Journal of Computing and Information Technology - CIT 5, 1997, 1, 63-67 63

Book Reviews

Martin D. Carroll, Margaret A. Ellis
Designing and Coding Reusable C++

Addison—Wesley Publishing Company, Read-
ing, Massachusetts, 1995, pp. 317, xvi, ISBN
0-201-51284-X

Most professional programmers are well ac-
quainted with the problem of code reusability.
Libraries with standard functions are available
for all programming languages, but writing li-
braries of one’s own, in such a way that they
could be used later in many different projects,
requires the programmer’s thorough approach.
This particularly holds for C++ programming
language.

Over the last few years, C++ has become the
most popular programming language. It gained
popularity mainly from the widespread C pro-
gramming language, from which it has evolved.
One of the qualities of C is availability of a huge
function library. But, as the reader probably
knows, C++ is not just a “better C” - it extends
Cin several ways, providing object-oriented de-
sign and programming. Some of the features
added to C+- provide better code reusability,
templates and inheritance being the most ob-
vious ones. But, these built-in features can-
not solve all reusability-related problems. The
problem of reusability is emphasized by the fact
that C++ is not standardized yet and there is an
obvious problem of code porting between com-
pilers. The authors of the book, M. D. Carroll
and M. A. Ellis have been directly involved in
the design and development of C4++ language
and C+4+4 compilers at AT&T Bell Laboratories.
Moreover, Ms. Ellis is the co-author of The An-
notated C++ Reference Manual, first C++ de
facto standard. Mr. Carroll has worked on the
design and implementation of reusable C4++
libraries for several years.

Designing and Coding Reusable C++ is divided
in twelve chapters through which the authors
analyze almost all aspects of code reusability.
Each chapter closes with a summary, exercises
and references for further reading. The book
ends with an extensive bibliography and alpha-
betical index.

In the introductory chapter, basic facts regard-
ing the code reusability are discussed. Some
myths of reuse are repelled and obstacles are
outlined. There follows a chapter on class de-
sign. Since most of C++ libraries are primarily
collections of classes, a good class design can
establish satisfactory reusability. Several topics
essential for design of reusable classes are cov-
ered, e.g. abstraction, regular functions, class
interface consistency, conversions. A special
attention is paid to shallow and deep copies,
and to the use of const,

The Extensibility chapter covers mainly inher-
itance, one of the most powerful features of
C++. It is followed by a chapter on efficiency,
an essential property of the reusable code. The
term efficiency here does not mean the run time
efficiency only, but also covers the program
build time (including compile, link and instan-
tiation times), code size and memory. Special
attention is paid to function inlining.

Since the occurrence of errors during the ex-
ecution of programs is unavoidable, in order
to achieve a complete reusability, library code
must deal with errors reasonably. Accordingly,
the problem of error detection and handling
is described in the fifth chapter, with particu-
lar emphasis on exception handling - a mecha-
nism introduced to C++ to efficiently manage
anomalies during program execution.

The Conflict chapter is dealing with a very com-
mon problem of name conflicts. Very often,
same names are used to mean different things in



64

Book Reviews

different libraries. If these names have global
scope, they will conflict with each other. Such
name conflicts occur between macro names and
environment names as well. The authors pro-
pose a naming convention that should avoid
such conflicts. Moreover, a namespace con-
struct is described, which has been included in
ANSI/ISO C++ standard lately in order to cir-
cumvent name conflicts in large-scale projects.

The seventh chapter examines the compatibility
problem, namely the source, link and run com-
patibility. The importance of backward com-
patibility in future releases is pointed out. The
Inheritance Hierarchies chapter studies rooted-
ness, depth, and fanout of inheritance hierarchy.
In this chapter the reader will find a very useful
discussion on the permanent dilemma “Tem-
plates or inheritance?”.

Portability, closely related to code reusability, is
discussed in chapter 9. Major issues that affect
portability are reviewed, e.g. the changing def-
inition of the C++ language, undefined behav-
jors, template instantiation, run-time libraries.
There follows a chapter in which authors dis-
cuss whether a C++ library should reuse part
of another library. The main drawbacks of using
other libraries are designated and self-contained
libraries, as an alternative to reusing other li-
braries, are described.

As pointed out in chapter 10, writing good doc-
umentation is particularly difficult but may be
crucial for the success of any library - the au-
thors give suggestions for writing tutorials and
reference manuals. In the closing chapter seve-
ral miscellaneous topics important for library
reusability are examined. These topics include
static initialization problem, endogenous and
exogenous classes, iterators.

As the authors state, . . . the primary goal of this
book is to show how to write reusable code. . . -
that is, code that can easily be used with little or
no change in five, fifty or five hundred programs
with varying requirements, written by different
programmers, and possibly running on different
systems. It is not a goal of this book to argue
that all codes should be reusable...”. A very
instructive and systematic approach to topics
throughout the chapters makes the matter ap-
propriate for any programmer familiar with lan-
guage basics. Topics are regularly illustrated
with source code examples.

Writing reusable C++ code is not a trivial task,
but the efforts will pay well, giving rise to pro-
ductivity. Importance of the matter covered and
the above mentioned qualities of the book make
it therefore unavoidable for anyone who is or in-
tends to become a professional C++ program-
mer.

Julijan Sribar

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb, Croatia

Murray Sargent III, Richard L. Shoe-
maker

The Personal Computer from the
Inside Out

Third Edition, Addison—Wesley Publishing
Company, Reading, Mass., 1995, pp. xvi, 800,
ISBN: 0-201-62646-2

The Personal Computer from the Inside Oul
provides a comprehensive treatment of the low-
level PC hardware and software. The book con-
sists of thirteen chapters.

The introducing Chapter 1 describes the evo-
lution of the PC from the initial IBM PC and
PC-AT machines to much more powerful PCs.
It also gives an overview of the PC hardware
and software. Chapter 2 gives an introduction
to the basic concepts and terminology of ma-
chine and assembly language in terms of the
x86 microprocessor’s instruction set, and shows
how a modern computer works internally as
it performs basic operations. Chapter 3 dis-
cusses assembly language and the x806 instruc-
tion set in greater detail. The usage of various
instructions and a macro assembler in writing
simple programs are also described. The fol-
lowing advanced assembly language techniques
are described in Chapter 4: how to structure
complex assembly language programs, how to
use macros and conditional assemblies, how (o
write assembly language subroutines for pro-
grams written in various high-level languages,



Book Reviews

65

how to write custom driver programs for any
device attached to the computer, how to control
disk files and how to program the floating-point
unit. Chapter 5 describes the protected, virtual-
address mode of the 286, 386, and later micro-
processors. It also compares this to the 8086
real-address mode, virtual 8086 mode and the
“real-big mode”.

Chapter 6 provides an introduction to the ba-
sic digital circuitry, including diodes and tran-
sistors, simple logic gates, buffers, flip-flops,
latches, clock circuits, counters, shift regis-
ters, multiplexers and demultiplexers and pro-
grammable logic devices, all of which are essen-
tial in building a microcomputer like the PC or
in designing custom PC interfaces. These topics
are expanded in Chapter 7, which deals with the
PC hardware, such as the x86 microprocessor
itself, memory, interrupt controller, RTC cir-
cuit, DMA controller, keyboard controller and
expansion buses (ISA, VL, PCI). The concepts
of interrupts, timer software and data transfer
techniques are discussed in Chapter 8.

Chapter 9 shows how the PC’s keyboard and
video displays work and in some detail dis-
cusses the most popular video display options
for the PC. Chapter 10 discusses how the TTL
level highs and lows of 1/O ports can be con-
nected to various devices that manipulate and
measure a variety of real-world quantities such
as switch and relay closures, analog signal in-
puts and outputs, electrical waveforms, and mo-
tor control signals. The solutions to various
problems encountered in acquiring and gen-
erating waveforms are also discussed, includ-
ing the role of DSPs in waveform processing
and manipulation. Chapter 11 explains various
parallel-port and serial-port protocols and their
usage on the PC. This chapter also discusses
the IEEE-488 Interface Bus and the SCSI bus.
Chapter 12 describes various media and meth-
ods for the storage of computer data in PCs. The
approaches vary from small high-speed cache
RAM right on the CPU chip itself, to inexpen-
sive, large capacity, removable optical storage.
The closing Chapter 13 gives useful tips for de-
signing, constructing and debugging user inter-
faces, using a wire-wrapped analog and digital
1/O board as an example project.

The book is written clearly and comprehen-

sively, the matter is well- structured and it is
supplemented with an index. Although this

book offers a great deal of technical informa-
tion, the authors succeeded in keeping it read-
able. I mostly appreciated the accompanied disk
with the SST debugger, which is used to il-
lustrate many principles of assembly- language
programming and much of the inner workings
of the PC. This book is useful for anyone who
wants a thorough understanding of how PC and
other computers work, and for anyone who
wants to develop hardware or software exten-
sions for the PC. If you consider yourself to
belong to this group, you should certainly have
a look.

Ninoslav Mati¢

Faculty of Electrical Enginecring
and Computing

University of Zagreb

Zagreb, Croatia

C. Mazza, J. Fairclough, B. Melton, D.

De Pablo, A. Scheffer, R. Stevens, M.
Jones, G. Alvisi

Software Engineering Guides

Prentice Hall International (UK), Hertfordshire,
1996, pp. x, 544, ISBN 0-13-449281-1

This book contains guides to software engineer-
ing produced by the European Space Agency
(ESA) and is intended mainly for software de-
velopers applying ESA’s Software Engineering
Standards (PSS-05-0), which have been pub-
lished in the book Software Engineering Stan-
dards (Prentice Hall, 1991). The Software En-
gineering Standards define the mandatory and
recommended practices for specifying, devel-
oping and maintaining software and the Soft-
ware Engineering Guides in this book discuss
those practices in more detail.

According to the Software Engineering Stan-
dards, the software engineering activity may
be divided into two parts: the products them-
selves and the procedures used to make them.
The process of production is partitioned into six
phases. This book gives a thorough guide for
each of them.



66

Book Reviews

The first phase of the software life cycle is
the User Requirements Definition Phase (UR
phase), which may also be referred to as the
problem definition phase. This phase refines
an idea about the task that has to be performed
by computing equipment into a definition about
what is expected from the computer system.
The second phase is the Software Requirements
Definition Phase (SR phase), which can be
called the problem analysis phase. Based on
the analysis of the user requirements, complete,
consistent and correct software requirements
are produced. What follows is the Architec-
tural Design Phase (AD phase), the third phase
of the software life cycle, which can also be
named the solution phase. It defines the soft-
ware in terms of the main software components
and interfaces. The following, fourth phase is
the Detailed Design and Production Phase (DD
phase) - the implementation phase. This is the
phase in which developers code, document and
test the software after detailing the design spec-
ified in the AD phase. The fifth phase is the
phase in which the developers release the soft-
ware to the users. This is the handover phase,
in Software Engineering Standards defined as
the Transfer Phase (TR phase). The software is
installed on target computer systems and accep-
tance tests are run to validate it. The last phase
of the software life cycle is the Operation and
Maintenance Phase (OM phase). This is the
operational phase in which software is operated
by the users and the end products and services
it provides are utilized.

The guides for each phase give a detailed
overview of the phase, present the methods as
well as adequate tools, which can be used in the
phase. Moreover, guidelines for the appropriate
documentation of each phase are given. Each
phase has its own index and a glossary, consist-
ing of a list of acronyms and, in some phases, of
a list of terms. References containing relevant
material are given in each guide. Each guide is
equipped with mandatory practices, and some,
as a helpful hint contain an example of a require-
ments traceability matrix, CASE tool selection
criteria, efc.

The second part of the book contains guides for
procedures to be followed in the software life
cycle, which are divided amongst four manage-
ment activities. The first guide describes activ-
ities of planning, organizing, staffing, leading,

monitoring and controlling a software project.
Those activities are called Software Project
Management (SPM).Each project must have a
Software Project Management Plan in which
its activities are defined in detail. The SPM
guide should be read by software project man-
agers, software quality assurance managers, se-
nior managers, initiators of software projects
and team leaders. The Software Configuration
Management (SCM) is the activity of control-
ling the documentation and code throughout the
software life cycle. Those activities must be de-
fined in a Software Configuration Management
Plan. The SCM guide is intended for those con-
cerned with developing, installing and changing
software - software project managers, software
librarians and software engineers. The third
group of activities are the activities of software
verification during each phase of its develop-
ment life cycle and of software validation when
it is transferred. Those activities are called the
Software Verification and Validation activities
(SVV) and they must be defined in a Software
Verification and Validation Plan. The guide for
those activities should be read by everyone con-
cerned with developing software. Finally, the
Software Engineering Standards require that all
software projects assure that product and pro-
cedures conform to standards and plans. This
group of activities is called Software Quality
Assurance (SQA) and must be defined in a Soft-
ware Quality Assurance Plan. The SQA guide
is intended for anyone dealing with software
quality.

Each of the above guides contains an overview
of activities, guidelines on methods and tools
to be used, as well as instructions for planning.
Each guide is equipped with a glossary, a list
of references and mandatory practices. Whal
many of the readers may find very useful are
form templates for the documentation of Soft-
ware Project Management and Software Con-
figuration Management activities. The primary
source of terminology and definitions of prod-
ucts and plans throughout this book are the soft-
ware engineering standards of the Institute of
Electrical and Electronic Engineers (IEEE).

This is book is a necessary companion for all
those who want to apply effectively the Soft-
ware Engineering Standards of the European
Space Agency. However, it is also strongly rec-
ommended to anyone else interested in gaining
an insight of the tedious tasks and steps in the



Book Reviews

67

development of a large software project, in or-
der to make those tasks and steps easier, more
formal and more effective.

Andrea Budin Posavec

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb, Croatia



