Journal of Computing and Information Technology - CIT 4, 1996, 2, 75-85 75

A Comparison of two Parallel
Iterative Algorithms
for Solving Path Problems

Robert Manger

Department of Mathematics, University of Zagreb, Zagreb, Croatia

Path problems are a tamily of optimization and enu-
meration problems posed on a directed graph. General
algorithms for solving path problems can be designed
as counterparts of the traditional iterative methods for
solving linear systems. In this paper two parallel iterative
Gauss-Seidel-like algorithms for solving path problems
are compared. Theoretical results are listed, which esti-
mate the computational complexity of both algorithms.
Experiments are presented, where the algorithms have
been tested on randomly generated graphs and with dif-
ferent numbers of available processors. Some situations
are identified, where one of the algorithms becomes
superior to the other.

Keywords: directed graphs, path problems, parallel al-
gorithms, iterative methods, complexity, experiments.

1. Introduction

Path problems are frequently encountered in op-
erations research, computer science, electronics
and other fields. These problems take different
forms and variants, but in essence they all re-
duce to determination and evaluation of paths
in a directed graph. The most famous exam-
ple is the shortest path problem, stated as fol-
lows: in a graph whose arcs are given lengths
determine the shortest path between two given
nodes. A similar task is to find the most reliable
path between two nodes, or the path of maxi-
mum capacity. In addition to these optimization
problems, there are also some enumerative path
problems, e.g. checking the existence of a path
between two given nodes, or listing all possible
paths, etc.

There are many ways how to treat path prob-
lems. The algebraic approach (Carré, 1979;

Rote, 1990) tries to find a general formula-
tion for the whole family. An abstract alge-
braic structure is chosen, so that each particu-
lar problem is described through an appropri-
ate concrete instance of that structure. Also,
algorithms for solving path problems are inter-
preted as counterparts of the classical methods
for solving linear systems. In this way, itera-
tive algorithms for solving path problems are
introduced, which resemble the classical Jacobi
or Gauss-Seidel method (Press, 1988). Special
cases of such algorithms are known in various
contexts under different names, e.g. the Bellman
or Ford algorithm for shortest paths (McHugh,
1990).

The Gauss-Seidel algorithm is generally re-
garded as better than Jacobi, since it usually
requires less iterations. However, a possible
drawback of Gauss-Seidel is that it seems to
be inherently sequential, and therefore not very
suitable for parallel computing. Still, paral-
lel versions of Gauss-Seidel] can be defined, as
we have shown in a previous paper (Manger,
1993). But frankly, all those versions make
some kind of a compromise: either with the
original Gauss-Seidel idea, or with the effi-
ciency of parallel computing. It is very hard
to say, which version should be regarded as the
best one.

The aim of this paper is to make a compar-
ison of different, parallel Gauss-Seidel algo-
rithms for solving path problems. In fact,
two representative algorithms from (Manger,

76

A Comparison of two Parallel . . .

1993), using completely different paralleliza-
tion strategies, will be evaluated. The first algo-
rithm is a straightforward parallelization: it per-
forms a single iteration step very efficiently, but
it slightly degrades the original Gauss-Seidel
computational procedure, thus requiring more
iterations. The second algorithm is a more so-
phisticated parallelization: it is computation-
ally equivalent to the sequential Gauss-Seidel,
but its execution of a single iteration step is not
so efficient. Our comparison should reveal rel-
ative advantages and drawbacks of the two par-
allelization strategies, in order to decide which
strategy is better and when.

The paper is organized as follows. Section 2
reviews the algebraic approach to path prob-
lems, and shows through an example, how a
concrete path problem can be interpreted as an
equation. Section 3 introduces our two parallel
iterative Gauss-Seidel-like algorithms for solv-
ing such equations; some basic properties of
the algorithms are highlighted. Section 4 lists
the available theoretical results, which estimate
and compare the computational complexity of
both algorithms; it is demonstrated by examples
that those results cannot generally be improved.
The next Section 5 presents our experiments and
summarizes their results; in those experiments
the two algorithms have been tested and com-
pared on randomly generated graphs, and with
different numbers of available processors. The
final Section 6 gives conclusions.

2. Algebraic Approach to Path Problems

Suppose that we want to solve a single-destination
path problem, in a given directed graph with n
nodes. That means, we are interested only in
paths terminating in a specified (fixed) node.

Then, according to (Carré, 1979), the problem
can be reduced to solving a vector equation of
the form

(1)

Here, A 1s an n x n matrix specifying the graph,
b is a vector of length n pointing to the destina-
tion node, and y is an unknown vector (also of
length) describing the solution of the original
problem. Entries of A, b and y are elements of
a suitably chosen set P, which is called a path
algebra. P is equipped with two binary opera-
tions, V and o, satisfying certain algebraic prop-
erties. V is a replacement for standard addition,
and o serves as multiplication. Neutral elements
exist for both operations, and they are called the
zero and the unit element respectively. Simi-
larly, as in ordinary linear algebra, the “scalar"
operations V and o induce the corresponding
matrix and vector operations.

y =AoyVh.

To illustrate these ideas, let us consider the
graphin Figure 1 whose arcs are given “lengths".
Suppose that we want to solve a shortest dis-
tance problem, i.e. we want to determine the
length of the shortest path from any node to
node 5 (denoted by a double circle). Then the
equation (1) should be given as follows.

Y1 o oo 3 o0 Y1 [o's}
V2 1 oo oo 8 oo V2 o0
y3 | = 3 1 oo oo 1 |of ya |V]| oo
V4 oo 2 7 00 o0 V4 lo's)
Vs co w6 2 o ¥s 0

The set P consists here of real numbers extended
with co. The operation V is the standard mini-
mum, and o is the conventional summation. The
zero in P is oo, and the unit element is 0. The
matrix A is in fact the adjacency matrix of our
graph, i.e. the (i, j)-th matrix entry is the length

node 1

3 node 3 6

Fig. I. A simple shortest distance problem.

A Comparison of two Parallel . . .

77

of the arc from node i to node j. The vector
b is the 5-th unit vector, corresponding to our
chosen destination node 5. It is easy to check
that the vector

1 4
Y2 5
yv3 | = |1
V4 v
¥s 0

is a solution of our equation. From this vector
we read the solution of our path problem, i.e.
the i-th vector element is the shortest distance
from node i to node 5. Many other examples of
path problems and corresponding path algebras
can be found in (Carré, 1979; Manger, 1990).

3. Two Parallel Iterative Algorithms

As in ordinary linear algebra, the equation (1)
can be solved by iteration. Thus an initial ap-
proximate solution vector y({]) 1s chosen and put
into the right-hand side of (1) in order to eval-
uate the next solution vector y(]). The obtained
vector y() is used in the same way to evaluate
y(z), ... and so on. After some number of iter-
ations, the process will converge and an exact
solution will be reached.

In the Jacobi iterative method, each element of
y(k) 1s computed by using strictly the elements
of y*=1). The Gauss-Seidel method, on the
other hand, evaluates an element of y() by us-
ing the most recent values of the other elements,
no matter if they belong to y*=1) or already to
y® . So in the Gauss-Seidel method, the fi-
nal value of y*) depends on the order in which
particular elements of y(k) have been evaluated.

Now we present two parallel iterative algo-
rithms for solving the equation (1). Both al-
gorithms are based on the Gauss-Seidel type
of iteration, and they are designed for a multi-
processor built of many independent processors
with a common memory (Quinn, 1987).

Algorithm 1.

(x P is any path algebra. m processors are

available. Input: an nxn matrix A=[a;| over

P, and a vector b = [b;] of length n over P. x)
k=0

fori:=1tondo
ySO) = bi y
repeat
t.:=true;
ki=k+1,;
foralls € {1,2,...,/m} do in parallel
fori:= (s — 1)/ + 1 to min{s/, n} do
begin
k s—1)! k—1
A= (VT agoy D)y
—1 k
(V;:(sq)m aijoyj()) v
n k—1
(Vj:j aijoyj(')) % bi ;
if yi # " then
t := false
end
until 1 = true

(% Output: the vectory = [yl(k)]. %)

Algorithm 2.
(% P is any path algebra. m processors are
available. Input: an n X n matrix
A = [ajj| over P, and a vector b = [b;] of length
nover P. x)

{%=[nim] ;

= /1]

forr :=1tondo

begin

yri=by;

Wy i= by}

z, 1= zero in P
end ;

fori:=1tondo
foralls € {1,2,...,/} do in parallel
forr:= (s — 1)+ 1 to min{s/,n} do

if < i then
Wy i= W V a0y,
else
Zy 1= 2,V 4;0¥;
repeat
r:=true,
for::=1tondo
begin
Vii=wiVaz,
if y; # y; then
begin
B=Ny
Pi=dalse ;

forallsc {1,2,...,m} do
in parallel

78

A Comparison of two Parallel . . .

forr:=(s— 1)+ 1to
min{sl, n} do
if r <ithen
Wy =W, V a,;0y;
else
Zy 1= 2y V @ri0Y;
end
end
until 1 = frue
(% Output: the final value of the vector y =
i *)

Algorithm 1 is a straightforward parallelization
of the sequential Gauss-Seidel. However, due
to paralle] computing, the obtained sequence of

vectors y(1), y@), .y is not necessar-
ily the same as in the sequential case. In fact, if
the number of processors m is equal to n, Algo-
rithm 1 degrades into a Jacobi type of iteration.
For 1 < m < n Algorithm 1 acts as a hybrid of
Jacobi and Gauss-Seidel.

Algorithm 2 uses a more sophisticated paral-
lelization, where the inner loop of a single iter-
ation has been parallelized instead of the outer
loop. In this way, the original (sequential)
Gauss-Seidel order of evaluation has been pre-
served, i.e. the same sequence of approximate
solution vectors is obtained for any number of
Processors.

It can be shown (Manger, 1993) that both Algo-
rithms 1 and 2 are correct when applied to path
problems, i.e. they terminate in a finite number
of iterations, and they really find the solution
corresponding to our original path problem.

4. Estimates of Computational Complexity

In order to compare our algorithms for comput-
ing in a path algebra P, we introduce a theo-
retical measure of performance called compu-
tational complexity. This is the time required
by a given algorithm to solve a given problem,
provided that one computational operation with
elements of P (i.c. V, o, equality test) takes
one unit of time, and all other operations take
no time. Computational complexity is usually
expressed as a function of n (number of graph
nodes) and m (number of processors).

The computational complexity of Algorithms 1
and 2 has already been studied in (Manger,

1993). Also relevant are some theorems from
(Carré, 1979) treating iterative methods in gen-
eral. All those results combined together can be
summarized as follows.

1. The computational complexity of a sin-
gle iteration in Algorithm 1 is at most
[n/m](2n + 1).

2. Algorithm 1 never requires more than n
iterations to terminate.

3. The computational complexity of a sin-
gle iteration in Algorithm 2 is at most
2n([n/m] +1).

4. Algorithm 2 never requires more itera-
tions to terminate than Algorithm 1 (for
the same problem and the same number of
Processors).

To be precise, statements 2 and 4 above are not
generally true, but only if Algorithms 1 and 2
are used with correct input data describing a
meaningful path problem. Moreover, the graph
involved must have an additional property called
absorptivity (Carré, 1979). Still, almost all path
problems lead to absorptive graphs, and there-
fore in our context the presented results are prac-
tically always valid.

Remember that with one processor both algo-
rithms are computationally equivalent to the
original (sequential) Gauss-Seidel method, while
with more processors only Algorithm 2 is still
guaranteed to be equivalent. Thus, if only one
processor is used, then both algorithms need the
same number of iterations for the same problem.
As more processors are added, the number of it-
erations possibly increases for Algorithm 1, but
remains unchanged for Algorithm 2.

As we can see, the estimates of complexity im-
plied by the quoted results are too vague to de-
termine which of Algorithms 1 and 2 is better.
Namely, Algorithm 1 seems to execute a sin-
gle iteration faster, but perhaps requires more
iterations. Also, it is hard to compare our two
algorithms only on the basis of worst-case com-
plexities, since those values can be unequally
pessimistic in each concrete case. An additional
property of Algorithm 2 is that it can sometimes
skip almost a whole iteration (if y; = y;). This

A Compariscn of two Parallel . . .

79

1 2 3 n—1 n 1 2 3 n—1 n
& — 00— — w—b.-b@ @_ T @ —+—@
Fig. 2. Two simple path existence problems.

1 2 a u—2 u-—1 v v—1 v-2 u+1 u
® @ @ e ———————® ® o r e—@
v+l v+2 v+3 n—1 n
@ @ []] @

Fig. 3. Another path existence problem.

property can have a significant impact on over-
all performance, although it is not captured by
our estimates.

One may argue that a more precise comparison
of Algorithms 1 and 2 can be made simply by
“sharpening" the available estimates. But we
claim that statements 1-4 cannot generally be
improved. Namely, it is obvious that the upper
bound in statement 1 and 3 respectively cannot
be lowered, since it reflects the actual number
of algebraic operations required for a complete
graph (a dense matrix and vector). A little bit
more difficult is to demonstrate that the range
given by statements 2 and 4 respectively cannot
be made tighter; we will show this through a set
of examples.

In each of the following examples we will con-
sider a path existence problem. So our task will
be to determine all nodes in a given graph that
are connected by a path to a given destination
node. Such a problem can again be reduced
to a vector equation of the form (1), but now
the path algebra P must be the Boolean alge-
bra, consisting of only two elements 0 and 1,
with the operations max and min as V and o
respectively.

Let us first consider the problem presented by
Figure 2 — left; as before the destination node
is denoted by a double circle. It is easy to see
that for this problem both Algorithms 1 and
2 terminate after exactly » iterations, no mat-
ter how many processors are employed. Thus
Algorithm 1 can really need as many as » itera-
tions, and Algorithm 2 can really need as many
iterations as Algorithm 1.

Let us next consider the problem illustrated by
Figure 2 — right; the destination node is again
denoted by a double circle. For this problem
Algorithm 1 executes »n iterations if n proces-
sors are used, while Algorithm 2 executes only
2 iterations. Thus with a different number of
processors Algorithm 1 may require a consid-
erably different number of iterations, ranging
between 2 and n. On the other hand, with the
same number of processors Algorithm 2 may
require much less iterations than Algorithm 1.

The previous two problems can be combined
into a more general problem shown in Figure 3.
The graph of Figure 3 can be constructed for
any u,v,nsuch that 1 < u < v < n. It can be
checked that, for this problem and with n proces-
sors, Algorithm 1 needs v iterations, while Al-
gorithm 2 needs min{u—+1, v} iterations. So, we
see that almost all situations implied by state-
ments 2 and 4 together are possible.

5. Experiments and Results

To enable exact testing, we have made two sim-
ple C programs implementing Algorithm 1 and
2 respectively. These programs are in fact se-
quential, but each of them genuinely simulates
the behaviour of the corresponding parallel al-
gorithm. In addition to computing, each pro-
gram also measures the number of iterations re-
quired, the total computational complexity, and
the average complexity per iteration. Since the
specification of the currently chosen path alge-
bra P has been isolated in a separate module,

80

A Comparison of two Parallel . . .

desti- # of pro | # of iterations total complexity avg cmplx per iter
nation -cessors | Alg1: Alg2 Algl: Alg2 Algl: Alg?2
‘I‘\

node 1 1 242 32:22 16.00: 10.00
2 Fu2 27 : 18 9.00 : 8.00
3 422 30: 17 7.50: 8.00
5 4.0 2 17: 16 4,25+ 7.50

node 2 1 3:3 49 : 28 16.33: 8.67
2 323 27 : 24 9.00: 7.67
3 3:3 20:23 6.67 : 7.00
5 353 =22 3.67: 7.00

node 3 1 252 34.: 23 17.00 : 10.00
2 322 33:19 11.00 : 8.50
3 3:2 24:19 &.00: 9.00
5 4:2 200 17 5.00: 8.00

node 4 1 44 7252 18.00: 12.50
2 44 37: 45 9.25: 11.00
3 4.4 29: 41 7.25: 10.00
5 5:4 21 ¢ 38 4.20: 9.25

node 5 1 3:3 47 : 33 15.67: 10.67
2 4¢3 33 52 8.25: 8.67
3 4:3 2727 6.75: 8.67
5 5:3 2% 125 4.20: 8.00

Tab. 1. Experimental results — shortest distance problems given by Figure 1.

any of the two programs can easily be adjusted
to solve various concrete path problems, e.g.
path existence, shortest distances, . . ., etc.

In our programs, the computational complex-
ity is measured simply by counting operations
in each of the “parallel" processes. More pre-
cisely, only non-trivial operations with elements
of P are taken into account, i.e. operations
with both operands non-null. This measure-
ment method is appropriate for prospective pro-
fessional implementations of our algorithms,
where sparse data structures should be used for
matrices and vectors (Tewarson, 1973). Such
structures do not store zeros, and therefore al-
low ftrivial operations to be easily recognized
and avoided. It is still assumed, however, that
a non-trivial operation always produces a non-
trivial result; this is namely true in iost path
algebras. ‘

The programs have been tested on a number
of path existence and shortest distance prob-
lems. Different numbers of processors have
been tried for each problem. The measured it-
eration counts and computational complexities
are summarized in Tables 1-4. The first two
tables present the exact results for few smaller
but specially designed problems. The next two
tables contain average results for populations of
larger problems generated randomly.

Table 1 shows the values for the shortest dis-
tance problem given by Figure 1, and also for
the remaining four problems that use the same
graph but another destination node. These ex-
amples, although very simple, clearly illustrate
some general characteristics of Algorithms 1
and 2. Wc see that with one processor Algo-
rithim 2 always has a considerably smaller com-
plexity than Algorithm 1. With more proces-

A Comparison of two Parallel . . .

81

sors, Algorithm 2 performs quite predictably,
i.e. the number of iterations remains constant,
and the complexity slowly decreases. At the
same time, the behaviour of Algorithm 1 is more
unstable, since its number of iterations can in-
crease. For the second sample problem (desti-
nation node 2) Algorithm 1 never requires more
iterations than Algorithm 2, thus, with more
processors, it becomes much faster. In the first
or third example Algorithm 1 is always slower
than Algorithm 2, due to a greater number of it-
erations. Finally, in the fourth or fifth example
Algorithm 1 requires few more iterations, but
still ends up faster than Algorithm 2.

Table 2 shows the measurements for the path ex-
istence problem of Figure 3. The parameters v
and » have been set to 10, and few different val-

ues for u have been tried. We see that the num-
ber of iterations required by our algorithms can
really be regulated through u and v, as claimed
earlier. Another interesting thing to note is, that
for this particular problem Algorithm 2 never
manages to employ more than one processor,
i.e. its complexity does not change with more
Processors.

Table 3 summarizes the results for 50 path ex-
istence problems, all of the same size n = 100.
The problems have been divided into 5 groups
of 10, according to their graph density (percent-
age of non-zeros in the adjacency matrix A). For
each problem, the graph structure with the de-
sired density was generated randomly. Also,
the destination node was chosen randomly. En-
tries in Table 3 in fact correspond to groups, not

value # of pro | # of iterations total complexity avg cmplx per iter
of u -cessors | Alg1: Alg?2 Alg1: Alg?2 Alg1: Alg?2
1 1 252 29: 20 14.50 : 9.50
2 322 24 : 20 8.00: 9.50
3 4:2 2720 6.75: 9.50
4 5:72 26: 20 5.20: 9.50
5 6:2 211 20 3.50: 9.50
10 10: 2 19: 20 1.90 : 9.50
4 1 5:5 74 : 44 14.80 : 8.60
2 6 5 47 : 44 7.83: 8.60
3 6 5 44 : 44 7.33: 8.60
4 7.5 38: 44 5.43 : 8.60
5 Tw 5 26 : 44 3.71 : 8.60
10 10% 5 19 : 44 1.90 : 8.60
7 1 8:8 101: 59 12.62 : 7.25
2 8:8 67: 59 8.38:7.25
3 9:8 51:59 567+ 7.25
4 9:8 47 : 59 5224 725
5 9:8 33: 59 3.67:7.25
10 10: 8 19: 59 1.90: 7.25
10 1 10: 10 109 : 64 10.90 : 6.30
2 10: 10 75 : 64 7.50: 6.30
3 10: 10 60: 64 6.00 : 6.30
4 10: 10 51: 64 5.10: 6.30
5 10: 10 36: 64 3.60: 6.30
10 10: 10 19: 64 1.90: 6.30

Tab. 2. Experimental results - path existence problems of Figure 3 (v = n = 10).

82

A Comparison of two Parallel . . .

to particular problems. Most of those entries
are averages computed over a whole group. A
score is simply the number of members of a
group where one algorithm outperformed the
other. Thus Table 3 shows a typical behaviour

of Algorithms 1 and 2 on a path existence prob-
lem. This behaviour is expressed in dependence
on the graph density and on the number of avail-
able processors.

All problems it Table 3 use a relatively sparse

graph # of pro | # of iterations total complexity avg cmplx per iter score
density -cessors | Algl: Alg2 Algl: Alg?2 Algl: Alg?2 Algl: Alg2

1% 1 56258 220.1:121.1 36.96 : 19.98 0:10

2 1.3% 5:6 172.8 : 115.9 2152z 19.16 0:10

4 7.8:5.6 110.3: 112.9 13.12: 18.74 T43

7 825 56 87.2x 1115 9.89: 18.52 Sz 2

13 83:5.6 58.8:110.2 6.60 : 18.33 10: 0

25 84:5.6 43.0: 109.5 4.84:18.23 10: 0

50 Bb: 56 34.7:109.4 3.92: 18.21 10: 0

100 8.6:5.6 28.3:109.4 3.25: 18.21 10: 0

3% 1 4.8:4.8 1677.5:799.4 349.32: 166.38 0:10

2 6.3:4.8 1019.8: 680.8 161.06 : 141.59 0:10

4 7.2:4.8 5095.8: 6127 82.66 : 127.47 T=3

7 7.7:4.8 391.0: 577.6 3072 120.19 10: 0

13 79:48 248.4 : 556.9 31.48 : 115.96 10: 0

25 8.0: 4.8 149.3 : 542.8 18.82: 113.05 10: 0

50 8.1:4.8 100.7 : 532.9 12,522 11097 10: 0

100 8.1:48 719 : 5282 8.99: 110.22 10: 0

5% 1 41:4.1 2783.5: 12487 677.95: 306.78 0:10

2 4.8: 4.1 1475.4: 975.0 306.89 : 239.32 0:10

4 52:4.1 763.5: 821.8 145.93 : 201.22 713

7 55:4.1 480.0 : 744.1 87.13 : 182.12 10: 0

13 57 :4.1 299.0 : 685.2 51.80: 167.50 10: 0

25 6.0: 4.1 193.3: 6443 31.99: 157.45 10: 0

50 6.0: 4.1 115.7 : 616.2 19:13 : 150.55 10 : 1

100 6.0: 4.1 80.8: 599.6 13.38 : 146.38 10: 0

7% 1 3.6:3.56 ¥525.0: 16182 977.20 : A53.77 0:10

2 39:356 1625.5: 1191.0 416.66: 333.89 0:10

4 43:3.6 832.7: 951.8 191.83: 266.19 7:3

7 47:3.6 580.6 : 833.4 123.00 : 232.64 10: 0

13 4.8:3.6 329.1: 746.6 68.34 : 208.30 10: 0

25 50:3.6 195.6: 679.9 39.14: 189.34 10: 0

50 50:3.6 115.4 : 629.8 23.05: 175.15 10: 0

100 5.0:3.6 74.3:598.2 14.84 : 166.34 10: 0

9% 1 3.1: 3.1 3950.7 : 1974.7 1276.89 : 637.62 0:10

2 36:3.1 20449 : 13754 565.42:443.86 . 0:10

4 40:3.1 1098.1: 1044.9 274.52: 337.38 3:7

7 41:3.1 651.1: 879.3 158.42 : 284.05 9:1

13 4.3: 3.1 3773« T61.2 87.09 : 245.84 10:0

25 44: 3.1 218.1: 670.1 49.12: 216.35 10: 0

50 4.5:3.1 130.7 : 598.3 28.71: 193.26 10: 0

100 45:31 82.6:545.1 18.20 : 176.02 10: 0

Tab. 3. Experimental results — rand

omly generated path existence problems.

A Comparison of two Parallel . . .

83

graph (density below 10%). Denser graphs
have not been included, since they would pro-
duce very predictable results (similar to those
for 9% density). Namely, dense graphs are too-
well connected, and corresponding path exis-

circumstances both algorithms finish in 2 or 3
iterations, and there is no real opportunity for
their competition.

Table 4 presents the results for 50 shortest dis-

tence problems become too simple. In such tance problems, all having the size n = 100.
graph #of pro | # of iterations total complexity avg cmplx per iter score
density -cessors | Alg1: Alg?2 Alg1l: Alg?2 Algl: Alg2 Algl: Alg?2
10% 1 6.3 ;63 10861.3 : 4971.6 1715.59% T92:59 0:10
2 85:63 7375.6 : 3447.6 864.49 : 549.41 0:10
4 9.1:63 3964.5 : 2610.2 434.09 : 415.23 0:10
7 9.2:63 2431.8: 21925 263.06 : 348.43 2:8
13 9.2 :86.3 1359.7 : 1905.4 147.11 : 302.61 10 : 8
25 93 : 5.3 774.9 : 1687.5 83.03 : 268.13 10: 0
50 9.4:6.3 435.1: 1509.6 46.05 : 239.60 10: 0
100 9.4:6.3 255.22 1349.3 27.03% 21381 10: 0
30% 1 6.6: 6.6 36252.4: 15678.3 5477.71: 2399.24 0:10
2 83:6.6 22662.7: 9280.1 2723.05: 1419.43 0:10
< 951656 13061.7 : 5880.0 1370.17 : 898.62 0:10
7 9.8:6.6 8094.2 : 4411.9 821.13: 673.61 0:10
13 10.1: 6.6 4498.5 : 3327.2 443.02 : 507.42 0:10
25 10.1: 6.6 2334.8: 2594.1 229284 395,11 7:3
50 10.1: 6.6 1281.8 : 2069.8 126.10 : 314.74 10: 0
100 10.1: 6.6 718.1+ 1586.5 70.88 : 240.64 10: 0
50% 1 6.8:6.8 62743.0: 25865.1 9212.84 : 3834.98 0:10
2 9.0: 568 41451.3 : 14537.6 4595.77 : 2154.67 0:10
4 95168 21862.3: 8616.7 2293.68: 1275.94 0:10
7 10.2: 6.8 14124.5 : 6091.7 1382.36 : 901.39 0:10
13 10.1: 6.8 7538.3: 42514 744.03 : 628.91 0:10
25 10.3: 6.8 3990.5: 3047.7 385.58 : 450.06 1:9
50 10.4: 6.8 2083.9: 2161.6 199.43 : 318.67 7:3
100 10.8: 6.8 1183.5: 1666.1 109.18 : 245.11 10: 0
70% 1 Tlz %] 92329.7: 37156.4 12988.23 : 5241.43 0:10
2 91521 58751.6: 20099.6 6444.97 : 2834.68 0:10
4 102 : 7.1 33058.5: 11386.5 3233.42: 1605.63 0:10
7 10.8: 7.1 21073.6: 7713.5 1946.11: 1087.32 0210
13 109 7.1 11462.4 : 5086.9 1046.74 : 716.63 0:10
25 1125 73 5993.7: 3294.3 533.09 : 463.95 0:10
50 112873 3090.4 : 2266.2 274.84 : 318.86 0:10
100 1122 7.1 1599.4 : 1752.0 142.33 : 246.25 g1
90% 1 1.7« 1T 129456.9 : 47877.3 16769.96 : 6288.32 0:10
2 10.0% .7 83341.5: 25246.8 8298.76 : 3314.06 0 10
4 1153 3.3 47214.4: 13746.2 4157.17 : 1803.11 0:10
% 1162 7.7 29133.6: 9006.4 2501.13: 1180.99 0:10
13 1215 %0 16339.8 : 5523.0 1344.99 : 723.08 010
25 12.3: 7.7 8394.0 : 3453.8 679.66 : 451.14 0:10
50 123:77 42474 : 2418.1 343.60: 315.02 0 10
100 123¢ 7.9 2162.2: 1900.3 175.01 : 246.94 129

Tab. 4. Experimental results — randomly generated shortest distance problems.

84

A Comparison of two Parallel . . .

The problems have again been arranged into 5
groups of 10, according to their graph density.
As before, graph structures with desired densi-
ties, as well as destination nodes, were chosen
randomly. In addition, arc lengths were gener-
ated as random numbers between 0 and 99. In
this way, even a most complex path (consisting
of many arcs) had a chance to be the shortest.
Similarly as in Table 3, entries in Table 4 corre-
spond to groups of problems, i.e. they represent
averages and scores. In this way, Table 4 illus-
trates a typical behaviour of Algorithms 1 and 2,
but now for the case of a shortest distance prob-
lem. As we can see, this behaviour is not quite
the same as that for a path existence problem.

The problems in Table 4 cover a broad range
of graph densities (from 10% to 90%). Dense
graphs are more interesting for shortest distance
than for path existence problems, Namely, a
dense graph allows construction of many differ-
ent paths connecting the same pair of nodes. To
determine the shortest distance, it is not enough
to find only one path between two given nodes
(as in the case of path existence). Instead, all
possible paths should be examined and their
lengths should be compared. Consequently,
shortest distance problems with denser graphs
become more and more complex, even in terms
of the number of iterations required.

Among other things, our experiments have also
revealed an interesting property of Algorithm 1,
which is usually called superlinear speedup
(Helmbold and McDowell, 1990; Quinn, 1987).
Thus, it can happen that, for some input data,
the algorithm runs with m processors more than
m times faster than with 1 processor. Concrete
examples are visible in Table 3 (density 7%,
number of processors 2 or 4). In fact, super-
linear speedup is not as surprising as it looks
at first sight. Namely, for each number of pro-
cessors Algorithm 1 chooses a slightly different
pattern of computation. It can happen that one
of those patterns is “lucky enough" to find the
solution after a relatively small total number of
operations. Superlinear speedup occurs more
frequently in path existence problems than in
shortest distance problems. This fact can be
explained by special properties of the Boolean
path algebra. Still, the same phenomenon has
been observed in few shortest distance prob-
lems, although due to averaging, Table 4 does
not show it .

6. Conclusions

Both parallel algorithms considered in this pa-
per solve a path problem by means of Gauss-
Seidel iteration. However, each ot the two
algorithms employs a different parallelization
technique. Algorithm 1 uses a straightforward
parallelization, which makes a slight compro-
mise with the idea of the original (sequential)
Gauss-Seidel method. Algorithm 2 uses a more
subtle parallelization, which manages to repro-
duce genuinely the original method.

The available theoretical estimates of compu-
tational complexity turn out to be too vague
to determine relative strengths and weaknesses
of the two algorithms. Moreover, our exam-
ples show that these estimates cannot be made
more precise, at least not in general. There-
fore, an accurate evaluation and comparison of
Algorithms 1 and 2 can be made only by exper-
iments.

Our experiments show that Algorithm 1 is ca-
pable of employing many processors efficiently.
However, with more processors Algorithm 1 can
require more iterations. In some extreme cases,
this overhead of iterations is so high that the to-
tal computational complexity becomes greater,
although more processors are engaged. But usu-
ally, the degradation of performance is not too
serious, and the overall speedup is still satisfac-
tory.

Our experiments also demonstrate that Algo-

rithm 2 is an outstandingly good sequential al-
gorithm. Namely, with one processor Algo-
rithm 2 requires considerably less operations to
produce the same results as Algorithm 1. The
reason for this is the already mentioned skipping
capability, which relies on some special prop-
erties of path algebras. With more processors
Algorithm 2 requires always the same number
of iterations, but the total computational com-
plexity drops down very slowly. So there is,
in fact, no real potential to employ many pro-
cessors. In some extreme cases, the algorithm
is completely non-parallelizable. Usually how-
ever, there is some speedup, but never adequate
to the number of processors.

Our experimental results clearly identify some
situations when one of the algorithms is supe-
rior to the other. Namely, Algorithm 2 is al-
ways faster if only few processors are available.

A Comparison of two Parallel . . .

85

With many processors (as many as graph nodes)
Algorithm 1 usually becomes faster. So there
usually exists a “turning point" (certain number
of processors) where both algorithms perform
similarly. However, the exact position of that
point depends heavily on the problem involved.

The considered algorithms have been designed
to solve single-destination path problems. But
of course, they can be slightly modified to ac-
commodate single-source problems. For all-
pairs problems we recommend another fam-
ily of parallel algorithms, which are based on
Gaussian elimination rather than on iteration
(Gayraud and Authie, 1992; Kung et al., 1987;
Manger, 1992).

References

B. CARRE, Graphs and Networks. Oxtord Uni-
versity Press, Oxford, 1979.

T. GAYRAUD AND G. AUTHIE, A parallel algo-
rithm for the all pairs shortest path prob-
lem. In Parallel Computing '91 (D. J.
Evans, G. R. Joubert and H. Liddell, Eds.),
pp. 107-114. Advances in Parallel Com-
puting 4, North-Holland, Amsterdam,
1992.

D. P. HELMBOLD AND C.E. MCDOWELL, Model-
ling speedup (n) greater than n. IEEE
Transactions on Parallel and Distributed
Systems, 1 (1990), 250-256.

S—Y. KUNG E1 AL., Optimal systolic design for
the transitive closure and the shortest path
problems. [EEE Transactions on Comput-
ers, C=36 (1987), 603-614.

J. A. MCHUGH, Algorithmic Graph Theory,
Prentice—Hall, Englewood Cliffs NJ, 1990.

R. MANGER, New examples of the path alge-
bra and corresponding graph theoretic path
problems. In Proceedings of the 7th Semi-
nar onApplied Mathematics, Osijek, Croa-
tia, 13-15 Sep. 1989 (R. Scitovski, Ed.),
pp- 119-128. University of Osijek, Croa-
tia, 1990. '

R. MANGER, A parallelization of the Jordan
methaod for solving path problems. In Pro-
ceedings of the 14th International Confer-
ence ITI, Pula, Croatia, 15—18 Sep. 1992

(V. Ceri¢ and V. Dobri¢, Eds.), pp. 491—
496. University Computing Centre, Za-
greb, Croatia, 1992.

R. MANGER, Parallel iterative algorithms for
solving path problems. Journal of Com-

puting and Information Technology —CIT,
1 (1993), 99-110.

W. H. PRESS ET AL., Numerical Recipes in C —
The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, 1988.

M. J. QUINN, Designing Efficient Algorithms for
Farallel Computers. McGraw-Hill, New
York, 1987.

G. ROTE, Path problems in graphs. Computing
Supplement, 7 (1990), 155-189.

R. P. TEWARSON, Sparse Matrices. Academic
Press, New York, 1973.

Received: October, 1995
Accepted: October, 1996

Contact address:

Robert Manger

Department of Mathematics
University of Zagreb

Bijenicka cesta 30

10000 Zagreb

Croatia

Phone: +385 1 4555-720 / 119
Fax: 4385 1 432-484

E-mail: manger@math.hr

RCBERT MANGER received the BSc. (1979), MSc. (1982), and PhD.
(1990) degrees in mathematics, all from the University of Zagreb. For
mere than ten years he worked in industry, where he obtained practi-
cal experience in programming, computing, and designing information
systems. Dr Manger is presently a lecturer in the Department of Mathe-
matics at the University of Zagreb. His current research interests include
parallel algorithms and neural networks. Dr Manger is a member of
the Croatian Mathematical Socicty, Croatian Society for Operations
Research and [EEE Computer Socisty.

