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The goal of blockmodeling is to reduce a large, poten-
tially incoherent network to a smaller comprehensible
structure that can be interpreted more readily. Block-
modeling, as an empirical procedure, is based on the
idea that units in a network can be grouped according
to the extent to which they are equivalent, under some
meaningful definition of equivalence. In the paper an
optimizational approach to blockmodeling is discussed.
Methods where a set of observed relations are fitted to a
pre-specified blockmodel are also presented.
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1. Introduction

Social network analysis has attracted  consid-
erable interest from the social and behavioral
science community in recent decades. Much
of this interest can be attributed to the focus of
social network analysis on relationships among
social units, and on the patterns and implications
of these relationships. Wasserman and Faust
(1994) pointed out that the network perspective
allows new leverage for answering standard so-
cial and behavioral science research questions
by giving precise formal definitions to aspects of
the political, economic, or social environment.
From the view of social network analysis, the
social environment can be expressed as patterns
or regularities in relationships among interact-
ing units.

The origins of social network analysis can be
found in the social psychology of groups and at
its subsequent development in sociological and
social anthropological studies of factories and

communities (e.g., Moreno 1934, Lewin 1936,
Warner and Lunt 1941, Heider 1946, Bavelas
1948, Homans 1951, Cartwright and Harary
1956, Nadel 1957, Mitchell 1969). Scott (1991)
gave a very nice discussion on the development
of social network analysis from the theoretical
ideas to growing technical complexity of the
work carried out from the 1970s. In 1978 the
International Network for Social Network Anal-
ysis (INSNA) was formed. This international
group for the exchange of information and mu-
tual intellectual support published a newsletter,
Connections, and was involved in the founda-
tion of the journal Social Networks. Within this
institutionalized forum, network analysts have
pursued a variety of topics with regard to the
substance and development of network analytic
tools.

There are several topics which are treated in so-
cial network analysis. Some of them are the
following ones:

e connectedness and cohesive subgroups,
e boundaries of networks,
e centrality of units in a network,

e roles and positions in networks (block-
modeling).

Blockmodeling has been a main focus of net-
work analysts (Hummon and Carley 1993) with
position as a central concept (Borgatti and Ev-
erett 1992). Blockmodeling seeks to cluster
units that have substantially similar patterns of
relationships to others, and interpret the pattern
of relationships among clusters.
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2. Basic terms

LetE = {X1,X>, ... ,X,} be afinite set of units.
The units are related by binary relations

RICEXE, t=1,...,r

which determine a network

N = (E,R1,Ry,...,R,))
In the following we restrict our discussion to a
single relation R described by a corresponding

binary matrix R = [r;j],x, where

_ ] 1 XiRX;
Ty = 0 otherwise

In some applications r; can be a nonnegative
real number expressing the strength of the rela-
tion R between units X; and X;.

One of the main procedural goals of network
analysis is to identify, in a given network, clus-
ters (classes) of units that share structural char-
acteristics defined in terms of R. The units
within a cluster have the same or similar con-
nection patterns to other units. They form a
clustering

C={Cy,Cs...,Ci} .

which is a partition of the set E:
U Cr=E
i

i;éj:>CiﬂCj:@

Each partition determines an equivalence rela-
tion (and vice versa). Let us denote by ~ the
relation determined by partition C.

A clustering C partitions also the relation R into
blocks
R(Cy Cj) =RMNC; % Cj‘

Each such block consists of units belonging
to clusters C; and C; and all the arcs leading
from cluster C; to cluster C;. If i = j, a block
R(C;, C;) is called a diagonal block.

A blockmodel consists of structures obtained by
identifying all units from the same cluster of the
clustering C. For an exact definition of a block-
model we also have to be precise about which

blocks produce an arc in the reduced graph and
which do not. The reduced graph can also be
presented by relational matrix, also called im-
age matrix.

The goal of blockmodeling is to reduce a large,
potentially incoherent network to a smaller com-
prehensible structure that can be interpreted
more readily. Blockmodeling, as an empiri-
cal procedure, is based on the idea that units
in a network can be grouped according to the
extent to which they are equivalent, under some
meaningful definition of equivalence.

3. Equivalences

In general, and without surprise, different defi-
nitions of equivalence lead to distinct partitions.
Regardless of the definition there are two basic
approaches to the equivalence of units in a given
network (compare Faust 1988):

¢ the equivalent units have the same connec-
tion pattern to the same neighbors;

e the equivalent units have the same or simi-
lar connection pattern to (possibly) differ-
ent neighbors.

The first type of equivalence is formalized by
the notion of structural equivalence; the second
by the notion of regular equivalence.

3.1. Structural equivalence

Units are structurally equivalent if they are con-
nected to the rest of the network in identical
ways (Lorrain and White 1971).

Formally: X and Y are structurally equivalent
iff

sl.  XRY & YRX
s2.  XRX < YRY
3. VZ eE\{X,Y}:(XRZ < YRZ)
s4. VZ e E\{X,Y}: (ZRX & ZRY)

or in the matrix form: X; = X; iff

sl’. rij = Fji
§27%. Vij = rjj
$3’. VkF ijirig=ri
s, Ye#Ljirg=rg
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Fig. 1. ldeal blocks for structural equivalence

The matrix form of the definition of structural
equivalence can also be extended to the case
when r;; are real numbers.

From the definition of structural equivalence it
follows that there are four possible ideal blocks
(Batagelj, Ferligoj, and Doreian 1992). They
are presented in Figure 1.

3.2. Regular equivalence

Intuitively, two units are regularly equivalent if
they are equally connected to equivalent others
(White and Reitz 1983).

The equivalence relation ~ on F is a regular
equivalence on network A" = (E, R) iff for all
X,Y,Z € FE, X ~ Y implies both

Rl1. XRZ = 3IWeE:(YRWAW xZ)
R2. ZRX = 3W e E:(WRY AW = Z)

Batagelj, Doreian, and Ferligoj (1992) proved
that regular equivalence produces two types of
blocks: null blocks (which have all entries 0)
and 1-covered blocks (which have in each row
and in each column at least one 1). They are
presented in Figure 2.

oo
SOoOOoOC
cCoOoOO
cCoOoO
G GeD &

For a network there is, in general, a non-empty
set of regular partitions which form a lattice
(Borgatti and Everett 1989).

The following relation can be proven for these
two equivalences

il

C ~

Structural equivalence is a very stringent re-
quirement in a network. Regular equivalence
has weaker requirements and is more often
found in a given network.

3.3. Generalized concepts of equivalence

An appropriate generalization of the equiva-
lence idea is one where each block, of a par-
ticular partition, is free to form to a different
equivalence idea. This led Batagelj (1993) and
Doreian, Batagelj, and Ferligoj (1994) to the
definition of several types of connection inside
and between the clusters, or in another words,
different types of ideal blocks. Some of them
are presented in Table 1.

10100
0.0 .1.0.1
0:1.6 0 0
10110

Fig. 2. ldeal blocks for regular equivalence
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Tab. 1. Generalized ideal blocks

|
0O 0 0 0 0 0 1 0 0 0 0O 0 1 0 0
0O 0 0 0 0 11 1 1 1 0 01 1 0
0O 0 0 0 O 00 0 0 0 1 1 1 0 0
0O 0 0 0 0 0O 0 0 1 0 0O 0 1 0 1
Null Row-Dominant Col-Dominant
|
O O W 00 0 1 0 i1 0
1 1 1 1 1 0O 0 1 0 0 00 1 0
1 1 1 1 1 1 0 0 0 0 000 0
11 1 1 1 00 0 1 0 00 0 1
Complete Row-Functional Col-Functional
| |
0o 1t 0 0 0 01 0 0 0] 01 0 1 0]
1 01 10 01t 100 1 01 0 0]
G 0 1 0 1 1 01 0 0 1 1 0 1 1
1 1 0 0 0 0 1.0 0 1] 6 0 0 0 0]
Regular Row-Regular Col-Regular

4. Establishing blockmodels

The problem of establishing a partition of a net-
work in terms of a considered equivalence is a
special case of clustering problem that can be
formulated as an optimization problem: deter-
mine the clustering C* for which

PC%)= él}sigP(C)

where C is a clustering of a given sef of units
E, @ is the set of all possible clusterings and
P : ® — IR the criterion function. The crite-
rion function must reflect the considered equiv-
alence.

Criterion functions can be constructed

e indirectly as a function of a compatible
(dis)similarity measure between pairs of
units, or

e directly as a function measuring the fit of
a clustering to an ideal one with perfect
relations within each cluster and between
clusters according to the considered types
of connections (equivalence).

4.1. Indirect approach

Figure 3 presents the process of establishing a
blockmodel by the indirect approach (Ferligoj,
Batagelj, and Doreian 1994). In this process
the most important requirement is that the se-
lected dissimilarity measure is compatible with
the considered equivalence (Batagelj, Ferligoj,
and Doreian 1992). The dissimilarity measure
d is compatible with a considered equivalence
~ if for each pair of units holds

X; N.Xj -~ d(Xg,Xf) =i()

Not all dissimilarity measures typically used are
compatible with structural equivalence.

For example, the corrected Euclidean-like dis-
similarity

(ri—r) - (rg—ri P+ Z ((ris—rjs)?+(rsi—rg)?)

iz
sy

d(Xi, X)) =
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Fig. 3. Indirect approach

is compatible with structural equivalence.

Indirect clustering approach does not seem suit-
able for establishing clusterings in terms of reg-
ular equivalence, since there is no evident way
how to construct a compatible (dis)similarity
measure.

4.2. Direct approach

The second possibility for establishing block-
models is to construct an appropriate criterion
function directly and then use a local optimiza-
tion algorithm to obtain a ‘good’ clustering so-
lution.

Criterion function P(C) has to be sensitive to
considered equivalence:

P(C) = 0 < C defines considered equivalence.

One of the possible ways of constructing a cri-
terion function that directly reflects the con-
sidered equivalence is to measure the fit of a
clustering to an ideal one with perfect relations
within each cluster and between clusters accord-
ing to the considered equivalence.

Given a. clustering € = {€%; Cyy. . s€5); 16t
B(Cy, C,) denote the set of all ideal blocks cor-
responding to block R(C,,, C,). Then the global
error of clustering C can be expressed as

Plgi= %

Cu,Crel

min  d(R(C,,C,),B)
BeB(Cu,Cy)

where the term d(R(C,, C,), B) measures the
difference (error) between the block R(Cy, C,)
and the ideal block B. The function d has to
be compatible with the selected type of equiva-
lence.

In the case of direct clustering approach where
an appropriate criterion function is constructed
we can use one of the local optimization pro-
cedures for solving the given blocking problem
(Batagelj, Doreian and Ferligoj 1992). E.g.,
relocation algorithm:

Determine the initial clustering C;

repeat:
if in the neighborhood of the current
clustering C there exists a clustering
C’ such that P(C") < P(C)
then move to clustering C’ .

Usually, the neighborhood in this local opti-
mization procedure is determined by the fol-
lowing two transformations:

e moving a unit X from cluster C,, to cluster
Cy (transition);

e interchanging units X, and X, from differ-
ent clusters C,, and Cy, (transposition).

5. Fitting to a pre-specified blockmodel

In the previous sections inductive approaches in
establishing blockmodels for a set of social rela-
tions defined over a set of units were discussed.
Some forms of equivalence are specified and
clusterings are sought that are consistent with a
specified equivalence.

Another view of blockmodeling is deductive in
the sense of starting with a blockmodel that is
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specified in terms of substance prior to an analy-
sis. Batagelj, Ferligoj, and Doreian (1996) pre-
sented the methods where a set of observed rela-
tions are fitted to a pre-specified blockmodel. In
this case, given a network, set of types of ideal
blocks, and a reduced model, a solution can be
determined which minimizes the criterion func-
tion. It is also possible to fit the network to
a partial model and analyze the residual after-
ward. Different constraints on the model can
also be introduced. For example: units X and Y
are of the same type; or, types of units X and ¥
are not connected.

6. Example

The analyzed network consists of social sup-
port exchange relation among thirteen students
of the Social Science Informatics second year
class (1992/1993) at the Faculty of Social Sci-
ences, University of Ljubljana (Ferligoj and
Hlebec, 1995). Data were collected through
CAPI (Computer Assisted Personal Interview-
ing) supported by the program INTERV (de Pi-
jper and Saris, 1986). Interviews were con-
ducted in May 1993. Support relation among
students was identified by the following ques-
tion:

Introduction: You have done sev-
eral exams since you are in the sec-
ond class now. Students usually bor-

row studying material from their col-
leagues.

Enumerate (list) the names of your
colleagues that you have most of-
ten borrowed studying material from.
(The number of listed persons is not
limited.)

The measured support relation is presented by
the matrix in Table 2.

We assumed three clusters and three types of
blocks: null, complete and regular. Using the
direct approach we obtained one optimal so-
lution with 6 errors (the value of the criterion
function). The obtained clustering into three
clusters is the following;:

¢={{af gj 1 m}{bcehk} {di}}

In Table 3 the matrix partitioned into nine blocks
is presented. It is constructed by permuting the
rows and columns of the relational matrix in
such a way that first, the units of the first cluster
A = {a, f, g, j, 1, m} are listed, then the units
of the second cluster B = { b, ¢, ¢, h, k} and
finally the units of the last cluster C = {d, i}.
In the table the six errors can be seen: there is a
tie between units b and j, but it should not be in
the null block and there is no tie in the first row
of the regular block from A to B (5 errors).

The obtained blockmodel is presented by the
model matrix and by the three-node graph in

Tab. 2. Relational matrix

a b ¢cde f gh i j k I m
al0O OO0 1O0O0O0O0O0O0OO0O0 O
b|OOOOOOOOI1I 1 O0O0 O
c/0O OO 1T 0O0O0O0OO0O0O0OO0O O
dj{0 OO OO0OO0OO0OOT1TO0O0O0 0
e(0 0O 1 0O0O0OO0O1O0O0O0 O
flo0 0001 001 101TO0 O
g/0o1 100011000 0
h{0O OO 100O0O01TO0O0O0 O
ilOOO 1 0O0O0OO0O0ODO0OO0OO0O O
jt0o 11100 01 1 010 O
k|0 OO1T O0OO0O0O0OT1O0O0O0 0
l1fo o1 10001 1O0T1O0 0

m|{0 O 0O 0 O0OO0OO0OT1TT1TO0O0 0 O




Optimizational Approach to Blockmodeling

231

Tab. 3. Partition into blocks

a f g j 1 m|{b c¢c e h kid i
a0 0 0 00 0]/]0 0 0 O0O01 O
f4f0 0000 0{0 0 1 1 1|0 1
g(0O OO OO0 O[O0 1 0 1 01 1
jl00 0 00 Oj1 1 01 1|1 1
110 0 000 001 0 1 1|1 1
m|{0 0 0 00 0]/]0 0 O0 1 00 1
b0 0010 0({0 000 O0j]0 1
¢c|0 0 00O 0OjO O0OO0O0O0O]1 O
el0 0 0 00 0OjO OO0 O0O0O]1 1
h|jo 0000 O[O0 O0O0O0O0]1 1
k{o 00 00 00 0O0O0O0]1 1
d{o 0000 0/00O0O0O0]01
i|l0 0000 0[{0O0O0O0O0I1 O

A B C
A | nul reg reg o
B | nul nul reg ; /
C |nul nul com -

Fig. 4. Blockmodel]

Figure 4. The elements of the model matrix are
nul (null block), reg (regular block) and com
(complete block). In Figure 4 the first cluster
{a, f, g, j, 1, m} is represented by the vertex A,
the second cluster {b, c, e, h, k} by the vertex
B and the third cluster {d, i} by the vertex C.
There is no tie between vertices if there is a
null block, otherwise there is a tie. This simple
graph shows a very comprehensible structure of
the network. Each student from the cluster A is
borrowing studying material from at least one
student of the cluster B and cluster C but not
from the students of the same cluster A. Stu-
dents from the cluster B are borrowing studying
material only from students of the cluster C and
students of the cluster C are borrowing material
only from the other students of the same cluster.

7. Conclusion

To establish a partition of networks in terms of a
considered equivalence, appropriate clustering
algorithms can be successfully applied. We can
choose between direct and indirect approaches,
and second, for indirect approaches, there is a
choice with regard to a dissimilarity measure.
Concerning the choice of a similarity measure,
it is necessary to use a measure that is compati-
ble with the selected form of equivalence.

The direct approach uses a special goodness-
of-fit measure as a criterion function to obtain
partitions based on a selected equivalence. We
used alocal optimization procedure to minimize
the appropriately constructed criterion function.
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There are still many open problems in establish-
ing blockmodel, e.g., how to consider multiple
networks, find efficient algorithms for large net-
works, and develop approaches for establishing
blockmodels for valued networks.
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