[Som92] 1. Sommerville.
Addison-Wesley, 1992,

Software Engineering.

[SSP95] A. Schappert, P. Sommerlad, and W. Pree.
Automated support for software development with
frameworks. ACM SIGSOFT, Proc. of the Sympo-
sium on Software Reusability SSR’95, 20(special
issue August):123-127, 1995.

[Tra88] W. Tracz. Software reuse myths. ACM SIG-
SOFT, 13(1):17-21, 1988.

[Tra95] W. Tracz. Third International Conference
on Software Reuse. Summary. ACM SIGSOFT,
20(2):21-25, 1995.

[Vil95] P. Viljamaa. The patterns business: lmpressions
from PLoP"94. ACM SIGSOFT, 20(1):74-78,1995.

(Whi95] B. Whittle. Models and languages for compo-
nent description and reuse. ACM SIGSOFT Sofiware
Engineering Notes, 20(2):76-87, 1995.

[WOZ91] B. W. Weide, W. F. Ogden, and S. H. Zweben.
Reusable software components. In Advances of
Computers, volume 33, pages 1-65. Academic
Press, New York, 1991.

[WS88] M. Wood and I. Sommerville. An information
retrieval system for software components. Software
Engineering Journal, 3(10):199-207, 1988.

[ZW93] A. M. Zaremski and J. M. Wing. Signa-
ture matching: A key to reuse. ACM SIGSOFT,
18(5):182-190, 1993.

Received: August, 19906
Accepted: April, 1997

Contact address:

Slovak University of Technology

Dept. of Computer Science and Engineering
Ilkovicova 3

812 19 Bratislava

Slovakia

e-mail: smolarova@dcs.elt.stuba.sk,
navratoelf.stuba.sk,

WWW: http://www.dcs.elf.stubask/ smolar,
hitp:/ /www.clf.stuba.sk/“navrat.

MARIA SMOLAROVA received her MSc in Computer Science trom Slo-
vak University of Technology in Bratislava in 1986. She is a research
assistant at the Department of Computer Science and Engineering and
a PhD candidate in Applied Informatics, both at Slovak University of
Technology. Her research interests include software engineering, sofl-
ware reuse, object-oriented software development, and design patterns.

Software Reuse: Principles, Patterns, Prospects

49

PAVOL NAVRAT received his Ing. (MSc.) summa cum laude in 1975,
and his CSc. (PhD.) degree in Computing Machinery in 1983, both
from Slovak University of Technology in Bratislava. He has been with
its Department of Computer Science and Engineering since 1975. Since
1996, he is a full professor of Computer Science and Engineering. His
scientific interests include automated programming and software en-
gineering. He is a member of the [EEE and its Computer Society
(active for Software Engineering Standards Committee), American As-
sociation for Artificial Intelligence, Slovak Society for [nformatics, and
Association for Advancement of Computers in Education (co-founded
its Central European Chapter). He is a member of editorial board of
the international journal /nformatica. Frequently, he has been serving
in programme committees of scientific conferences. He (co-)authored
two books and numerous scientific papers. He regularly publishes re-
views of monographs and articles in ACM Computing Reviews and
other journals.

