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The basic limitations of the current appearance-based
maltching methods using eigenimages are non-robust esti-
mation of coellicients and inability to cope with problems
related to occlusions and segmentation. In this paper
we present a new approach which successfully solves
these problems. The major novelty of our approach lies
in the way how the coelficients of the cigenimages are
determined. Instead of computing the coefficients by a
projection of the data onto the eigenimages, we extract
them by a hypothesize-and-test paradigm using subscts
of image points. Competing hypotheses are then subject
Lo a selection procedure based on the Minimum Descrip-
tion Length principle. The approach enables us not only
to reject outliers and to deal with occlusions but also to
simultaneously use multiple classes of eigenimages.

Kevwords: appearance-based matching, principal com-
ponent analysis, robust estimation, occlusion, discrete
optimization.

1. Introduction and motivation

The appearance-based approaches to vision prob-
lems have recently received a renewed attention
in the vision community due to their ability to
deal with combined effects of shape, reflectance
properties, pose in the scene, and the illumi-
nation conditions [Murase & Nayar, 1995b].
Besides, the appearance-based representations
can be acquired through an automatic learn-
ing phase which is not the case with traditional
shape representations. The approach has led
to a variety of successful applications, e.g., il-
lumination planning [Murase & Nayar, 1994],
visual positioning and tracking of robot ma-
nipulators [Nayar er al, 1994], visual inspec-
tion [ Yoshimura & Kanade, 1994/, “image spot-
ting” [Murase & Nayar. 1995a], and human face
recognition [Turk & Pentland, 1991, Beymer &
Poggio, 1993].

As stressed by its proponents, the major ad-
vantage of the approach is that both learning
as well as recognition are performed using just
two-dimensional brightness images without any
low- or mid-level processing. However, there
still remain various problems to be overcome
since the technique rests on direct appearance-
based matching [Murase & Nayar, 1995b]. The
most severe limitation of the method in its
present form is that it cannot handle the prob-
lems related to

e occlusion and

e segmentation.

The approach of modular eigenspaces |[Pent-
land er al., 1994] tries to alleviate the problem
of occlusion but does not solve it because the
same limitation holds for each of the modular
eigenspaces.

Moreover, the current approaches are also not
robust, where the term robustess refers to the
fact that the results remain stable in the presence
of various types of noise and can tolerate a cer-
tain portion of outliers [Huber, 1981, Rousseuw
& Leroy, 1987]. Robustness can be character-
1zed by the concept of breakdown point, which
1s determined by the smallest portion of outliers
in the data set at which the estimation procedure
can produce an arbitrarily wrong estimate. For
example, in current approaches even a single er-
roneous data point can cause an arbitrary wrong
result, meaning that the breakdown point is 0%.

In this paper we present a new approach which
successfully solves these problems. The major
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novelty of our approach lies in the way how
the coefficients of the eigenimages are deter-
mined. Instead of computing the coefficients
by a projection of the data onto the eigenim-
ages, we extract them by a hypothesize-and-test
paradigm using subsets of image points. Com-
peting hypotheses are then subject to a selection
procedure based on the Minimum Description
Length (MDL) principle. The approach enables
us not only to reject outliers and to deal with oc-
clusions but also to simultaneously use multiple
classes of eigenimages.

The paper is organized as follows: We first re-

view the basic concepts of the current appearance-

based matching methods and point out the main
limitations. In section 3 we present the basic
steps of our method and outline the complete
algorithm. The experimental results are shown
in section 4: We first present some results on 1-
D signals where the main steps of the algorithm
can easily be visualized, and then we present
the results on complex image data. We con-
clude with a summary and outline the work in
progress.

2. Appearance-based matching

The appearance-based methods consist of two
stages. In the first stage a set of images (tem-
plates), i.e., training samples. is obtained. These
images usually encompass the appearance of a
single object under different orientations [Yo-
shimura & Kanade, 1994], different illumina-
tion directions [Murase & Nayar, 1994], or
multiple instances of a class of objects, e.g.,
faces [Turk & Pentland, 1991]. The sets of im-
ages are normally highly correlated. Thus, they
can efficiently be compressed using Karhunen-
Loeve transform (i.e., PCA) [Anderson, 1958].
resulting in a low-dimensional eigenspace.

In the second stage, given an input image. the
recognition system projects parts of the input
image, (i.e., subimages of the same size as train-
ing images), to the eigenspace. The recovered
coefficients indicate the particular instance of
an object and/or its position, illumination, etc.
The process is usually sequentially applied to
the entire image or some mechanisms are used
to segment the subimages, e.g.. motion.

We now introduce the notation. Lety = [yy.
. .)'”,]T € R" be an individual template, and

YV = {y1....y,} be aset of templates; through-
out the paper a simple vector notation 1s used
since the extension to 2-D is straightforward.
To simplify the notation we assume ) to be
normalized, having zero mean. Let Q be the
covariance matrix of the vectors in ), we de-
note the eigenvectors of Q by e;, and the corre-
sponding eigenvalues by A;. We assume that the
number of templates 7 1s much smaller than the
number of elements m in each template, thus an
efficient algorithm based on SVD can be used
to calculate the first n eigenvectors [Murase &
Nayar, 1995b]. Since the eigenvectors form an
orthogonal basis system, < e;.¢; >= 1 when
i = jand O otherwise, where <> stands for a
scalar product. We assume that the eigenvectors
are ordered in the descending order with respect
to the corresponding eigenvalues A;. Then, de-
pending on the correlation among the templates
in ), only p, p < n, eigenvectors are needed
to represent the y; to a sufficient degree of ac-
curacy as a linear combination of eigenvectors
6

az‘(y)ei . (1)

We call the space spanned by the first p eigen-
vectors the eigenspace.

To recover the parameters «; during the match-
ing stage, a data vector x 1is projected onto the
eigenspace

m

aR] =L L& 5= Z'\-f()"f [=i1=<p ,
=1

(2)
alx] = (e ; ay(x)]" is the point in the
eigenspace obtained by projecting x onto the
eigenspace. Let us call the @;(x) coefficients
of x. The reconstructed data vector X can be
written as

It is well known that PCA is among all linear
transformations the one which is optimal with
respect to the reconstruction error |[x — ||,
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Fig. /. Demonstration of the occlusion using the standard approach for calculating the coefficients a;
2.1. Weaknesses of current appearance-  The error we make in calculating a; is
based matching "
(ai(x) — &;(X)) = E xje, (5)

In this section we analyze some of the basic lim-
itations of the current appearance-based match-
ing methods and illustrate them with a few ex-
amples. Namely, the way how the coefficients
a; are calculated poses a serious problem in the
case of outliers and occlusions.

Outliers Let us suppose that x; in Eq. (2) is
corrupted by é. Then, d; = a; + 5().,-;. It follows
that ||a — a|| can get arbitrarily large, just by
changing a single component x;. This proves
that the method is non-robust with the break-
down point 0%.

Occlusion  Similarly one can analyze the ef-
fect of occlusion. Suppose that X = [x;..... v,
0....0]7 is obtained by setting last m — r com-
ponents of x to zero: a similar analysis holds
when some of the components of x are set to
some other values. which, for example, hap-
pens in the case of occlusion by another object.
Then

j=r+1

Similarly, the additional error caused by occlu-
sion 18
n

P
1D xeell . (6)

=1 j=r+l

This error 1s not localized at the occluded part
but spreads over the whole vector X.

Let us demonstrate the effect of occlusion on a
simple 1-D example.

Fig. la shows the two eigenfunctions, obtained
as a result of training on a set of trigonometric
functions (Fig. 4, section 4). Fig. 1b shows a
test-signal taken from the set of training signals.
The signal can be exactly described by the co-
efficients a = [5.0042. 5.0470]7. Fig. 1c shows
an occluded signal, where the first 30 elements
have been set to 0. Using Egs. (2) and (3) we
get the signal shown in Fig. 1d, with the calcu-
lated coefficient vector a = [2.5658.3.0509]".
This simple example nicely demonstrates the
consequences of the occlusion. Of course, the
same applies to the 2-D case as shown in Fig. 2.

The problems that we have discussed arise be-
cause the complete set of data x is required to
calculate ¢; in Eq. (2). Therefore the method is
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(a) Original image

(b) Occluded image

(c¢) Reconstructed image

Fig. 2. Demonstration of the occlusion using the standard approach for calculating the coeflicients a;

sensitive to partial occlusions, to data contain-
ing noise and outliers, and to changing back-
grounds. In the next section we explain our new
approach which has been designed to overcome
precisely this type of problems.

3. Our approach

The major novelty of our approach lies in the
way how the coefficients of the eigenimages are
determined. Instead of computing the coeffi-
cients by a projection of the data onto the eigen-
images, we extract them by arobust hypothesize-
and-test paradigm using only subsets of image
points. Competing hypotheses are then subject
to a selection procedure based on the Minimum
Description Length principle. More specifi-
cally, our approach, which we presentin the fol-
lowing subsections, consists of four main steps:
hypotheses generation, selection, fitting, and a
final selection.

3.1. Generating hypotheses

Let us first start with a simple observation. In
order to calculate the coefficients a; (Eq. 2)
we need only p points r = (r[....r,). This
is sufficient to compute the coefficients a; by
simply solving the following system of linear
equations:

I :
Sy 7= Z a(x)e;,, 1<igsp. (7)
j=1

The coefficients a; are then used to create a
hypothesis X. which is tested by the backprojec-
tion using Eq. (3). The test gives us an error

vector £ = (x — X). The points which are
within an error margin © form a set of compat-
ible points according to hypothesis X generated
from a. We treat a hypothesis as acceptable
if it contains a minimal number of compatible
points. This condition can really be kept min-
imal since the selection procedure will reject
the false positives. The accepted hypothesis is
characterized by the coefficient vector a, the er-

—

ror vector £. and the domain of the compatible
points D = {j|§_]2 < ©},s=1|D|.

The considerations regarding Eq. {7) hold if we
take into account all eigenvectors, 1.e., p = n,
and if there is no noise in the data x,,. How-
cever, if we approximate each template only by
a linear combination of a subset of eigenfunc-
tions and there is also noise present in the data.
then Eq. (7) can no longer be used, but rather
we have to solve an overconstrained system of
equations in the least squares sense using k data
points (p < k << m). Thus we seek the solu-
tion vector a which minimizes

k P

E(r) = (xy— Y _ai(x)e,)* . (8)

i=1 j=1

Of course, the minimization of Eq. (8) can only
produce correct values for coefficient vector a, if
the set of points r; does not contain outliers, i.e,
not only extreme noisy points but also points be-
longing to different backgrounds or some other
templates due to occlusion. Therefore, the so-
lution has to be sought in a robust manner. In
particular, we randomly select a set of points,
e.g.. k = 5p and then iteratively, based on the
error distribution, reduce their number to ap-
proximately 3p points, which give us the final
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solution of the minimum least squares problem,
Eq. (8). To efficiently search for subsets of
data points to initialize the hypotheses one can
use a data-driven masking technique [Stricker
& Leonardis, 1995].

Once we have the coefficient vector a, we can
evaluate the hypothesis, both from the point
of view of the error, where we can expect for
good matches an error of Z?:]H-l A; on the aver-
age, and from the number of compatible points.
However, one can not expect that every initial
randomly chosen set of points will produce a
good hypothesis if there is one, despite the ro-
bust procedure. Thus, to further increase the ro-
bustness of the hypotheses generation step, i.c.,
increase the probability of detecting a correct
hypothesis if there is one, we initiate a number
of trials. This leads to a possibly redundant set
of accepted hypotheses, which is then resolved
by the selection procedure.

3.2. Selection

The set of hypotheses which has been generated
1s usually highly redundant. Thus, the selection
procedure has to select a subset of “good” hy-
potheses and reject the superfluous ones. To
achieve this, we utilize the Minimum Descrip-
tion Length principle, which leads to the mini-
mization of an objective function encompassing
the information about the competing hypothe-
ses [Leonardis er al, 1995]. The objective func-
tion has the following form:

( €l CIR
F(h)=h"Ch=nT| : : | h.
CRI ... CRR
(9)
Vectorh” = [h. hy. .. .. hg] denotes a set of hy-

potheses, where /1; is a presence-variable having
the value 1 for the presence and 0 for the absence
of the hypothesis 7 in the resulting description.
The diagonal terms of the matrix C express the
cost-benefit value for a particular hypothesis 7

cii = Kys; — KZHéHDf — KN . (10)

where s; is the number of compatible points,
[|&il|p, 1s the error over the domain D;, and N is

the number of coefficients (eigenvectors). The
coefficients Ky, K5, and K3, which can be de-
termined automatically [Leonardis er al., 1995],
adjust the contribution of the three terms. K; is
related to the average cost of describing a data
point (in bits), K3 is related to the average cost
of specifying the error (follows from @), and
K3 1s related to the average cost of specifying
a coefficient of an eigenvector. Due to the na-
ture of the problem, i.e., finding the maximum
of the objective function, only the relative ratios
between the coefficients play arole, e.g.. Ky /K|
and K3/K1.

The off-diagonal terms handle the interaction
between the overlapping hypotheses

2
E=max(> &3 & . (11)

D,‘HD,; DinD;

where D; denotes the domain of the i-th hypoth-
esis and ZDme_ &; denotes the sum of squared

errors of the i-th hypothesis over the intersection
of the two domains D;. D

The objective function takes into account the
interaction between different hypotheses which
may be completely or partially overlapped. How-
ever, we consider only the pairwise overlaps in
the final solution. From the computational point
of view, it is important to notice that the matrix
C is symmetric, and depending on the overlap,
it can be sparse or banded. All these proper-
ties of the matrix C can be used to reduce the

computations needed to calculate the value of
F(h).

We have now formulated the problem of se-
lection in such a way that its solution corre-
sponds to the global extremum of the objective
function. Maximization of the objective func-
tion F(h) belongs to the class of combinato-
rial optimization problems (quadratic Boolean
problem). Since the number of possible solu-
tions increases exponentially with the size of
the problem, it is usually not tractable to ex-
plore them exhaustively. Thus the exact solu-
tion has to be sacrificed to obtain a practical
one. Various methods have been proposed for
finding a “global extreme™ of a class of nonlin-
ear objective functions. Among these methods
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are winner-takes-all strategy, simulated anneal-
ing, microcanonical annealing, mean field an-
nealing, Hopfield networks, continuation meth-
ods, and genetic algorithms [Cichocki & Un-
behauen, 1993|. We are currently using two
different methods for optimization. One is
a simple greedy algorithm. which 1s compu-
tationally very efficient, and the other one is
Tabu search [Glover & Laguna, 1993, Stricker
& Leonardis, 1995]. Tabu search is computa-
tionally a little more demanding but it provides
consistently better results than the greedy algo-
rithm.

s (1)
Training Data rl={}'l .
|
|
|
|
|

¥

Eigenspace

|
.y{ !
“j

3.3. Fitting

The selected (also the generated) hypotheses
are based only on 3p points, from which the
coefficients have been computed. In order to
increase the accuracy of the coefficient vector
a, we use a modified (robustified) least squares
approach [Stricker, 1994]. The principle is sim-
ple: Based on the statistics of the errors of all
compatible points, a decision is made (again re-
lated to the error margin ®) which data points
should participate in a standard least squares
computation of a. This is repeated until the
convergence is reached. Since for the selected

(k) k)
X _..._\ﬂk }

Image

/

Hypotheses V‘

L generation

‘ (a.ED)eU: 1UI=IU

Final selection

Recovered coefficients + Families

Fig. 3. A schematic diagram outlining the complete algorithm,
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Fig. 5. 1-D eigensignals: (a) constant, (b) linear, (c¢) quadratic, and (d) trigonometric.

hypotheses the initial estimates of a are usually
quite accurate, only a few iterations are neces-
sary for the process to converge.

3.4. Final selection

Since the previous fitting step might have al-
tered some of the hypotheses, a final selection
is in some cases needed. The selection is per-
formed in the same manner as explained in sec-
tion 3.2. Note that the last two steps are com-
putationally not very expensive and cost only
a small fraction of time compared to the first

two steps, since they are applied only to a small
subset of hypotheses.

3.5. Complete algorithm

The complete algorithm is shown in Fig. 3. One
should note that we can simultaneously deal
with multiple eigenspaces I'y. . . .. I'y of, for ex-
ample, different objects (we call them families).
Everything remains as described, except that at
each location all of the families are used to ini-
tiate the hypotheses. The selection procedure
then reasons among different hypotheses, pos-
sibly belonging to different families, and selects
those that better explain the data.
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Fig. 6. 1-D test-signals: (a) noiseless, (b) sign
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Fig. 7. The four steps of our algorithm shown on a 1-D signal. In Figs. (a—

td) fi-nalnse]éction

c) the complete extent of hypotheses is

depicted while in Fig. {d) only the compatible points are plotted.

4, Experimental results

4.1. 1-D case

In order to test the algorithm we have first ap-
plied it to 1-D functions. We started with gen-
erating four families of functions:

e V—d

e y=Ibx+c

o y=dx’+ex+f
e v =gcos(x+h)
For each of these families 200 training examples

have been generated by systematically varying
their parameters (a . .. 1). Fig. 4 shows some of

the training samples for the trigonometric fam-
ilv.

These samples are then used to calculate the
four eigenspaces (we have used all eigenvec-
tors with 4; # 0). Fig. 5 shows the obtained
eigenvectors.

We have tested our algorithm on various test-
signals like the ones shown in Fig. 6. Note that
these test-signals contain only portions of the
original functions and are therefore not recov-
erable by the standard eigenspace approach (as
has been demonstrated in Fig. 1).

Fig. 7 shows the four steps of our algorithm ap-
plied to the test-signal depicted in Fig 6a. The
members of all four families have been perfectly
recovered, as depicted in Fig. 7d. One can also
see from this example that the fitting step did
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Fig. 8 The four steps of our algorithm shown on a noisy 1-D signal. In Figs. (a—) the complete extent of hypotheses
is depicted while in Fig. (d) only the compatible points are plotted.

Fig. 9. Set of training templates (a family of biscuit-animals).

not change the hypotheses very much, therefore
the final selection has not changed anything.

Fig. 8 shows the four steps of the algorithm in
the case of a noisy signal. In addition we have
not included the family of quadratic functions.
Therefore one gets for the quadratic part an ap-
proximation consisting of two constant func-
tions. This example demonstrates that our al-
gorithm not only successfully deals with partial
signals but also tolerates noise.

Further extensive experimentation on a variety
of different signals has confirmed the robustness
of the approach.

4.2. 2-D case

To demonstrate the proposed method on real
images we took three sets of images. The first
set contains a family of “biscuit-animals™ (see
Fig. 9) while the other two sets encompass the
appearance of the “duck” and the “camel” under
thirty-two orientations. The images in all three
sets are correlated to a large degree, resulting in
a small number of eigenvectors (eigenimages).
Figs. 10. I1, and 12 show the first 10 eigen-
images of each family. For the experiments we
have used 8 eigenvectors for the biscuit-animals
and 16 for the camel and duck family, respec-
tively.
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Fig. 12. First ten eigenvectors corresponding to the family of rotated ducks.

Figures 13 and [4 show two of the test images
we have used. In both images, there is a highly
cluttered background. In addition, in Fig. 14 we
have partially occluded objects.

Cluttered background Fig. [5ashows a por-
tion of the scene from Fig. 13 containing a
camel. The algorithm outputs the family (i.e.,
the camel-family) which best describes the data,
and the coefficients from which the orientation
is identified. For illustration purpose, Fig. 15b
shows the backprojection of the coefficients that
have been recovered by our algorithm.

Occluded objects Fig. 16b shows the occluded
turtle from Fig. 16a, and Fig. 16¢ gives the re-
sult obtained by our algorithm. The result is

perfect in terms of the recovered coefficients,
demonstrating that the method can deal with a
considerable amount of occlusions.

Figure 17a shows a portion of the scene from
Fig. 14, depicting a part of a camel (containing
approx. 30% of the pixels of the original camel)
on a cluttered background. The recovered infor-
mation suffices to determine the family of the
object (camel), and its orientation. Again, to
illustrate, Fig. 17b shows the backprojection of
the coefficients that have been recovered by the
algorithm. This example demonstrates that our
algorithm is very robust in dealing both with
occlusions and cluttered background. The al-
gorithm also correctly detected other animals in
the image while in the areas with no animals,
no false positives have been reported after the
final selection.
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Fig. /4. A scene containing some of the templates (some of them being partially occluded) on a complex background.

5. Conclusion

In this paper we have presented a novel ap-
proach which enables the appearance-based

matching techniques to successfully cope with
outliers, cluttered background, and occlusions.

The method exploits several techniques, e.g.,
robust estimation and hypothesize-and-test pa-
radigm, which combined together in a general
framework achieve the goal.

The applications of the proposed approach are
numerous. Basically everything that can be



36

Robust Recovery of Eigenimages

(b)

Fig. 15. (a) A detail from the original image (Fig. 13) and (b) the reconstructed camel.

()

Fig. 16. (a) Original image, (b) occluded turtle, and (c¢) the reconstructed turtle, clearly being unaffected by the
occlusion (compare with figure 2).

performed with the classical appearance-based
methods can also be achieved within the frame-
work of our approach, only more robustly and
in more complex scenes. Besides, when the
proposed method is used on the type of im-
ages that can also be dealt with by the classical
methods (free of outliers, occlusion, with a pre-
defined background), one can expect significant

(b)

Fig. 17. (a) A detail from the original image (Fig. 14) and (b) the reconstructed camel,

computational gains since in our case, the coef-
ficient vector 1s calculated directly rather than
through the projection of the image data onto
the eigenspace.

It is interesting to note that the basic steps of the
proposed algorithm, namely hypotheses gen-
eration, selection, fitting, and the final selec-
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tion, are the same as in ExSel4++ [Stricker &
Leonardis, E995], which deals with robust ex-
traction of analytical parametric functions from
various types of data. Therefore, the method
described in this paper can also be seen as an
extension of ExSel4++ to learnable classes of
parametric models.

Our current work is directed towards further in-
creasing the robustness of the recognition by
exploiting the constraints that come from the
fact that we are effectively working in a discrete
coefficient space rather than in a continuous
one. Namely, so far, we have been calculating
the coefficients as they were continuous vari-
ables. We are also exploiting the possibility of
incorporating the approach in a multiresolution
framework.
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