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Recognition and Learning with
Polymorphic Structural Components

Mark Burge, Wilhelm Burger and Wolfgang Mayr

Johannes Kepler University, Dept. of Systems Science, Computer Vision Laboratory, Linz, Austria

We address the problem of describing, recognizing,
and learning generic, free-form objects in real-world
scenes. For this purpose, we have developed a hybrid
appearance-based approach where objects are encoded
as loose collections of parts and relations between neigh-
bering parts. The key features of this approach are:
part decomposition based on local structure segmenta-
tion derived from multi-scale wavelet filters, flexible
and efficient recognition by combining weak structural
constraints, and learning and generalization of generic
object categories (with possibly large intra-class vari-
ability) from real examples.
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Recognizing and Classifying 3D Objects

Recognizing three-dimensional objects under
different viewing and lighting conditions is a
traditional problem in computer vision. The
difficulty of the problem depends upon many
factors including: types of objects, number of
classes, inter- and intra-class variability, number
of objects in a scene, background complexity,
ammount of occlusion, etc. We focus on recog-
nizing the class of single objects scenes (e.g.,
chair, table, bench, etc.) which often exhibit
high intra-class variability.

Generally, all such recognition approaches as-
sume a noiseless, pre-segmented image with all
parts of the object visible in every view, i.e. no
self-occlusion, and that models of all objects
have been given a priori. Even with these re-
strictions there has been only limited success
for small datasets e.g. Bergevin and Levine’s
PARVO system[BL93] which uses volumetric
geons to successfully discriminate among 23
objects. The subgraph isomorphism problem

forces them to compare only those models which
contain the same geons as the view, preventing
its use in cases of views with missing parts.

Techniques from machine learning are increas-
ingly being incorporated into object recognition
methods. Using the ability of these techniques
to generalize from the training data previously
unseen views can be recognized with increased
accuracy. One class of these new methods uses
the relative frequency of a class in a region as an
evidence-based approach[JH88] to generaliza-
tion while others use neural networks|[Ede93],
Eigenvalue decompositions|MN95], or decision
trees|BC94]. The decision tree method forms
the basis of our approach.

An Appearance and Structural Approach

A number of different recognition approaches
has been devised which can be roughly di-
vided into those using a 3-D model and those
based on one or more 2-D views of each ob-
ject, i.e., based on object appearance. Our
approach is appearance-based and structural,
Le., typical views of an objects are described
in terms of the configurations of their parts
[Bie87, Low87, Bro81, Fu92].

Structural representation and recognition ap-
proaches are attractive because they empha-
size: shape, spatial arrangement, and topology
of a pattern, thereby ensuring a high tolerance
against: variations in lighting conditions, object
deformation, articulation, and occluded, miss-
ing, and extraneous parts. This makes them well
suited to describe objects in terms of character-
istic views, because the visible parts and the
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Fig. 1. System Overview.

structure of a view remain largely unchanged
over large regions of the view sphere.

Structural recognition methods are based on
both the availability of primitive structural el-
ements like: straight line segments, corners,
blobs, arcs, and other parametric strokes, and
on the assumption that these elements can be
extracted from the image data with sufficient
reliability. Regardless of what the primitives
are, the performance of the recognition process
depends critically on how reliably they can be
extracted, which is difficult even under ideal
viewing conditions. When images are noisy
and cluttered, the extraction of suitable primi-
tives using only local information may not be
possible. In addition, practically all structural
feature extraction schemes work in a rather my-
opic fashion, trying to assemble larger meaning-
ful structures from scattered pieces using weak
local evidence and therefore often missing the
dominant global structures of the resulting im-
age description (segmentation). In practice,
most current structure extraction schemes are
fragile and no single method exists that can reli-
ably deliver a good part decomposition, unless
the scene domain is highly restricted. Table
1 gives a comparision of recent approaches to
structural pattern recognition.

We attempt to overcome the problem of frag-
ile segmentation by a three pronged method.
Firstly, instead of relying upon a single type
of primitive, we combine multiple classes of
primitives into a single, polymorphic represen-
tation and recognition scheme, introducing ad-
ditional redundancy. Secondly,we do not re-
quire structural primitives to be precisely delin-
eated but only their approximate spatial position

and shape properties are needed, as in Linde-
berg’s[Lin93] blob features or Perona’s[LBPIS]
and others[Bur88] specific local patterns. In
particular, parts may be overlapping and am-
biguous. Finally,structural primitives do not
need to correspond to parts such as would be
meaningful to a human observer, it is only nec-
essary that they can be recovered reliably and
repeatably from an image.

Gabor Probe Structural Description

The main steps in the recognition (Figure 1) are
preprocessing, parts extraction and preliminary
classification, followed by combined grouping
and object classification. In one of our feature
extraction methods preprocessing of the image
data consists of applying a set of Gabor quadra-
ture filters with N, log-spaced center frequen-
cies wy and Ny regularly spaced orientations ¢y
(BB94].

For each pixel location x;, we compute the val-
ues

Tl = (UG )]
Tl = (I*Gy, 4)x]

where [ denotes W,
K}

G;“m) is a Gabor quadrature filter pair with

center frequency wy and modulation orientation

¢1, and = is the convolution operator. Gj;k Py and
G-

w0, AT€ the cosine and the sine Gabor filter
kernels, respectively. The spacing in frequency
is Ay, such that w, = wy - A’f(‘u forl <k < N,,
and the spacing in orientation is Ay = N—%, such

the original image, (G
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that ¢y = ¢ + /- Ay for 1 < 1 < Ny, for given
wo, Nw: ¢0= and N(p
For typical values of wy = 0.057%, N, = 4,

Ay = V2, and N, = 4, we obtain a 32-element
Gabor probe Gli] for each image location x;.

ﬁ'&?"’%

Fig. 2. Initial structural description e.g. Women’s Face,

The output of this filter bank is a 32-element
vector Dy, 4(xX) (called a Gabor probe) that de-
scribes the structure around the image location
x at multiple scales. Subsequently, the Gabor
probes are classified into N (we use N = 64)
structural event types, using vector quantization
with a codebook derived from a representative
set of training images. Contiguous areas in the
resulting label image L(x) € [0, N — 1] form a
set K of regions with approximately homoge-
neous image structure (Figure 2). Each region
R; € R is characterized by (a) its shape and (b)
its codebook index which describes the corre-
sponding image structure in terms of the Gabor
filter response. Both combined supply a strong
set of unary region features that are useful for
efficient indexing and recognition.

Polymorphic Primitives

Most structural recognition methods (and repre-
sentation formalisms) are based on a single type
of primitive, e.g., straight line segments. Some
approaches combine different primitive types
of the same class of primitives, e.g., straight
line segments are sometimes used in combi-
nation with circular arcs, both being contour-
type primitives. This results in potentially very
powerful pattern descriptions (considering that

these are sufficient for cartoon-type illustrations
which are highly expressive for a large vari-
ety of real-world scenes). For some reason it
is difficult, however, to achieve similar recog-
nition performance with stroke-type features
alone. The combination of different primitive
classes, e.g., stroke-based and area-based prim-
itives, adds another level of descriptive power.
We refer to collections of structural primitives
from different primitive classes as polymorphic.

Why are polymorphic primitives more power-
ful? First, because they increase the available
alphabet and thus the number of unary features
available for single-stage decisions, thereby re-
ducing the combinatorial requirements and mak-
ing recognition more efficient. Another advan-
tage is that polymorphic primitives originate
from separate and (largely) independent oper-
ators, such that they complement each other.
In particular, this reduces the probability that
crucial parts of an objects are not detected at
the feature level and also makes the recognition
process more general since the features are less
biased towards a particular type of scene. For
example, contour-type primitives may be quite
successful on indoor scenes containing man-
made objects but fail completely on outdoor
scenes, where area-based features may perform
well. In general, each feature type exhibits cer-
tain strengths and weaknesses not only on dif-
ferent scene types but also on different objects
in a scene and different areas of an object.

Why are polymorphic descriptions not more
popular? One can think of several reasons:

e The appeal of generating a clean segmen-
tation from an image, in which segments
correspond to (semantically) meaningful
parts of an objects. This is generally not
possible in a polymorphic approach. One
can segment an image into polymorphic
parts that are mutually disjoint (such as
done in [FF95]), but this only works for
non-overlapping components and does not
provide for multiple and competing hy-
potheses.

e One usually has enough problems with a
single feature detector or segmentation al-
gorithm, such as unreliable results, diffi-
culties in combining primitives into larger
assemblies.
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e How to merge different kinds of primitives
into a combined description is not straight-
forward, as attribute sets differ among fea-
ture classes. This is mainly a problem with
binary and higher order relations between
parts. While it is easy to relate two straight
line segments in 2-D space, for example,
relations between parts of arbitrary classes
are more difficult to specify.

Learning and Recognition

Bischof and Caelli’s[BC94]| decision-tree based
Conditional Rule Generation (CRG), improves
upon the previously mentioned PARVO system
in its dealing with missing parts. During train-
ing and classification it exhaustively generates
neighboring part paths so that, if during clas-

sification a part is missing, a path without that
part might still be found in the classification tree
and the object may still be correctly classified.
Another improvement on the PARVO system
is their method of automatic model acquisition.
The CRG method encodes the models into the
rules of the decision tree. This method forms
the basis of our recognition method which we
have extended in several directions.

In the CRG method an attributed graph G(P, €,
U, B) is built from a pre-segmented image. The
image has been pre-segmented into regions,
each of which is considered a “part” of the ob-
ject. As not all important “parts” in an ob-
ject are region based, we have extended the
CRG method to use polymorphic components,
or other types of parts, e.g. stroke-based fea-
tures. Figure 3 gives an overview of the learning
and recognition stages.
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Fig. 3. Flowchart of the Learning and Recognition process: (a) Learning path: computation of the features from all
images in the database; building of a part compatiblity graph (PCG); construction of a classtfication tree for part
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of each part path using the classification tree; combining evidence.
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The PAG graph G consists of a set of nodes
which represent the set of parts P of the image.
These parts are connected by a set of edges &£
which represent relations between the parts. To
avoid the exponential number of edges in a fully
connected graph only edges between neighbor-
ing parts or parts within a certain distance are
included. We present an improvement for the
neighboring relation, in this case, based upon
part similarity.

- Each part p; € P is attributed by a unary feature
vector u; € 4 with a predetermined number of
features, each edge ¢; j € & is attributed by a
binary feature vector b;; € B whose features
are computed from the parts p; and p; (i # ).
The feature vectors u; and b;; form the unary
and binary feature spaces U and B respectively.
In the learning phase the problem is learning
how to classify a part p; into the correct class
C(p:). The training examples are presented sep-
arately and sequentially in a supervised batch
learning fashion. In Figure 4 the root shows
the unary feature space U and below it the bi-
nary feature spaces UB resulting from the un-
resolved clusters, the bottom row contains the
unary feature spaces UBU computed from the
non-unique clusters of the UB level. In Figure
4 large rectangles represent feature spaces, e.g.
ui, by, dashed lines determine split boundaries,
and hatched clusters denote uniqueness.

Fig. 4. An example of a cluster tree.

The CRG method works by first classifying all
unary features from all parts, of all views and
all object classes into a unary feature space U.
This feature space is then clustered into a num-
ber of clusters U, some of which may already
be unique with respect to the class membership,
L.e. all parts in a cluster belong to the same class,
de¥peu,C(p) = ¢, while others do not. Binary
features are then calculated between the parts
of the non-unique clusters and its neighbors in
the graph. The binary feature spaces resulting
from the unresolved clusters are clustered again,
cach forming feature spaces of type U,,B,,. For
the non-unique clusters the unary feature spaces
UnBnU, of the parts of the previous binary re-
lations are determined and clustered. This con-
tinues until all clusters are unique or a predeter-
mined maximum depth has been reached.

Once the graph model of the object to be recog-
nized has been constructed it must be “matched”
against those in the database to determine the
class in which it should be classified. One
method of matching graph based models would
be to determine the relational distance metric
between the models. Even with new algo-
rithms [CYS'96] developed for parallel com-
puters, unlabeled attributed graph matching is
a computationally expensive process, with the
general problem being NP complete. Instead of
attempting to match the object graphs against
the model graphs, i.e. finding subgraph isomor-
phisms, short part paths through the graph are
matched. An evidence accumulation technique
is used where a large number (dependent upon
the object but typically in the range of 50 — 100)
of small (typically 3 to 5 nodes in length) paths
is extracted starting from each node in the ob-
ject’s graph representation and then matched
against the generic model.

In recognition the goal is to correctly classify,
using the tree, the previously unseen objects
with possibly occluded and missing parts. First
a PAG graph similar to that used in the learning
phase is constructed. In this graph all non-cyclic
paths up to a maximum length of the depth of
the decision tree are generated and then clas-
sified using the decision tree. For each path
an evidence vector with the probability that this
path belongs to a particular class is computed.
During learning this evidence vector is com-
puted using the relative class frequencies for
this branch of the decision tree. The evidence
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vectors of all paths starting at some part p; de-
termine its classification.

Part Paths — Where to look next?

The problem of label compatibility arises when
an object has the same parts and features as
a different object. When only unary features
are used the problem is more readily appar-
ent as many objects may have the same parts
and unary features, for example objects con-
sisting of different arrangements of similar cir-
cles and squares. The addition of relations be-
tween parts, that is binary features, adds struc-
tural context. In recognition without labeled
parts one must exhaustively attempt all match-
ings between unary and binary relations. If the
relations are encoded as in a PAG, then it be-
comes a problem of subgraph isomorphism be-
tween unlabeled graphs. It is possible to avoid
this prohibitively expensive matching problem
by encoding the binary relations between the
parts during learning in such a way that only
label compatible part paths can be generated
during both the learning and recognition stages.

Generating only label compatible part paths can
be done by calculating the binary features only
between neighboring parts of the same object
while building the tree. The tree constructed
in this way contains only paths from the root,
where all parts are represented in some cluster,
to the final classification leaves which corre-
spond to the paths in the object from a part to
its neighbor. The use of the neighboring re-
lation as a constraint during both the training
and recognition stages implicitly solves the la-
bel compatibility problem by assuring that any
matched sequence must have arisen from a la-
bel compatible sequence. This solution is not
sufficient since representative and therefore im-
portant sequences for recognition occur among
non-neighboring parts scattered across the im-
age. It is necessary to have a relation which
still provides the constraints for solving the la-
bel compatibility problem and allows the non-
neighboring representative parts to be combined
into the same part paths.

The number of paths which can be considered
in a view is (}/), where n is the number of parts
in the view and [ is the length of the path. For
any given length, /, it is desirable to choose a

subset Q; of all n choose [ paths, which is min-
imal but representative of the object. Without
a priori knowledge this is not possible, so we
must select a function which produces a set with
cardinality somewhere between that of the ideal
set and (7).

Fig. 5. Two significant parts, py and py, which will not
occur together in a path extracted from a PAG.

The neighborhood relation serves as one func-
tion to effectively limit the cardinality of @y, but
it does not achieve the other goal of selecting
sufficent representative paths. If representative
parts are separated by more than [ neighbors
then they will never be considered in a part path
when using the neighborhood relation. As an
example illustrating the need for the PCG, fig-
ure 5 shows that the marked parts, i.e. arm
rests, are significant for identifying the class of
bench, but are never considered when using a
neighborhood function with a reasonable value
of [. The problem still remains in how to formu-
late a function which produces a path set Q; of
reasonable cardinality and representative paths
without a priori knowledge. We develop this
function as a consequence of our algorithm for
constructing the attributed PCG below.

The Part Compatibility Graph

In a PAG graph G an edge ¢; ; is constructed be-
tween the parts p; and p; if the parts are neigh-
bors. Neighborhoods are defined through either
physical adjacency or, more generally, spatial
proximity, e.g., parts within 10 pixels from each
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other. Other neighborhood definitions, for ex-
ample Area Voronoi neighborhoods, are possi-
ble but all suffer from the drawback that simply
being a neighbor of another part is not neces-
sarily a significant relation for recognition. In
a PCG graph G, however, a graph edge ¢;; de-
notes a high similarity measure between parts
pi and p;, that is, the similarity measure replaces
distance as used in the PAG.

To construct the PCG graph G, features whish
consisti of a tuple containing the feature value,
v, and a confidence value, ¢, {v,c) are com-
puted for each part p;. [Initially a seed part
Ps 1s selected based upon the high confidence
value of its feature vector and the feature base
is queried for other parts with similar values
within a given radius of ps, these parts are then
termed the selection set of part pg, Sp,. The
similarity between ps and each member of the
set Sy, is then calculated and those parts hav-
ing high similarity values are inserted into the
conditional expansion set of part ps, £,. This
process is repeated recursively for each member
of the expansion set £, until a preselected depth
level is reached. At this point paths are pruned
from the tree T),, rooted at part p, and progress-
ing through its expansion sets so that only those
with the highest similarity values remain. The
pruned tree is computed for each node of the
PCG graph and the resulting forest of trees is
combined in a straightforward manner to create
the PCG graph.

The similarity measure used depends upon the
nature and type of features used. In our exam-
ples we have used moment based features of
regions with a simple similarity measure. In
Figure 6 a PAG and two PCG with different
similarity functions can be examined. The car-
dinality of the edge set £ of the PCG graph is

approximately 1/3 greater than that of a region
adjacency graph. This increase in size is sig-
nificant, growing from an approximately 1 : 2
ratio of nodes to edges in the region adjacency
graph to 1 : 3 in the PCG graph.

Polymorphic Primitives in the CRG
Framework

The CRG approach is based on a decision tree,

in which decisions are based alternately on

unary and binary relations along each path orig-

inating from the root of the tree. These relations

between parts are pre-calculated for the object

to be recognized. Assume we have generated a

non-cyclicpart path S = (p1,pa, ..., pry, where
all the parts are from the same class. In order to

classify §, a sequence of decisions:

(Ui(p1) — Bi(p1,p2) — Ua(p2)
— Ba(p2,p3) — ... — Bi_1(pr—1,p4)

is performed. Since all the parts are of the
same class, the attributes and thus the decision
domains are the same for all unary and binary
relations, respectively:

D(U;) =
D(By) =

D(U2) = ... =D(U1)
DB ==, ; . =

At each decision node v; the corresponding do-
main D(U;) or D(B;) and each cluster is as-
signed to one decision branch leaving node v;.
We now consider the polymorphic case, where
Class(p;) # Class(p;) in general, and there are
no constraints on the sequence of part classes.

Fig. 6. An example of PAG, followed by two PCG with different similarity functions.
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Each primitive class ¢; (j = 1...N) is charac-
terized by an ordered set of unary features

U.v' = (L{j}]; ujvz’ 58 uj)Mj)

called its unary feature vector. For each pair

of primitive classes (¢j, cx) we define a binary
feature vector

Bji = B; = (bji1, bjx2; - - - » bjem;)

and a corresponding mapping function fj
Uj x Ey — Bj.. We also define a generic map-
ping f (), such that f (pa,ps) = fa,8(Ua, Us),
where a = Class(p,) and b = Class(pp), re-
spectively. The mapping f is not symmetric to
preserve the directedness of the part path, i.e.,

f (pa,pp) # f (Pb, pa) in general.

Fig. 7. Parameterization of lines and circles to describe
binary relations.

For example, given a circle C and a straight line
segment L the elements of the binary relation
vectors BCircle,Line:f (C,L)and Bl ine Circle
= f (L, C) are different (although their structure
may be the same). Given unary feature vectors
of lines and circles (Figure 7),

(xm:ym: l: ¢)

(xC:yC:r) 3

ULine =
UCircle =

then a simple mapping functions for the binary
feature vectors are:

fLine CircleIs C) =
fCircle,Line(CaL) =

with:
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Since one of the involved parts (the circle) has
no orientation, the angle of the line (¢) is not
used in the binary feature vector.

At each level of the CRG decision tree, clus-
ters in the unary or binary attribute space are
associated with tree branches. At the root node
of the tree, the initial decision is based on the
unary attributes of all parts. When different
classes of parts are involved, we have no homo-
geneous attribute space that can be clustered in
the conventional way, but the class attributes of
the parts provide for a natural partitioning.

subclusters of
wnary aitributes

subelusters of
binary autributes

subclusters of
unary atributes

Fig. 8. Sample classification tree for polymorphic part
paths.

The basic decision structure we use is similar
to the CRG tree with decisions alternating be-
tween unary (U) and binary (B) attributes. At
each level, base clusters are formed implicitly
by classes of the parts involved. Classifica-
tion of a part path {p1,pa,...,pky is initiated
by examining the unary attributes of the first
part p1, which can be of any class cq,...,cn.
For example (Figure 8), the part classes Blob,
Line, Arc, etc., can form the base clusters of
a decision tree. Within each of the base clus-
ters, sub-clusters can develop during the train-
ing phase. For this we can use any conventional
clustering technique, because we operate in a
homogeneous attribute space. Decision nodes
for binary relations are formed in much the same
way. When we need to classify a link from one
part to the next (p; — pit1), the class member-
ship of the first part, ¢; = Class(p;), is known,
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while p;. 1 can be any class. Thus, for each (ob-
served) pair of classes (¢i, ¢j),j = 1,...,N, a
binary decision branch is inserted, each repre-
senting a base cluster for a specific binary rela-
tion By;. During the learning phase, additional
discrimination rules are introduced by creating

sub-clusters within the (homogeneous) domain
ng.

Experiments and Results

A small database of images showing several
instances of generic classes in typical poses,
was used in an experiment to correctly recog-
nize previously unseen instances and to reject
unknown objects. The set exhibits real-world
imaging problems such as shadowing and self
occlusion, and the content, e.g. chairs, benches,
and tables, was purposely selected to provide
for a high degree of structural similarity be-
tween classes.

The systems performance with missing and ad-
ditional parts was examined. The experiment
was carried out using a previously learned ob-
ject and parts were randomly selected (Figure
9). In each case, two lines are shown, one using
the results from the system without any pre-
processing and the other using constraint rules
for inter- and intra-path compatibility[BBM96|.
The system performs well, even when there are
considerable missing parts, this is due to the
way the part paths are selected and the PCG.
Performance drops when additional parts oc-
curs. The performance with occluded parts is
a combination of missing and additional parts,
as an occluded part generally causes a missing
part and a number of additional parts to occur
in the image.

The chart shown in Figure 10 compares the orig-
inal PAG neighborhood definition and the pro-
posed PCG method. In order to better analyze
the contribution of the new part path selection
method, deliberately weakened features were
used for the comparison. Nine objects, three
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0.43 0.08

1.00

(.49

0.00 0.00 1.00
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Fig. 10. Recognition results.
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from each class, were used for training and a
previously unseen object of type chair was pre-
sented for recognition. The first row of Figure
10 gives the results for recognizing a previously
learned object, both the PAG and the PCG clas-
sify it correctly with 100 percent confidence.
The last row of the table shows the classifica-
tion result for a type of object which does not
match any previously learned class, here both
methods are uncertain how to classify the ob-
ject. The algorithm works as expected in these
two cases, identifying a previously learned ob-
ject and rejecting an object which is unlike any
one previously learned. The middle row shows
the reaction of the system to a previously un-
seen object of the class which it has learned.
Using the PAG the system is able to classify it
correctly with 86 percent confidence, and using
the new PCG with 91 percent confidence.

The main reason for the performance improve-
ment is that the part paths extracted by the pro-
posed PCG method extend over larger regions
of the object and are therefore more likely to
contain non-neighboring significant parts.

Implemention of the System

Different components of the system were devel-
oped using a number of different class libraries
and languages including C, C++, Lisp, TK-
TCL, Expect. We would have liked to develop
the entire system within a single platform, but
our evaluations of the large vision platforms like
Khoros an KBVision found them wanting. The
new generation of platforms, such as Alphelion
and the IUE and its preliminary Targetlr are
much more attractive. We have begun to port
our system to TargetJr and as the TUE matures
we will incorportate it into it. In figures 11 and
12 examples of the various modules are given.

Conclusion

A new PCG based method for creating part
paths in the CRG method for structural object
recognition was presented and evaluated. Ini-
tial experiments show it to be promising with an
slight improvement in recognition performance
for a small increase (from 1:2 to 1:3) in the
node/edge ratio of the graph representation. A
formalism for combining evidence from poly-
morphic feature sets was elaborated. We are
currently working on a new learning method-
ology allowing for incremental learning from a
small number of examples to replace the current
batch learning. In addition a much larger model
base is being compiled.
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Fig. 11. The system as implemented using: a TK-TCL GUI, Expect process control. The actual learning,
classification, and feature extraction code was written in C++.

Fig. 12. (a) The blobs system uses Interviews for GUI and the class library TargetJr, the code is written in C++.
(b) The local structure segmentation as implemented using: a LispView GUI, Obvious process control. The actual
segmentation code was written in Common Lisp.
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