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Statistics with Non-Precise Data

Reinhard Viertl

Department of Statistics and Probability Theory, Vienna University of Technology, Wien, Austria

In statistical analysis data are usually assumed to be
numbers or vectors. But real measurement data of
continuous quantities are not precise numbers but more
or less non-precise. This imprecision is different from
measurement errors and is also called fuzziness. Betfore
analysing the data it is necessary to describe the impre-
cision of measurements quantitatively. This can be done
using the concepts of fuzzy numbers and fuzzy vectors.
Then statistical inference procedures are generalized to
the more realistic situation of non-precise data.

Keywords: Data Analysis, Fuzzy Data, Fuzzy Numbers,
Non-Precise Data, Statistics.

1. Introduction

Observing stochastic quantities one is facing
different kinds of uncertainty. Three important
types of uncertainty are

stochastic variation
errors in the data
imprecision of observations.

Stochastic variation is described by stochastic
models X ~ Pg, 0 € ©, where X is a stochastic
quantity and Py, 0 € @ is a family of probabil-
ity distributions. The symbol “~” stands for
“is distributed according to”. The distribution
Py has to be estimated from observations of X,
called data.

Errors in the data are described by error mod-
els. Here it is assumed that not realizations x;
of X are observed but the observations y; are
translations of the “true” wvalues x;, i.e.

Yi=X+¢€

where ¢ is called error. The error term is usu-
ally modelled by a stochastic quantity Z ~
N(0, 6?), i.c. normally distributed errors. Tt

should be noted that the results y; are usually
assumed to be precise numbers.

In standard statistical inference all observed
quantities are assumed to be precise numbers.
But this cannot be said for real data because
measurements are more or less non-precise.
This means that the result of a measurement
is not a precise number x but a fuzzy number
denoted by x*.

General considerations on modelling and sta-
tistical analysis of non-precise data are con-
tained in BANDEMER (1993), DUBOIS & PRADE
(1986), and KAacprzYK & FEDRIZZI (1988).
Theoretical mathematical aspects are given in
KRUSE & MEYER (1987), and VIERTL (1996).

To explain the fundamental ideas of statistical
inference for non-precise data in the following
observations without error term are considered.

The third type of observation uncertainty is the
imprecision of single observations. This un-
certainty is usually neglected in statistics. But
continuous quantities cannot be measured pre-
cisely. Therefore such measurements are not
just numbers but more complex objects.

2. Non-Precise Data and Fuzzy Numbers

Since observations are not just numbers but im-
portant figures they must be described quantita-
tively before carrying out statistical analysis.

Example 1: Reading on a digital instrument is
a finite sequence of numbers. Therefore the
result x* of a measurement in this case is an in-
terval [a, b in the most simple situation. This
result can be described by the indicator func-
tion /[, /() of [a, b]. This indicator function is
characterizing the observation.
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Fig. 1. Examples of characterizing functions

Example 2: Let the result of a one-dimensional
measurement be a light point on the screen. This
can, of course, not be identified with a precise
real number. A reasonable description in gen-
eralization of an indicator function is a function
derived from the light intensity g(+) of the point.
This derived function is a real function &(-) de-
fined by

g(x)

— Y xeR.
max g(x)

E(x) =

The function &(-) is characterizing the result of
the measurement.

Remark 1: A precise observation x, € R is
characterized by the indicator function I,y (-).

Results of observations, which are not precise
numbers are called fuzzy numbers. Fuzzy num-
bers are denoted by x*. In generalization of
precise numbers x the mathematical description
of fuzzy numbers are so called characterizing
functions which are special forms of member-

ship functions from fuzzy set theory and gener-
alizations of indicator functions.

Definition 1: A fuzzy number x* is given by
its characterizing function &(-) which is a real
function obeying the following conditions:

(1)
(2)
(3)

E: R—[0,1]
dxo€eR: E(x) =1

Va € (0,1 the set B, := {x € R:
E(x) > a} = [aqg, by] is a finite closed
interval, called a-cut of §(-).

In figure 1 some characterizing functions are
depicted.

Remark 2: Methods to obtain the characterizing
functions of non-precise observations depend
on the field of application. Some methodology
can be recognized in the above examples. For
more details compare the monograph VIERTL
(1996).
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Fig. 2. Non-precise observation and class of a histogram

3. Histograms for Non-Precise Data

For non-precise data the construction of a his-
togram is not trivial because for fixed class K of
a histogram it is generally not possible to decide
if a non-precise observation x} with character-
izing function &;(+) is in the class K or not. An
example of this situation is given in figure 2.

Therefore it is necessary to generalize histograms
to the situation of non-precise data. This is done
by the concept of fuzzy histograms. In fuzzy
histograms the height of the histogram over the
classes Kj = [aj, bj], j = 1(1)k, is a fuzzy num-
ber /};(K;) whose characterizing function »;(-)
is constructed in the following way.

First, by n; we denote the number of those ob-

servations x} which are certainly in the class K.
Those are the observations whose characteriz-
ing functions &;(+) fulfill

fg]-(x) = 0

Next, by 7; we denote the number of those ob-
servations x} for which

HXEJKJ' i &(x)>0.

Then the characterizing function 7;(-) is 0 out-

side the interval
L n
n'n

In this interval the characterizing function n;(-)
is a polygon with

forall x ¢ K;.

n—1 i+ 1
m(’n ):0 and m(n’n >:0

and cutting points whose abszissa values are
5 (1) 5

n \n/ n’

To obtain the values of the ordinates at these
points we consider

By
Aj(x) = f Eifx)dx dor 4 =1(1n
and
Bl = [?Ei(x)dx—Aj (x7) fori=1(1)n

for those x with A; (x}) > 0 and B; (x}) > 0.

Denoting these observations by x’(*ﬂ) for £ =
1,---,n; — n; in order of increasing values of

j
B; (x’("e))

where &(;)(+) denotes the characterizing func-
tion of x?@ , the values of the characterizing func-

tion 1;(+) at the abszissa of the cutting points are
given by
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In figure 3 an example is depicted.

Remark 3: Other concepts from descriptive statis-

fz_:l’ I &y () dx

tics can be generalized too. For details compare
the monograph VIERTL (1996).

In order to generalize statistical inference pro-
cedures it is necessary to look at functions of
non-precise variables. This is done in the fol-
lowing section.

4. Functions of Non-Precise Samples

In order to generalize statistical functions § =
S (Xi, -+, X,) of samples from stochastic quan-
tities X two points have to be noticed.

In case of precise data xy,---,x, withx; € M,
where M denotes the observation space of X, the
sample is considered as an n-tuple (x, -+, x,)
which is an element of the sample space M" =
M x -+ x M, the Cartesian product of n copies
of the observation space.

Statistics S are defined by measurable functions
S :M" — N, where (N, C) is some measurable
space.

7;(x)
A
1 ;
SN TS T T .
{ ; moo
n n

Fig. 3. Fuzzy height of a histogram
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Remark 4: For parameter estimations the space
N is the parameter space © from the introduc-
tion.

In case of non-precise samples two points are
important:

I. The non-precise sample x7, - - -, x}, has to
be combined to form a fuzzy element x* of
the sample space, called non-precise com-

. bined sample element.
II. Classical statistical functions S(+) have to

be generalized to the situation of fuzzy ar-
guments.

4.1. Combination Rules

The first point above is realized via so-called
combination rules K(-,---,-). These combi-
nation rules generate a so-called fuzzy vector
which is a non-precise element of the sample
space M" C R". These fuzzy vectors are de-
fined in the following way.

Definition 2: An n-dimensional fuzzy vector
x* is given by its n-dimensional characterizing

function &(-, - - -, -) which is a real function of
n real variables xi, - - -, x,, with following prop-
erties with x = (x1,...,%,):

(1) &E:R"—[0,1]

(2) FxpeR": E(x) =1

(3) - Ba(®*) = R r-E@) > al} -8
vV a € (0,1] a star shaped and compact
subset of R". -

Remark 5: There are different combination rules
which generate a fuzzy vector x* from n fuzzy
numbers x7, - - -, x;. This combination is based
on

}5‘(., RN ) area Kn.(gq(‘), Lty al())
where the values &(xq, - -

g1, ) = Ka(B10n), -, Gl )
Vo (xq,0,x) €M™

-, X,) are given by

The simplest combination rule is
E(xr, -+ %n) 1= i:n?(i%” Ei(xi)

v (xla ' "axrt) = Mrz,

called minimum-rule. For this combination rule
the at-cuts By (x*) of the so-called non-precise
combined sample element x* are related to the
a-cuts By (x]) of the non-precise dataxj, - - -, x;
by
Bo(x™) = XiLiBa(x) YV a€(0,1],

i.e. all B, (x*) are the Cartesian products of the
a-cuts By (x7).

For the proof compare VIERTL (1996).

Another possible combination rule is the so-
called product-rule

E(xT:"'axll)::H&i(xi) v(xh“'axn) GMH-
i=1

4.2. Extension Principle for Functions

With the construction of non-precise combined
sample elements x* it is possible to model func-
tions of n non-precise arguments. This can be
done by an adaption of the so-called extension
principle from fuzzy set theory.

Definition3: Let g: R” — R be a classical func-
tion whose argument values x are not known
precisely but are fuzzy vectors x* € F(R") .
For a non-precise argument value x* with corre-
sponding characterizing function &(-) the non-
precise value g(x*) of the function g(-) is de-
fined by its characterizing function v(-) whose
values are given by

sup{5(x): x € R", g(x) = y}

o) for &7 ({y}) #0

for g7 '({0}) = 0.

Remark 6: For continuous functions g(-) in def-
inition 3 it can be proved that the function ¥ (-)
fulfills all properties of a characterizing func-
tion in definition 1.
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5. Generalized Point Estimators based on
Non-Precise Samples

Let X ~ f(-|0), 6 € © be a stochastic
model with observation space M. Furthermore
let 9(X71, -+, X,) be a classical estimator for 6
based on a sample X7, - - -, X, from X. For con-
crete observed precise dataxq, - - -, x,, a parame-
ter value 6 = Hx1,- -+, x,) from O is obtained
as estimation for the true parameter 6,.

X are

If only non-precise observations x7, - - -, X}
available a fuzzy estimate * for the true param-
eter 6, can be obtained by applying definition 3
to the function (-, - - -, -), based on the charac-
terizing function &(-,-- -, -) of the non-precise
combined sample element x* from section 4.1.
Using the notation x = (x,---,x,) € M" the

characterizing function v (-) of 6* is given by

its values

sup{E(x): x € 97'(6))

W(0) = for 971(0) #£ 0

for 971(8) = 0.

Example 3: Let the life time X of an electronic
device be exponentially distributed with density

1 x ;
£x]8) =5 exp (=5 ) To.00) ()
with parameter 0 > 0.

The optimal point estimator 6 for the true pa-
rameter 0, based on precise observed life times

SNV

s

T f T T
8 10 12
500
\ 15 i 1 > 9
8 10 12

Fig. 4. Non-precise sample and fuzzy estimate 6*
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Fig. 5. Fuzzy confidence region

X1, ,Xp 1S given by

§ = By, -

?x,,) T — RN
n
i=1

In case of non-precise observed life timesx7, - - -
x, with corresponding characterizing functions
E1(), -+, Eu(-) the generalized fuzzy estimate
0™ is depicted — using the minimum combina-
tion rule — in figure 4.

2

An application for renewal problems is given in
NICULESCU & VIERTL (1992)

6. Fuzzy Confidence Regions

It is assumed that the reader is familiar with
the concept of confidence functions and confi-
dence regions. Let x(X7,---,X,) be a confi-
dence function with confidence level 1 — & for
the — possibly k-dimensional — parameter 6 of
a stochastic model. For precise concrete data
X1, , X, this yields a subset & (xq,---,x,) C
O, called confidence set.

For non-precise data with characterizing func-
tion E(,--+,-) of the non-precise combined
sample element the generalized confidence re-
gion becomes a fuzzy subset ®* of @. Using
the vector notation x = (xy,---,x,) the char-
acterizing function @(-) of ©* is defined by its
values

sup{E(x):
eB):=1

0exk(x)}
if3x: 0 € x(x)

for all other 8 € ©.

Remark 7: ¢(+) is a special form of the mem-
bership function from fuzzy set theory. This
construction is a reasonable generalization be-
cause for precise data the resulting ¢(-) is the
indicator function of the corresponding classical
confidence set.
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7. Non-Precise Data and Statistical Tests

The problem of fuzzy data in connection with
statistical tests was adressed in GIL & CORRAL
(1988).

For non-precise data so called test statistics
T =T (x7,--,x;) become fuzzy quantities 7*.
This is a problem if the characterizing func-
tion n(-) of £ has positive values in both the
acceptance region and the rejection region of
the test. In this case a decision is not possible.
Then, similar to sequential procedures in statis-
tics, more data have to be collected in order to
obtain a decision.

There are some papers on this topic, but fur-
ther research is necessary. For details compare
ROMER & KANDEL (1995).

8. Further Classical Statistical Methods for
Non-Precise Data

Also the following inference procedures can be
generalized to the situation of non-precise data:

Cumulative sums

Empirical distribution functions
Empirical fractiles

Correlation coefficients

9. Bayes’ Theorem for Non-Precise Data

The fundamental concept for Bayesian infer-
ence in statistics is Bayes’ theorem

(B | #yy ey} o w(O)B(Bpmi, 5 i 2,

where 7t(-) is the a priori density, £(- ;x;, - - -, x,)
the likelihood function, x1, - - -, x,, are the pre-
cise data, and 7t(- | x1, - - -, x,,) is the a posteriori
density. The symbol o< denotes “proportional”,
since m(0)-£(6;x1, - - -, x,) has generally to be
normalized by a multiplicative constant in order
to become a probability density function, i.e.

/E(Q[x],---,xn)dﬂzl.
JO

For non-precise data Bayes’ theorem has to be
generalized. This is possible using the charac-
terizing function &(-, -, -) of the non-precise
combined sample element x*. The outcome of
generalized Bayes’ theorem is an a posteriori
density with fuzzy values, called fuzzy a poste-

For details compare the monograph VIERTL (1996). riori density m*(-| x*).

T T ; 6

(6] z*)
0.3
m, (8 z¥) = 71 (0] )
0.2 1
0.1 4
0.0 T T T T
0.0 1.2 2.4 3.6 4.8 6.0 T2

8.4

Fig. 6. Fuzzy a posteriori density
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The characterizing function 1y (-) of the fuzzy
value 1%( 6 | x*) is given by its values

sup {5(x): x € M", (0 | D)=y}
ve)=9 for 3x: 7(6 | x)=y

otherwise.

The family (yg(-); 0 € ©) of fuzzy values of
7*(0 | x*) is called fuzzy a posteriori density

(- | x%) = (yo(-); 8 € ).

Remark 8: Fuzzy a posteriori densities can be
graphically represented by so-called a-level
curves m,, (- | x*) and 7, (- | X*) respectively.
These are deterministic functions which con-
nect the endpoints of the a-cuts of g(-) for
varying 6. In figure 6 an example of such a
presentation is given.

A related paper is FRUHWIRTH - SCHNATTER
(1992).

10. Fuzzy Predictive Distributions

An important concept for stochastic predictions
is the predictive density. For stochastic model
X ~f(-]10), 0 € O, a priori density 5(-), pre-
cise data x1, - - -, x, the predictive density of X

A

0.05

0.00 T T T T ! ] :

based on the data x = (x1,---,x,), denoted by
p(- | x) is defined by their values

p(x|3_c)-—ﬁ/®f(x|9) (6 | x) d@ forall x € M.

Remark 9: As reference any introductory book
on Bayesian statistics is suitable. A german
language reference is VIERTL (1990).

In the situation of non-precise data with non-
precise combined sample element x* and cor-
responding characterizing function &(-,---,-)
the concept of predictive density can be gen-
eralized. The result is a generalized predictive
density with fuzzy values p*(x|x*). The char-
acterizing functions vy, (-) of these fuzzy values
are defined by

sup {§(x): x € M", p(x|x) = y}
5 = if 3x: px|x) =y

otherwise

for x varying in the observation space M of the
considered stochastic quantity X.

Remark 10: Also, predictive densities are graph-
ically displayed using a-level curves. An ex-
ample of a stochastic quantity with exponential
distribution is given in figure 7.

Fig. 7. Fuzzy predictive density
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11. Further Bayesian Inference Methods
for Non-Precise Information

Besides the above mentioned, the following
Bayesian inference methods can be also gen-
eralized to the case of non-precise data:

Bayesian confidence regions
HPD-regions

Bayesian decisions under loss

Moreover, an important topic are non-precise
a priori distributions and the generalization of
Bayes’ theorem to the situation of non-precise
a priori densities and non-precise data. This is
also possible.

For details on these topics see VIERTL (1995)
and the monograph VIERTL (1996).

12. Conclusion

Before their statistical inference the formal de-
scription of non-precise data is necessary. Us-
ing the concepts of fuzzy numbers and fuzzy
vectors to describe them it is possible to gen-
eralize classical statistical inference procedures
as well as Bayesian methods to the situation of
non-precise data. Moreover, it is also possi-
ble to model non-precise a priori information
in Bayesian inference and to develop a corre-
sponding methodology for related statistical in-
ference. Basic concepts as well as hints for
further readings are given in this paper.

Some problems need more research. For ex-
ample statistical test procedures and general
Bayesian decision rules in face of non-precise
data and general fuzzy information. It would be
interesting also to consider fuzzy utility func-
tions which seem to be more realistic.

Remark 11: Calculations necessary to work out
statistical inference for real non-precise data are
only possible using computer programs. For
some inference procedures such software is al-
ready available.
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