Journal of Computing and Information Technology - CIT 4, 1996, 4, 257-263

257

University Automated Timetabling

Nuno Mamede and Pedro Soares
IST/INESC, Rua Alves Redol 9, Lisboa, Portugal

Automated school timetabling has been a goal for a
long time, but the high combinations of this problem
have maintained these systems in the academic research
field, with very few successful commercial applications.
To solve this problem several methodologies, such as
scheduling, constraint programming, and genetic algo-
rithms have been applied with relative success. This
article describes an implementation of a timetable gen-
erator that uses constrained heuristic search, combining
constraint programming with search techniques. This
system was conceived to work in a university with seven
thousand students.

Keywords: University timetabling, scheduling,
straint programming, real-life problems.

con-

1. Introduction

School timetabling is a very complex task be-
cause of the interdependence of different sources
of information: teachers, classrooms, classes,
course curricula, etc. The time factor is also
responsible for all the choices that loom when
trying to assign or move lessons. The problem
of assigning lessons to periods in such a way
that no teacher or classroom is involved in more
than one lesson at a time has been proved to be
NP-complete. In face of this result it is indis-
pensable to have good heuristics to help finding
(at least) one of the “good” solutions.

Although being a hard problem, in every school
school timetables are manually done by de-
voted handicrafters, who, during a lingering
process, verify all the restrictions, producing at
last the student, teacher, and classroom timeta-
bles. Sometimes, this manual process is un-
satisfactory, mainly because the quantity of the
information manipulated is huge, which implies

infinite concentration and the use of many em-
pirical rules. In a task with such characteristics
the motivation and patience to come up with a
better timetable are difficult to maintain.

This article describes a system for automatic
school timetabling satisfying two goals: sound-
ness (all incorrect solutions are eschewed) and
quality. In what regards the first one, it is nec-
essary to satisfy some rules such as: no teacher,
student group,’ or classroom is involved in more
than one lesson at a time; a sequence of more
than k hours of consecutive lessons without a
break is not allowed; between noon and 2:00
PM a lunch break is mandatory; etc. The sec-
ond goal (quality), is related with the absence
of idle times between lessons for student groups
and teachers; uniform occupation of the class-
rooms in the campus; similar schedules for stu-
dent groups with the same courses; satisfaction
of teacher preferences; etc.

Since in our university, timetables are done
twice a year, it was decided to focus on the
quality rather than on the speed of the process.

2. Problem definition

Timetabling in an educational setting covers a
wide range of scheduling problems: the schedul-
ing of students, teachers and other resources, in
both time and space. This kind of problem is
defined by a set of activities, a set of resources
and a set of relations between them called con-
straints.

An activity is an operation that is characterised
by being time-based (start time, end time, du-
ration), resource-based (which and how many

! The expression student group will be used to refer to the concept of a group of students that share exactly the same lessons

every week of a term (3 to 6 months).

258

University Automated Timetabling

resources are needed) and, possibly, having spe-
cial restrictions (pre-conditions for execution).

A resource is an entity necessary for the exe-
cution of an activity. The most usual resource
characteristic is its capacity, which restricts the
number of activities the resource can process at
a given time.

A constraint restricts the values that can be as-
signed to a variable. Constraints are applied to
activities and resources to express their interde-
pendencies. Constraints can be hard (have to be
satisfied) or soft (will be satisfied, if possible).

Constraints found in scheduling problems in-
clude (Le Pape 94):

e temporal define the temporal relations be-

constraints tween activities: precedence, si-
multaneity, etc. (Allen 83);

e capacity this class of constraints is related

constraints to the resources constraints (re-

strict the number of activities that
can be processed at a given time).

In this perspective, it is possible to view a les-
son as an activity, and classrooms, teachers, and
student groups as resources. Each lesson needs
one instructor, one classroom, and is associ-
ated with one (or more) student groups. The
“impossibility of assigning the same resource
to two or more lessons at the same time” and
“two lectures (theoretical lessons) of the same
course and student group have to be assigned to
different days” are examples of constraints.

The goal of school timetabling is to assign to
each lesson a start time, a teacher and a class-
room (the student groups are known before the
whole process starts), satisfying all the hard
constraints and trying to optimise certain cri-
teria. These criteria (soft constraints) define
the pedagogic preferences and the preferences
of the teachers, which should be taken into ac-
count to generate good timetables.

One important characteristic of this problem i1s
that all the activities can be known before start-
ing the scheduling process: examining the cur-
ricula of the courses and the number of student
groups it is possible to compute which lessons
have to be considered.

3. Techniques and solutions

The main techniques used in the scheduling
problems have been developed in two scien-
tific research fields: Operational Research and
Artificial Intelligence.

- Operational Research has provided frameworks

based on approximate algorithms and it suffers
from certainproblems such as lack of flexibility
and relative by low quality of the result. Arti-
ficial Intelligence (Zweben and Fox 1994) has
contributed to the study of this problem propos-
ing new paradigms, much more flexible and
reaching. Some of these new approaches in-
clude constraint programming and genetic al-
gorithms.

Genetic algorithms are supported in the Dar-
win’s species evolution theory and follow a
repair approach (Johnston and Minton 1994)
(Zweben et. al. 1994): at the beginning they
generate a population of legal (or valid) timeta-
bles, that keep evolving (increasing its quality)
during the computation.

Constraint programming (Kumar 1992) (Mack-
worth 1987), used in the system being de-
scribed, is based on a symbolic representation
of the following concepts: activity, resource and
constraint, and in the use of constraints reduc-
tion of the possible combinations as timetables
are being built. As an example, if two teach-
ers are alternative in what regards lessons L1
and L2 at a given time, then if one of them is
associated with lesson L1, the other teacher is
automatically attached to the other lesson (L.2).
Using this technique the problem complexity is
reduced as it is being solved.

Constraint programming

Constraint programming (Sadeh and Fox 1991)
(Le Pape 1994) (Zweben and Fox 1994) (Fox,
Sadeh and Baykan 1989) (Fox and Sadeh 1990)
(Yoshikawa et. al. 1994) can be successfully
used in problems of constraint satisfaction, where
scheduling problems can be included.

One constraint satisfaction problem is defined
by a set V of n variables {vy,vo, ..., v,}, with
each variable v; associated with a domain D; of
possible values; and by a set C of m constraints
{c1,¢2,...,cn}, between those variables (the
arity of each constraint is given by the number

University Automated Timetabling

259

Y
1...10
X+Y<S
a) before propagation

=d Eg

X+Y<5

b) after propagation

Fig. 1. Example of a constraint between two variables.

of variables it restrains). One solution consists
of a tuple of n assignments (one for each vari-
able) satisfying the set C (Kumar 1992).

A constraint satisfaction problem can be seen
as a graph in which each node is a variable
(with the corresponding domain), and each arc
represents one binary restriction between the
connected variables. It is possible to convert
constraint satisfaction problems with n-ary con-
straints to another equivalent constraint satis-
faction problem with binary constraints (Rossi,
Petrie and Dhar 1989).

Consider the following example: two variables,
X and Y, having the same domain, the inter-
val between 1 and 10, and a constraint between
them “X + Y < 57 (see Figure la). The con-
straint reduces the domains of both variables:
the values that do not guarantee the satisfac-
tion of the constraint are removed. As a con-
sequence, the domains of these variables are
automatically updated (see Figure 1b).

This procedure is used to ensure validity (Yoshi-
kawa et. al. 1994), or in other words, in each
moment of the computation, the domains of the
variables only contain the values that can still
be assigned to them.

As was previously said, this kind of problems
also focus on the quality of the solutions, which
means that preferences have to be modelled.
In the timetable problemes, there is usually a
great number of solutions, and the difficult task
is to find out (in “limited” time) one of high
quality. The adequate methodology has to con-
ciliate constraint programming (legality) with
heuristic search (quality).

4. School timetable modelling

As mentioned before, lessons are considered as
activities, and teachers and classrooms as re-
sources. Lessons have a temporal domain (pos-
sible start times), a pre-defined duration and a
set of required resources. These requirements
may be mandatory or alternative, which means
that a lesson may need a specific teacher or one
teacher from a set (of teachers). The same can
be said about classrooms.

In what regards student groups, there are only
mandatory requirements. Since lessons are gen-
erated at the beginning of this process, it is
possible to know which student groups have to
share a given lesson (usually a lecture).

Every resource maintains an occupation table
that is updated as resources are assigned to
lessons (an example in Figure 2). This table is
used to detect bottlenecks where it is not possi-
ble to assign resources to the remaining lessons.

Other lessons relate constraints are temporal re-
lations, such as: (i) same day; (ii) different
days; (iii) same start time; (iv) different start
times; (v) during; (vi) not overlapped; (vii) at
the same time. Other constraints implemented
are: (i) same teacher; (ii) different teacher; (iii)
same classroom; (iv) different classroom.

These constraints are used to define a given
problem. At the beginning when all activities
have been generated and all the resources have
been defined, the constraints are used to relate
activities and to relate activities and resources.

The preferences, or in other words, the choice
criteria enabling comparison of states, are used
to guide the system towards high quality solu-
tions. Examples of preferences have already

260

University Automated Timetabling

B) After constraint propagation

Occupation
12...14

Fig. 2. Example of constraint propagation.

been described. In this system there exists a
pre-defined set of preferences, and the user has
to adjust their relative importance when solving
a given problem.

Finally, the system is composed of several inde-
pendent schedulers, one for each degree. Each
scheduler is responsible for assigning the re-
sources and a start time for all lessons of the
corresponding degree.

5. Implementation

This system is designed to work in an automatic
mode. First, the system collects all relevant data
from an ORACLE database and then processes
the information read, creating the schedules:
student group schedules and resource schedules.

A WWW interface was developed to allow the
visualisation of all the produced schedules.

The development was made in the C++ pro-
gramming language, with some specificlibraries
supplied by ILOG.

Main Algorithm

The program follows this sequence of steps:

1) generation of all lessons;

2) feasibility test;

3) scheduling.

In the first step, all lessons (for all degrees)
are created. This process is oriented by the de-

gree’s curricular information and the number of
student groups defined.

The feasibility test is necessary to find out if the
schedules can be created with the data read. The

University Automated Timetabling

261

Take in consideration all
hard constraints

Chooses next variable
assignement

Removes last assignment
and memorises it was
tested

Fig. 3. Scheduling algorithm.

idea is to compare the sum of the duration of all
lessons (demand) and the maximum available
time of all rooms (supply).

If the demand is higher than the supply, the prob-
lem cannot be solved and must be redefined (re-
duce the number of student groups, make other
rooms available, etc.).

If the test is surpassed, we can move to the
next phase — scheduling (see Figure 3). In
the scheduling step, we begin by representing
all hard constraints. These constraints will be
helpful to reduce the problem complexity, i.e.,
reducing the domains of the existing variables
(start-times, possible-teachers, possible-rooms,
etc.), as we continue with the computation.

When the constraint net is stabilised, we need to
“make a move”, i.e., choose what binding is to
be made first, for example, to bind the start-time
of one lesson. After this binding, some con-
straint will propagate and the net will stabilise

again. This process finishes when all variables
become bound.

If the domain of any variable becomes empty, it
means that with the current set of bindings the
problem cannot be solved, so, it is necessary to
undo the last binding (chronological backtrack-
ing) and try another binding.

Because backtracking should always be avoided,
it is necessary to implement heuristic methods
of choosing the next binding to do. This heuris-
tic method is responsible to guide the search
and must consider two, sometimes incompat-
ible, points of view: quality (good solutions)
and efficiency (few backtrackings). Predicting
backtracking situations is very hard. Usually
they happen in resource bottlenecks, i.e., many
lessons requiring the same resources. If we
have a bad set of bindings we endanger a solu-
tion. This is the reason why it is so important to
use look-ahead techniques to avoid bottlenecks.

One way to deal with this problem is to use Con-

262

University Automated Timetabling

straint Heuristic Search and the Micro-Boss al-
gorithm (Sadeh 94). The goal of this algorithm
is to use demand profiles to represent how a les-
son requires a resource along the time. First,
for any lesson requiring resources, one demand
profile is calculated. Second, for any timetable
resource, all demand profiles (regarding that re-
source) are aggregated and the most contented
peak of all aggregated profiles is chosen because
it represents the most critical bottleneck at that
moment. Third, we identify the demand profile
with the greater contribution to that contention
peak, and that lesson is selected to make the
binding.

In this way, the focus is always placed on the
most constrained resource and the bindings that
could provoke bottlenecks are done earlier.

Classroom-pools

When there is the intention of binding a class-
room to a certain lesson there are usually many

alternatives. Since the enumeration of alterna-

tives is very costly, we have created classroom-
pools to reduce the number of alternatives. This
abstraction is used to represent groups of class-
rooms that are very similar in capacity.

The step “choose a classroom” is replaced by the
steps “choose a classroom-pool” and “choose
one classroom from the pool”.

By using classroom-pools we don’t loose much
constraint propagation. For example: if the
cardinality of a given classroom-pool and the
number of lessons requiring a certain pool in
a certain time is known, it can exclude certain
lessons for that time.

Meals

Following this approach, the natural way to rep-
resent meals is to create an activity (a “fake” les-
son, since all activities are lessons) that has to be
included daily in all student groups’ timetable.
The set of lessons is extended to include meals,
taking advantage of the constraint propagation
that avoids activities (lessons) to be double-
booked.

6. Conclusion

This paper presents and describes a real system
that automatically creates university timetables.
The scheduling part of the problem is solved
using Al Techniques, namely Constraint Pro-
gramming. These techniques allow a natural
representation of the timetable problem and a
consequent adaptation to several variations of
the problem. The representation of preferences
(soft constraints) strongly related to quality, can
also be tuned to any particular problem.

Although this system was conceived to work in
Instituto Superior Técnico (Lisboa), a strong ef-
fort was made to achieve a generic timetabling
platform.

Future Work

This system can be complemented with the
reparative approach, namely genetic algorithms.
After the constructive phase, an optimising pro-
cess could be initiated, using reparative meth-
ods. The repairs would start with a good and
sound “seed” and eventually converge to a better
solution.

Another possible improvement is to allow a
manual control mode: instead of a fully au-
tomatic mode, we could allow the user to ex-
press his/her consent about each step of the
timetabling process. When this “manual” mode
becomes available, it will be possible to switch
between the automatic mode (performs n al-
locations without the user interference) and the
manual mode (each assignment needs the user’s
consent to be considered). An explanation mod-
ule is being developed to assist the user.

Idle times between lessons in a student group
timetable are easily recognisable after the end
of the computation, but during the scheduling
process they are hard (or even impossible) to
recognise. The main culprit of this situation is
the search method used, since we would have
to know in advance when, in a given position of
the timetable there would be an idle time. This
problem is a consequence of the heuristic that
handles idle times work with partial completed
timetables. The reparative methods are better

University Automated Timetabling

263

at solving this problem since they manipulate
completed timetables. We are trying to reduce
this problem by using genetic algorithms.

Acknowledgement

This work was partially supported by Grant
PRAXIS XXI/BM/6861/95 of Junta Nacional
de Investigagao Cientifica (JNICT).

References

ALLEN, J. F. (1983), “Maintaining Knowledge about
Temporal Intervals”, Communications of the ACM
26 (11).

Fox, M. S., SADEH, N. AND BAYKAN, C. {1989), “Con-
strained Heuristic Search”. Proceedings of the
International Joint Conference on Artificial In-
telligence, Morgan Kaufmann Pub. Inc., San
Francisco, CA, pp. 309-316.

FOX, M. S. AND SADEH, N. (1990), “Why Is Scheduling
Difficult? A CSP Perspective”. Proceedings of
the 9th European Conference on Artificial Intelli-
gence, John Wiley and Sons, NY, pp. 754-767.

JOHNSTON, M. D. AND MINTON, S. (1994), “Analysing
a Heuristic Strategy for Constraint-Satisfaction
and Scheduling”. Intelligent Scheduling, ed. by
M Zweben and M.S. Fox, Morgan Kaufmann
Publishers Inc., San Francisco, CA, pp. 257-289.

KUMAR, V. (1992), “Algorithms for Constraint-Satis-
faction Problems: A Survey”. Al Magazine,
Vol. 13, Number 1.

LE PAPE, C. (1994), “Implementation of Resource Con-
straints in ILOG Schedule: A Library for the
Development of Constraint-Based Scheduling Sys-
tems”. Intelligent Systems Engineering, Vol. 3,
pp. 355-66.

MACKWORTH, A. K. (1987), “Constraint Satisfaction”.
Encyclopaedia of Artificial Intelligence, Volume
1, S. C. Shapiro (ed.), John Wiley and Sons, New
York, pp. 205-211.

Rossl, F, PETRIE, C. AND DHAR, V. (1989), “On the
Equivalence of Constraint-Satisfaction Problems”,
Technical Report ACT-Al-222-89, MCC Corp.,
Austin, Texas.

SADEH, N. AND FOX, M. S, (1991), “Variable and Value
Ordering Heuristics for Hard Constraint Satis-
faction Problems: An Application to Job Shop
Scheduling”, Technical Report CMU-RI, TR-91—
23, The Robotics Institute, Carnegie Mellon Uni-
versity.

SADEH, N. (1994), “Micro-Opportunistic Scheduling:
The Micro-Boss Factory Scheduler”, in Intelli-
gent Scheduling, ed. by M. Zweben and M. S. Fox,
Morgan Kaufmann Publishers Inc., San Francisco,
CA, pp. 99-135.

YOSHIKAWA, M., KANEKO, K., NOMURA, Y. AND WATAN-
ABE, M. (1994), “A Constraint-Based Approach
to High-School Timetabling Problems: A Case
Study”, Proceedings of the 12 th National Confer-
ence on Artificial Intelligence, Vol 2, AAAI Press,
Seattle, pp. 111-116.

ZWEBEN, M. AND FOX, M. S. (1994), “Intelligent Schedul-
ing”, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA.

ZWEBEN, M., DAUN, B., DAVIS, E. AND DEALE, M. (1994),
“Scheduling and Rescheduling with Iterative Re-
pair”, Intelligent Scheduling, ed. by M Zweben
and M.S. Fox, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, pp. 241-255.

Received: luly, 1996
Accepted: October, 1996

Contact address:

Nuno Mamede, Pedro Soares
IST/INESC

Rua Alves Redol 9

1000 Lisboa

Portugal

e-mail: Nuno.Mamede@inesc.pt
e-mail: Pedro.Soares@inesc.pt

NUNO JOoAO NEVES MAMEDE was born in 1958, received the BSc.
(1981) and MSc. (1985) degrees in Electrical and Computer Engineer-
ing, and the PhD. (1992) in Artificial Intelligence, all by the Instituto
Superior Tecnico (School of Engineering, Technical University of Lis-
bon). In October 1992 he was appointed as Assistant professor at the
Instituto Superior Tecnico, and in 1983 as a researcher of Instituto de
Engenharia de Sistemas ¢ Computadores (INESC), where he has lead
or participated in several research projects. His research interest is
in artificial intelligence and natural language processing. He is one
of the Organiser-chairs and Program-chairs of the Seventh Portuguese
Conference on Artificial Intelligence, and a member of the editorial
board of the “Advanced Manufacturing Forum”™ magazine (Trans Tech
Publications).

PEDRO SOARES is a MSe. student at the Technical University of Lisbon
where he received his BSc. degree. For the last three years he has been
studying the timetabling domain. His research interests also include
scheduling and intelligent agents.

