Journal of Computing and Information Technology - CIT 4, 1996, 4, 265-269 265

An Object-Oriented Implementation of
Morphological Operations Using Element
Vector Representation

Zoran Dukié! and Sven Loncarié?

! Institute “Ruder Boskovi¢”, Zagreb, Croatia

2 Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University

of Zagreb, Croatia

A novel implementation of morphological operations is
proposed in this paper. Major benefit of the implemen-
tation is the independence of computation algorithms
to space dimension. This is achieved using a sorted
linked list of elements for the set representation instead
of conventional raster representation. A set compression
method is used for smaller memory requirements. Since
the compressed elements act as subsets, the set opera-
tions are performed on the subsets instead of the single
elements resulting in the computation speed up. The im-
plemented morphological set operations include erosion,
dilation, opening, and closing. The software is devel-
oped in GNU C++, using object-oriented paradigm that
enables easy reuse of the designed software components.

Keywords: Mathematical morphology, object-oriented,
class architecture, linked list, compression.

1. Introduction

The mathematical morphology provides a set of
operations that are useful for processing and de-
composition of shapes in arbitrary dimensions.
Morphological operations are defined in terms
of set-theoretic operations like union and inter-
section. Such a system of operations and their
compositions are useful for shape decomposi-
tion, description, and matching [2]. The primary
morphological operations are dilation and ero-
sion. The morphological operations of opening
and closing are defined in terms of dilation and
erosion. The definitions of the morphological
operations can be found in [3,6]. A novel imple-
mentation for the computation of the morpho-
logical operations is proposed in this paper. The

proposed implementation uses explicit element
representation in the vector form and sorted and
compressed linked list for set representation, as
opposed to conventional raster implementations

[9].

2. Element Vector Representation for
Mathematical Morphology

The conventional representation of images by
two-dimensional (2-D) array storage structure,
well known as a raster representation, brings
two major limitations:

o Algorithms for calculating morphological op-
erations and program code are not invariant
to space dimension;

e Loss of information if the resulting image
size exceeds 2-D array boundaries.

The definitions of morphological operations,
based on the operations on the sets of vectors,
are invariant to space dimension and do not in-
troduce problems with image boundaries. Since
these limitations originate from the raster image
representation and not from mathematical mor-
phology, the main goal of this work was to over-
come these limitations. Operations on images,
or especially objects (3—D space), are computa-
tionally intensive and require enough memory
space for storage and manipulation. For that
reason special care should be taken that new
implementation does not essentially decrease

266

An Object-Oriented Implementation of Morphological Operations Using Element Vector Representation

speed of computation and/or increase memory
requirements. Since one of the benefits of the
proposed implementation is the invariance to
space dimension, the term element is used in-
stead of the foreground pixel of binary images or
foreground voxel of binary solids. The element
vector components are element coordinates in
n-dimensional space. In order to overcome the
above two limitations elements are represented
explicitly, i.e. the element vector components
are stored. This is opposed to the raster repre-
sentation where element vector components are
determined implicitly by element position in the
array and only the element value is stored. To
avoid the significant increase of the memory
requirements of element vector representation
a compression of the set of elements is used.
Elements are represented by ((ai,...,an), el-
count) where (ay,...,a,) denotes element co-
ordinates, and elcount is the element run length.
The element run length is used for the run-length
compression of the set.

The algorithm for merging of two element run-
lengths is as follows:

Let A C Z" be the set of elements, where Z is
the set of integers.

Let ((a1,...,an), elc,) represent (ay, ..., ay),
(@1,...,804+1),...,(a1,...,as+elc,—1) € A.
Let ((by,...,by), elcy) represents (by, ..., by),
b1y byt 1), ., (b1, ... bytelcy—1) € A.

if(a,- = bi}i < ﬂ)
if (a, <= b, and a, + elc, >= b,)

elements are merged end represented by
((@1,...,a,), max(elcg, by + elcy, — ay))

if (b, <= a, and b, + elcp, >= ay,)

elements are merged end represented by
(b1 ...,by), max(a, + elc, — by, elcy))

An example of a set compression is given in
Table. 1.

The set is a collection of elements. In order to
achieve simple and fast element merging the set
is sorted. It is very important that the usage of
the compressed and sorted set, which is needed
to decrease memory requirements, does not de-
crease a speed of computation. On the contrary,
compressed element run lengths act as subsets,
so that set operations are performed on the sub-
sets, instead on the single elements, resulting in
more efficient computation.

3. Object-Oriented Implementation of
Morphological Operations

We developed an object-oriented implementa-
tion for computation of binary morphological
operations in GNU C++-. Since object-oriented
paradigm [1] is used for implementation, be-
havior of morphological sets is implemented as
a class MorphSet. The class architecture of
the proposed implementation is given in Fig. 1,
where rectangles denote classes, rectangles with
rounded corners template classes, double ar-
rows denote inherit relationship, pointing from
subclass to superclass, and single arrows de-
note client-supplier relationship, pointing from
client to supplier class.

Class MorphElement defines behavior of el-
ements. Storage attributes, defining a state of
objects, of the MorphElement are:

e plec, pointer to the dynamically allocated
space for vector representation, that is inher-
ited from the class shortVec;

e VecDim, a variable that holds vector dimen-
sion, inherited from the class shortVec;

o FElemCount, a variable used for the compres-
sion.

Most important MorphElement operations are:

Tab. 1. An example of a set compression forn = 3

I Set

| Compressed Set ||

(1,5,7), (1,5,8), (1,5,9)
(1,5,11), (1,5,12)
52,3,4)

2,5,6), (2,5,7), (2,5.8), (2,5,9), (2,5,10)

(1,57 3)
((1,5,11), 2)

((2.34),1)
((2,5,6), 5)

An Object-Oriented Implementation of Morphological Operations Using Element Vector Representation

267

BaseDLINode EBaseDLList

A? Fyy

shortVec

[DLHNode<T>]‘———[DLLi

t<T> J

Al }
MMorphElement

F¥ Y

MorphSet

Fig. 1. The class architecture for the computation of the morphological operations

e Relational operators (==, | =, <, >, <=
, >=) used for searching for an element po-
sition in a sorted set as well as to find out
whether the merging condition is met;

o Arithmetic operators (+, —, + =, —
used for the element translation in space;

=)

o Functions merge and intersect, which per-
form merging and intersecting of elements,
respectively.

Double linked list is used as an underlying stor-
age structure, because it enables easy insertion
of an item between two items in the list, which
is needed to keep the list sorted. The number of
items stored in the list is limited by the memory
space only.

Class MorphSet defines behavior of the mor-
phological sets. Storage attributes of the Morph-
Set are:

e /i, pointer to the head of the set, inherited
from baseDLList;

e TemPos, pointer to the temporary position in
the set that essentially speeds up searching
for the correct position;

o TransVec,variable of shortVec type that stores
components of the translation vector;

e IsComplement, variable of int type that en-
ables selecting of the correct operation if the
operation on complement set is needed.

The most important functions of class MorphSet
are: AddFElement, which adds new element to
the correct position in the sorted set, and is
responsible for compression (by calling merge
function if merging condition is met) and Re-
movekElement, which removes element from the
-sorted set.

Since a class in C++ represents a new data
type, the following operators are defined for the
MorphSet class:

e +and+ =, thesetunionand unary setunion,
respectively;

e x and x =, the set intersection and unary set
intersection, respectively;

e — and — =, the set difference and unary set
difference, respectively.

The implementations of the above listed set
operations are based on AddElement and Re-
moveElement functions. In addition to the
above operators, the functions Dilation, Ero-
sion, Opening, and Closing are defined for the
class MorphSet. Implementations of the mor-
phological operations are based on the above set
operations and Translate function that is also de-
fined for the MorphSet. The pseudo code for
dilation operation is shown bellow:

for each element of B
A.Translate(B.Element)
ResultSet += A

return ResultSet

The following example illustrates the ease of
use of developed classes for edge detection:

MorphSet A, B, EdgeSet
fill A from image file

fill B with ((—1, —1), 3), ((0, —1), 3),
((17 _1)7 3)

EdgeSet = A — Erosion(A, B)

4. Results and Comparison to Raster
Approach

The proposed implementation of morphological
operations has two major advantages in com-
parison to the implementation based on raster
representation:

268

An Object-Oriented Implementation of Morphological Operations Using Element Vector Representation

a) the worst case

1. 16,384 byte
2. 163,862 byte

b) the best case

1. 16,384 bytes
2.22 bytes

c) a general case
1.16,384 byte
2.3,182 bytes

Fig. 2. Sample images of size 128 x 128
(1. shows memory requirement for the raster representation, and
2. shows memory requirements for the proposed representation.)

e Generality — The algorithms for the com-
putation of the morphological operations are
independent of space dimension;

e The proposed implementation does not in-
volve problems with the image boundaries
in the way implementations based on raster
representation do. The boundaries are, in the
proposed implementation, determined by a
range of values for a variable of short type
(—32,768 to 32,767), and considering ex-
pected shape sizes cannot be exceeded.

4.1. Memory Requirements

Each object of DLLNode<MorphElement>
type requires 20 bytes (for 3-D case 22 bytes),
while 22 bytes are needed for the object of
MorphSet type. In order to avoid increase
of memory requirements the set compression is
used. A setcompression ratio depends on image
contents and Fig. 2 illustrates two extreme and
one practical case. There are cases where the
proposed representation requires more memory
space, but for the most practical cases it requires
less memory space then raster representation.

4.2. The Speed of Computation

The following features of the proposed rep-
resentation are very useful for increasing the
speed of computation:

e Set compression — A compressed element
run lengths act as subsets, so that set oper-
ations are performed on subsets, instead on
single elements, resulting in more efficient
computation;

e Set sorting — Speeds up the searching of the
linked list;

e Usage of TemPos variable — Significantly
speeds up the searching. Set operations and
morphological operations take two sets as
input, and perform an operation between el-
ements from both sets (for example, union
adds each element of one set to the other).
Since both sets are sorted, the probability that
TemPos is pointing “very near” to the correct
position in the set is high.

The computation speed for both the raster and
the proposed approach depends on image size
and image contents and it is impossible to gen-
erally state which one is faster. There is a pro-
portional relation between the compression ra-
tio and the speed of the proposed implementa-
tion. It is demonstrated in the previous section
that the compression ratio is proportional to the
size of binary image regions. If compression
ratio is less then one (e.g. chess board shape
in Fig. 2), the proposed implementation com-
putes few times slower. However, considering
that most practical cases are shapes without “too
many” holes, the proposed implementation even
increases the speed of computation.

5. Discussion and Conclusion

The motivation for this work was a desire to
utilize the proposed approach for implementa-
tion of the Morphological Signature Transform
[5] for 2-D and 3-D shape descriptions. We
developed a new implementation for computa-
tion of binary morphological operations, that is
invariant to space dimension, so that the same
code and computation algorithm can be used
in arbitrary dimensions. The proposed imple-
mentation uses sorted double-linked lists for the
representation of morphological sets instead of
2-D arrays for images or 3-D arrays for objects.

An Object-Oriented Implementation of Morphological Operations Using Element Vector Representation

269

Since the number of items that can be stored in
the listis limited only by memory space, the pro-
posed implementation does not have problems
with the image/object boundaries. In order to
avoid the increase of memory requirements the
set compression is used. Due to the usage of
compressed and sorted linked list for the most
practical cases the proposed implementation re-
quires less memory and computes morphologi-
cal operations as fast as implementations based
on raster representation.

The proposed implementation can also be used
for gray scale morphology, because 2-D gray
scale morphology can be, through the use of
umbra concept, represented in terms of 3-D bi-
nary morphology [6]. However, the computa-
tion speed, in that case, is not as good as if a
dedicated code for the computation of gray scale
morphology operation was used. Further work
will include an optimization of the proposed
implementation for the gray scale morphology.

References

[1] L. ATKINSON AND M. ATKINSON, Using C, Prentice
Hall, 1990.

(2] R. M. HARALICK AND L. G. SHAPIRO, Computer and
Robot Vision, Vol. 1, Addison—Wesley, 1992,

[3] R. M. HARALICK, S. STERNBERG AND X. ZHUANG,
“Image Analysis Using Mathematical Morphol-
ogy”, IEEE Transactions on PAMI, Vol. 9, pp.
532-550, 1987.

[4] S. LONCARIC, Morphological Signature Transform
for Shape Representation and Matching, PhD the-
sis, University of Cincinnati, 1994.

[5] S. LONCARIC AND A. DHAWAN, “A Morphological
Signature Transform for Shape Description”, Pat-
tern Recognition, No. 26, pp. 1029-1037, 1993.

(6] J. SERRA, “Introduction to Mathematical Morphol-
ogy”, Computer Vision, Graphics, and Image
Processing, No. 35, pp. 283-305, 1986.

[7] J. SERRA, Image Analysis and Mathematical Mor-
phology, Academic Press, 1982.

8| S. STERNBERG, “Grayscale Morphology”, Computer
Ik p gy mp
Vision, Graphics, and Image Processing, No. 35,
pp- 333-355, 1986.

[9] The Khoros Group, Khoros Image Processing Pack-
age, University of New Mexico, 1992.

Received: November, 1996
Accepted: March, 1997

Contact address:

Zoran bukic

Institute “Ruder Boskovic”

Bijenicka 54, 10 000 Zagreb
Croatia

e-mail: dukic@olimp.irb.hr

Sven Loncaric¢

Department of Electronic Systems

and Information Processing

Faculty of Electrical Engineering and Computing
University of Zagreb

Unska 3, 10 000 Zagreb

Croatia

e-mail: sven(@zems.fer.hr

ZORAN DUKIC (1969) received the B.Sc. degree in Electrical Engi-
neering and the M.Sc. degree in computer science from the Faculty
of Electrical Engineering and Computing, University of Zagreb, Croa-
tia, in 1993 and 1996, respectively. He is a research engineer at the
Institute Ruder Bokovic in Zagreb. His research interests include
object-oriented programming and image processing.

SVEN LONCARIC (1961) received the B.Sc. and M.Sc. degrees in Electri-
cal Engineering from the Faculty of Electrical Engineering and Comput-
ing, University of Zagreb, Croatia, in 1985 and 1989, respectively. He
received the Ph.D. degree in Electrical Engineering from the University
of Cincinnati, USA, in 1994, as Fulbright Fellow. Dr. Lon&arié is cur-
rently Assistant Professor at the Department of Electronic Systems and
Information Processing, Faculty of Electrical Engineering and Com-
puting, University of Zagreb. His research interests include image
processing and analysis, pattern recognition and volume visualization,

