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Visual primitives can be considered as abstractions of
those informative subsets of an image which are of
interest in a given vision task. After discussing their
nature and some problems related to their extraction,
pattern description in terms of primitives is considered.
Eventually, models relating 3-D visual primitives in high
level vision are discussed.

1. Introduction

When referring to human vision, visual primi-
tives may be defined as abstractions of some in-
formative subset of what is seen. They originate
at perceptual level as a response to visual stim-
uli detected at retinal level. In the early times
of computer vision research, hints on the types
of primitives to look for in the digital pictures
to be analyzed, came from the investigations on
some of the nervous systems of various species
(e.g., frog, squirrel, rabbit, cat and monkey).
These investigations [1] showed that some spe-
cific triggers were events such as convex edges,
oriented slits or bars (possibly moving), ends of
lines, line segments and corners.

Machine vision is concerned with extracting in-
formation from visual sensors to enable ma-
chines to make “intelligent” decisions. In this
respect, redundancy reduction is of basic im-
portance in the design of information process-
ing systems that can perceive and interact with
the external world, since it gives evidence to the
singularities of the images which will consti-
tute the primitives to be utilized for higher level
processing. In machine vision, visual primitives
are the smallest image subsets with specific geo-
metrical and/or structural properties, which are

of interest in a given analysis and description
task. They define the basic level of description,
in a hierachy of descriptions, used to identify a
given pattern. ‘

In the framework of computer vision, the term
“visual primitive”, or better “primitive compo-
nent”, has a clear meaning for people familiar
with the structural approach to visual pattern
recognition [2], [3]. This approach assumes that
a complex pattern can be decomposed into sim-
pler subpatterns, possibly in a recursive way,
and then characterized (i.e., described) in terms
of simple components, which are called “prim-
itives”, and of their relations. In this way the
structure of a pattern can be outlined. Primitive
components should not be further structured, or
better their structure should not be of interest
for the considered purpose.

In the decision-theoretic approach to recogni-
tion [4], [5], the term “feature™ is certainly more
familiar than the term “primitive”. In this case, a
pattern is characterized by a set of features (e.g.,
simply a set of measurements performed on the
raw data) and a feature vector is assumed to
represent the pattern to be recognized. Recog-
nition implies the partition of a feature space
into regions each pertaining to a different class.
The elements of a feature vector should be such
as to characterize a pattern so that it can be at-
tributed to a specific class with high reliability.
If this aim is achieved, it can be said that the
used features effectively represent the pattern
or that its description has been given in terms
of essential features which include information
about the primitives.

In pattern recognition, the most general mean-

* Reprint from book Human and Machine Vision: Analogies and Divergencies edited by Plenum Press, 1994
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ing of the term feature could be: any pattern
property that can be parameterized. The term
could thus be applied uniformly to specify any
type of entity assumed to characterize a pattern,
from the simplest to the most structured one.
However, a terminology for a feature hierarchy
can be suggested: starting from the raw data,
“local features” can be generated directly from
them (absence of any structure); “intermediate
features” are partial aggregates of the former
ones, while a structured set of them, playing a
special descriptive role for a pattern family, is
a “primitive feature”. Semantically significant
assemblies of primitive features can be defined,
and an object can be seen as a terminal (prim-
itive) feature assembly [6]. This terminology
may also suggest a strategy for achieving pat-
tern description.

The determination of a set of primitives, in
terms of which the patterns of interest can be
described, is influenced by a number of cir-
cumstances, such as the nature of the data, the
specific application considered and the technol-
ogy available for implementing the recognition
system.

Selecting primitive features is a complex prob-
lem that has no general solution. There isn’t
a “universal picture element” nor a simple al-
phabet of primitives generally valid. According
to K. S. Fu [3], a general selection criterion is
that the primitives should serve as basic pattern
elements to provide a compact but adequate de-
scription of the data in terms of the specified
structural relations; moreover they should be
easily extracted.

In Section 2, visual primitives and problems re-
lated to their extraction are discussed, while in
Section 3, pattern description in terms of prim-
itives is considered. 3-D visual primitives and
models relating such primitives in high-level vi-
sion are discussed in Section 4, where aspects
regarding the use of CAD models and relational
representations are emphasized.

2. Visual primitives

Although features useful to form visual prim-
itives can generally be evaluated from texture,
shading, motion, depth, etc., for a large class of
images they are mainly extracted from bound-
aries which, in their turn, consist of edges.

Edges represent small areas of high local con-
trast in correspondence with discontinuities in
intensity, color, texture and so on. Accurate de-
tection of edges is therefore crucial to automatic
feature detection and object recognition.

In general, images may contain a number of
edges occurring at any orientation and with sizes
varying from very short (in this case the edges
may be regarded as dots) to rather long. Edges
may constitute the boundaries of closed regions,
or may originate other primitives such as cross-
ings, junctions, corners and bends. The signifi-
cance of these primitives was shown in an early
paper [7], where they were taken as the lowest
level units in a recognition procedure for line
patterns. The usefulness of a set of similar fea-
tures (horizontal, vertical and oblique straight
lines; curves which are closed, open vertically,
open horizontally) was also discussed [8].

The edge detectors usually form the basis for
complex digital image processing and analysis.
For instance, to extract arbitrary curves such as
objects boundaries from a noisy background one
can use line detection operations which charac-
terize line-like features as a succession of short
edges, aligned in a given direction, which are
brighter (or darker) than the points on either
side of them in the orthogonal direction.

Edges provide an indication of the shape of the
objects in a picture. However, since in ma-
chine vision edge detection is concerned with
ideal edges corrupted by various forms of noise,
it is often difficult to design edge detectors
which manifest good performance character-
istics when the edges are incomplete and de-
graded.

It has been suggested that edges should be found
by using a symbolic data representation rather
than the original numerical output from an edge
detector. To this end, a vector description is
associated with each edge element in the two-
dimensional image. This vector contains infor-
mation about the type of edge, the degree of con-
trast as given by the gradient, the position of the
edge, its orientation. After applying an elemen-
tary edge detector, the edges are aggregated into
line segments by using rules based on the exami-
nation of the compatibility of the symbolic edge
descriptions in a local region. The new data ar-
ray results from a purely data driven procedure,
not determined by the observer’s knowledge of
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Fig. 1. Examples of figures with equal global organization, but different constituent parts.

Fig. 2. Boundary line defined by the good continuation of the end points of the right and left gratings.

the semantic aspects of the visual input, and is
termed the primal sketch [9].

According to Gestalt theory [10], [11], human
vision is designed to structure the spacial fea-
tures of an object in such a way that they are
perceived as properties of the object, all to-
gether in the same construction, and not merely
as individual parts. Gestalt psychologists at-
tempted to define the organizational principles
by which the global aspects of a visual scene
are abstracted from the details. For instance,
while figures may differ considerably regarding
the nature of their constituent parts, the prox-
imity of the parts produces the same perceptual
interpretation, and such figures are understood
as equivalent patterns (see Figure 1). Similarly,
the role of good continuation is crucial to force
the end points of the lines to be perceived as

linked so as to form a boundary line (see Figure
2).

Principles of good continuation, similarity and
proximity play a major role in the perception of
closed regions. Accordingly, in image analysis
the closed regions may be identified i) by link-
ing a suitable sequence of edges; ii) by grouping

pixels on the basis of gray-level homogeneity
(region growing).

Segmentation is the assignment of the pixels
in a given picture to one of many disjoint sets
such that the pixels in each set share a com-
mon property. The criterion used to assign each
pixel to a set and the number of sets are largely
dependent on the desired task, the desired de-
scription, and the scene. Thresholds are used to
assess property significance. The processes of
edge finding and region growing may cooperate
to build a segmented image, producing better re-
sults than those that would be obtained by either
technique alone [12].

Texture analysis may also be considered as
a problem of region segmentation, where the
comparison has to be accomplished between
neighboring areas or patches of pixels. Compar-
ison is still performed on the basis of similarity
and proximity, but it takes into account local
patterns, i.e., a whole set of primitives. A major
source of difficulty in the study of texture has
been how to describe these patterns. Features
as coarseness, contrast, and edge orientation ap-
pear to be the primary factors which influence
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the aggregation processes originating textured
regions.

From the applicative point of view, among the
oldest attempts to primitive feature based de-
scription and recognition of 2-D patterns, are
the works of Shaw [13] for bubble chamber
tracks and of Ledley [14] for chromosome anal-
ysis (late 60’s). Pieces of lines or edges of
different curvature, orientation and size were
typically considered as primitives in these cases
and the relation between primitives was simply
concatenation.

2-D primitives can be line configurations of the
boundary or of the skeleton of a figure, but they
can also be two-dimensional parts of this lat-
ter. Figure decompositions into primary convex
subsets have been quite common [2]. It has
been claimed that the more the primitives are
simple, the more inefficient and unreliable is

the recognition process. However, extracting
more complex primitives implies the difficulty
of grouping simple features to form more com-
plex features. For instance, the variability of the
descriptions possible for the P’s shown in Figure
3 depends on the way they are represented and
on the primitives that are selected. If characters
are approximated with polygonal lines, thus a
possible primitive is the straight segment. The
circular arc would be a more powerful primi-
tive, under the condition to have an effective
way of approximating characters with circular
arcs, i.e., in the specific case, of fitting circular
arcs to digital lines (see Figure 3).

As for 3-D objects, they are often represented
by asingle 2-D projection. In this case the prob-
lem is that of recognizing 3-D objects from 2-D
images. The majority of the approaches uses
simple 2-D primitives such as line segments,

S— 7

- Fig. 3. Some samples of handwritten characters (letter “P”); a) bit map and skeleton (superimposed), b) polygonal
approximation of the skeleton (superimposed), ¢) approximation of the skeleton with circular arcs. For different
representations (b or c), different primitives can be convenient (see text).
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Fig. 4. Schematic drawing of a face and some of its scrambled versions. When the relations among the constituent
parts are changed, the figure may be no longer perceived as a face.

corners, inflections and 2-D perceptual struc-
tures.

3-D volumetric primitives that assembled to-
gether in different ways can serve to build up ob-
jects have been proposed and employed (polye-
dra, generalized cylinders, geons) [15], [16].
They are preferably specified in a qualitative
way, so as their use can be more general. 3-
D objects must be recognized independently of
the particular view in which they may appear:
this implies that a number of possible views per
primitive has to be taken into account.

Most computer vision systems, which are de-
signed to recognize three-dimensional objects,
compare a scene model, constructed by pro-
cessing images obtained from one or more sen-
sors, against entities in a model database con-
taining a description of each object the sys-
tem is expected to recognize [17]. The devel-
opment of such model-based recognition tech-
niques has occupied-the attention of many re-
searchers in the computer vision community
for years [18], [19], [20]. Three-dimensional
model-based computer vision uses geometric
models of objects and sensor data to recognize
objects in a scene. Likewise, CAD systems are
used to interactively generate 3D models during
the design process. Despite this similarity, there
has been a dichotomy between the two fields. In
recent years, the unification of CAD and vision
systems has become the focus of research in
the context of manufacturing automation [21].
The term CAD-based vision has been coined

for research in vision employing CAD models
for various visual tasks [20], [21]. Other ap-
proaches to model-based recognition use object
representations derived from a model of human
vision [22].

3. Image Description

Image description is a parametetization process
according to which a suitable representation of
an image is transformed into a data structure
made up of features and of relations among
them. In fact, a listing of features does not
generally provide a sufficient description. One
cannot distinguish between T and L if features
such as “horizontal segment” and “vertical seg-
ment” are just listed. It is also necessary to
know how the segments join together. Thus, in
addition to a set of features, one must specify
a set of relations and a set of rules describ-
ing the patterns in terms of features and rela-
tions. Figure 4 exemplifies this problem. Ex-
amples of relational features are: right of, left
of, above, below, inside, outside, at the center
of, surrounded by, near, far, next to, attached to,
visible from, overlapping, occluding, isolated,
grouped, larger, smaller, longer, shorter.

Thus, for complex images, the most interesting
approach seems to be the structural one accord-
ing to which the image is divided into parts
(high level primitives for that image) and de-
scribed in terms of those primitives and their
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interrelationships; in turn, each part is seen as
made of primitive components and analogously
described. In principle, the process can be
iterated untill reaching the feature level most
convenient for that type of image. In other
words, given an image containing one or more
objects, the description requires to extract in-
stances of the primitives and their connectivity
relations. This can be made with a bottom up
approach, combining simpler features to form
complex primitives and then objects, although,
as far as higher abstraction levels are reached,
the need for model based knowledge is regarded
unavoidable.

In early vision, information is processed with-
out any prior knowledge of the viewed image.
The goal is to extract relevant information use-
ful for further analysis (e.g., sharp changes in
image luminosity are a priori relevant informa-
tion). The result of early processing is generally
still an image, which is a (possible) representa-
tion of the original one. Further processing can
lead, through successive stages, to obtain more
convenient representations.

The aims of the representation phase are many-
fold: it serves to reduce noise, to compact infor-
mation, to decompose the pattern into “mean-
ingful” primitive components, to represent com-
ponents in such a way that insignificant shape
variations are hidden. In fact, features actu-
ally invariant within a class and peculiar of that
class may not be directly detectable from the raw
data. Suitable processing is generally needed.
The representation phase should be intended as
a first step of a process of abstraction that leads
from the specimen to the prototype (model).

Although the decomposition process outlines
“specific features of an object, it leads to a rep-
resentation that is still susceptible of different
-descriptions depending on the scope, the wide-
-ness of the image class, and so on. It can be
said [23] that a meaningful decomposition and
description implies to single out the primitives
(features, component parts) as much as pos-
sible invariant with respect to the differences
existing among the specimens of a same class,
and to describe the components and the struc-
ture they form (i.e., what we have called the
representation) in such an essential way as not
to display the differences between members of
the same class, but rather to put in evidence the
similarities. Ideally, all the members of a same

class should be described in the same way (still
refer to Figure 3).

Some generally accepted criteria for obtain-
ing effective descriptions are: attention to the
scope, conciseness, accessibility of the features
to be used, uniqueness of the obtained descrip-
tions. Still, a description must be robust to
occlusion and noise, invariant over a range of
viewpoints and scales, and computationally effi-
cient. Moreover, descriptions should be stable,
while remaining sensitive enough; however, to
absorb variability within a same class and not
to destroy information necessary to discriminate
between different classes are generally conflict-
ing aims.

Indeed, all the above issues are often competi-
tive, in the sense that using certain features may
maximally satisfy some criterion but preclude
to maximize the others. This could suggest to
introduce a redundancy of feature types.

As mentioned above, the number and the nature
of the features to be used for describing a pat-
tern depend on the task. If a description serves
to the purpose of faithfully reproducing the de-
scribed object, then it has to be quantitative and
very detailed. On the contrary, for recogni-
tion purposes, few qualitative features are more
convenient especially if, for the application at
hand, the number of classes is restricted. In hu-
man vision, the dependency of the used features
on the task, has been outlined since long time
ago by recording eye movements during con-
strained and unconstrained observation of pic-
tures [24]. These experiments also outline the
role of knowledge when looking for primitive
features.

One of the image features that is most com-
monly used for description is shape. How-
ever, shape is generally a very complex feature,
whose description is not trivial. Recent stud-
ies on anatomical connections have shown that
in non-human primates the cortex processing
visual information can be divided into several
areas, and that the visual pathways appear sep-
arated into two streams, running dorsally and
ventrally [25]. Studies of the effects of brain le-
sions have also indicated that this ventral stream
of processing is associated with shape percep-
tion and object recognition [26]. As for studying
the human brain mechanism involved in recog-

_ nition, a recent technique has concentrated on
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monitoring local blood flow by using positron
emission tomography within the brain during
shape processing tasks [27]. All the previous
studies, however, did not provide information
about mechanisms by which shape is computed;
for that information single cell recording tech-
niques can provide useful insights. In this re-
spect, key neurophysiological studies along the
posterior anterior axis of the ventral pathway
have recently been reviewed [28].

The term “shape” usually refers to a configura-
tion consisting of several elements in some kind
of mutual relationship. The elements are in-
terchangeably called features, attributes, cues,
or components. Examples of shape features
are: boundary features (dominant points, cur-
vature extrema, circular arcs, ... ), region fea-
tures (convex and concave pattern components,
maximal discs, ... ), boundary sinuosity, sym-
metry, compactness, angular variability, direc-
tion of the dominating axis, elongation. Each
feature can assume values that may vary along
a continuous or a discrete scale.

The quantitative study of object shape in terms
of edges, angles, and contours began with At-
tneave [29]. Namely, he suggested that a bound-
ary curve could be segmented by means of crit-
ical points which coincide with the points of
maximum inflection. An alternative study of
object shape in terms of regions was carried out
by Blum [30], who proposed a new geometry for
shapes based on the primitive notion of symmet-
ric point. In this case, the shape of the object can
be described in terms of the symmetric points
and of the maximal discs, obtained as growth
of these points and completely contained inside
the object.

Also suitable parts of the object may be regarded
as shape primitives [31] (e.g., see Figure 5). In
this respect, a major problem in machine per-
ception is to develop procedures that distinguish
functional parts from purely nominal parts that
lack psychological reality. In any case, a shape
measure must be used to quantify the similarity
or dissimilarity between shape descriptions.

4. Model-based object recognition.

Three issues dominate the design of a modeling
scheme for vision: (i) the method adopted for
model acquisition; (ii) the choice of a reference

frame for the model, and (iii) the choice of a
representation [32].

Methods for acquiring models have received
relatively little attention. Usually, the models
used for recognition have been provided man-
ually. Manual construction of object descrip-
tions is obviously time consuming and requires
detailed knowledge of the object recognition
system. This approach to model construction
is impractical in applications where the set of
objects to be recognized is large or changes fre-
quently. An alternative is to construct models
from examples using prototypical features ex-
tracted from images taken from a number of
viewpoints. Models built by learning are often
limited in their precision by the quality of the
sensor. Much interest centers on using CAD
models to construct models for object recog-
nition. Object-centered CAD models provide
a natural way to define an object and can be
the source of the information necessary for its
recognition, although they are often organized
in ways that are not appropriate for vision.

The attributes and the geometric relations among
component parts of an object must be defined
with respect to a coordinate system, which in vi-
sion research is either object- or viewer-centered.
Most work in object recognition has adopted
object-centerd models, since they provide a nat-
ural way to express objects independently of the
view [33]. Recently, there has been a lot of in-
terest on 3D multiview representations, which
model objects by a finite set of viewer-centered
descriptions [34]. Each member of the set mod-
els the object by its 2D projection as seen from
one viewpoint on the view sphere. By using
such representations, features extracted from
images can be directly matched with features
associated with each member of the multiview
model set. The shift from object-centered mod-
els to viewer-centered ones shifts processing re-
quirements from object recognition time to ob-
ject modeling time.

Computer vision researchers have used a variety
of model types, which can be broadly classified
as either descriptive (or quantitative), i.e., the
model can be used to generate a synthetic im-
age of the object, or discriminatory (or qualita-
tive), i.e., the model information can be used to
distinguish between different objects, but not to
generate synthetic imaginery. Solid representa-
tions used in CAD are quantitative by nature:
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nl: (medium,wide,cast)
n2: (small,wide,n_west)
n3: (medium,curved, west)
n4: (large,wide,east)

n35: (small,medium,west)
12,1: (right_of)

r1,3: (overlapping)

13,4: (right_of)

15,4 (right_of)

Fig. 5. Character shape description: a) the bit map of a character and its skeleton (superimposed); b) a possible
representation and decomposition of the character in terms of circular arcs: c) description of the above representation
with an Attributed Relational Graph whose nodes correspond to character components.

primitives (surfaces and volumes) are specified
in terms of numerical parameters. If we are per-
forming a visual recognition task and the objects
to be recognized can be distinguished by exam-
ining some qualitative features of the segmented
primitives, representations, which capture only
those variations, might offer real advantages in
processing [17].

The idea of qualitative representation was pro-
posed by Biederman [22] as a model of human
vision, but it also offers interesting properties
for a computer model. In human vision, the
retinal image is transformed at different levels
of the visual pathway into various data represen-
tations as a precursor to possible object recog-
nition. At the highest levels in this process, we
have only a very sketchy knowledge of the exact
details [23]. The main idea behind Biederman’s
approach is to coarsely reconstruct 3D objects

using generic primitives, called geons.

While the geon representation has an intuitive
appeal, the lack of quantitative information lim-
its its usefulness in environments where dis-
crimination between qualitatively similar, but
quantitatively different objects is performed. 1f
an assembly line is making a” family” of parts
which differ only in scale, they would have iden-
tical geon representations, making discrimina-
tion between the differently sized items impos-
sible without additional (quantitative) informa-
tion [17].

Quantitative modeling consists of using” clas-
sical” CAD models, i.e., a boundary model or
a volumetric one. A boundary model describes
a solid object as a collection of boundary enti-
ties (i.e., vertices, edges, faces) and their mu-
tual adjacency/incidence relations. Volumet-
ric models (like, Constructive Solid Geometry)
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describe a solid object as the boolean combina-
tion of predefined volumetric primitives. Thus,
they are typical of a design environment, since
they somehow simulate the process of object
construction by a designer. Moreover, CAD
systems based on a CSG representation always
store a boundary description of the object to
speed up rendering as well as analysis opera-
tions. On the other hand, a boundary represen-
tation of the solid should be augmented with ge-
ometrical information to speed up the matching
process. CAD models contain information for
the local design operations such as what shape
to extrude or what the profile curve for a sweep
operation is. Features used in construction of
models are implicitly rather than explicitly used
in the CAD representation. For example, a di-
hedral edge, comprised within its adjoining sur-
faces, is not modeled as an edge per se but as
two surfaces with adjacency information.

Object recognition techniques are based, for the
most part on geometric features of the objects
to be recognized. These include corners, edges
and planar faces for polyhedra, as well as points,
arcs of distinct curvature and regions of con-
stant curvature for sculptured surfaces. Other
features, such as axes of inertia, profile curves,
surface textures properties, reflectance, etc. can
also be used. Thus, several authors have re-
cently proposed the use of a boundary model,
produced by a commercial CAD system, aug-
mented with additional features. For instance,
in a boundary model, a line is characterized by
its endpoints; an additional feature associated
with a line is its length. Similarly, a planar
surface is characterized in a boundary model
by (i) coefficients of its plane equation and (ii)
its bounding curve. Such description can be
augmented, for instance, with a list of visible
areas corresponding to the viewpoints on the
uniformly sampled viewsphere.

Often, not only geometric features enhancing
the object recognition task are added to bound-
ary models, but relations other than the adja-
cency/incidence ones commonly encoded in a
boundary data structures are stored in the repre-
sentation. Examples of such relations are orien-
tation, proximity, containment, covisibility, etc.
Such relations are usually described in the form
of a graph.

A graph representation has the flexibility of rep-
resenting different types of attributes of, and

relations among primitives composing an ob-
ject model [32], [25]. Not only binary relations
can be represented by a graph, but also higher-
order relations can be encoded as hyperarcs con-
necting three or more nodes in a hypergraph
[36]. Graph structures are the basis of classical
boundary models. An example is given by the
incidence graph, in which nodes describe the
three basic topological entities (vertices, edges
and faces) with their geometric attributes, while
the arcs correspond to four incidence relations,
i.e., Vertex-Edge, Edge-Vertex, Edge-Face and
Face-Edge relations (see Figure 6).

An example of the use of a graph structure as
a view-independent representation of a solid is
given by the work of Zhang, Sullivan and Baker
[32]. A hypergraph model of an object is com-
puted from its boundary description produced
through a CAD system. In such a hypergraph,
nodes correspond to extended model features,
including their shapes and the types of 2D image
features that might match, while arcs and hy-
perarcs describe covisibility of model features.
Covisibility of model features is generally view-
dependent, in the sense that two features, that
are covisible from one viewpoint, may not be
covisible from another. Features are considered
covisible if the probability of their co-occurence
in images is high.

Graphs are also used in vision as conceptual rep-
resentation of the visibility structure of a scene.
An example is provided by the aspect graph in-
troduced by Koenderink and Van Doorn [37].
An aspect graph is a representation of an ob-
ject’s topology; thus, it captures all viewpoints
of an object. The aspect is the topological ap-
pearence of the object from a particular view-
point. Slight changes in the viewpoint change
the size of features, edges and faces, but do not
cause them to appear or disappear. When a
slight change in viewpoint causes a feature to
appear or disappear, an event takes place. An as-
pect graph, or visual potential graph, is obtained
by representing aspects as nodes and events be-
tween aspects as paths between corresponding
nodes [21].

We have seen that graph representations are the
basis for both “classical” boundary representa-
tions used in CAD and for “enriched” boundary
ones used in vision systems. Recently, a lot
of attention in CAD/CAM has been devoted to
the development of the so-called feature-based
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models. The term feature (shape or form fea-
ture) is used in the computer vision and in
CAD/CAM literature with a different mean-
ing, and sometimes a lot of confusion arises.
Form features are a compact way of describ-
ing subparts of an object, which have a specific
meaning in the context of the design or produc-
tion process. There have been several attempts
to give a truly satisfactory general definition
of form feature. Pratt [38] defines a form fea-
ture as” a related set of elements of a geometric
model conforming to characteristic rules allow-
ing its recognition and classification and that,
regarded as an independent entity, has some
significance during the life cycle of the mod-
eled product”. The elements might be volumet-
ric primitives in a CSG representation or ge-
ometric and topological entities in a boundary
model. The basic idea is that such elements oc-
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Fig. 6. An example of incidence graph of an object.

cur in a recognizable pattern when we consider
the model from the point of view of a specific
application, such as process planning for ma-
chining, or assembly planning. Examples of
form features are protrusions, blind holes, slots,
pockets, through holes, etc.

Relational descriptions of the decomposition of
a solid object into its form features have been
developed in the form of hypergraphs called
feature graphs, which describe an object as a
structured aggregation of face-adjacent object
parts called components (see Figure 7). Such
face-adjacencies are defined by subsets of the
faces of each feature, shared by two or more
components. Each node of the feature graph is
again a graph describing the topology and the
geometry of the feature boundary.
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Fig. 7. Decomposition of an object in terms of form features.

Although feature-based modeling is still a re-
search issue in CAD/CAM, the development of
feature-based models as well as of form feature
recognition algorithms will make feature-based
models available as input representations for
vision systems. In fact, feature-based models
could be enhanced with geometric information
as boundary models to allow the representation
of features as geometric characteristics of asolid
easily detectable from an image (i.e., visual fea-
tures). Moreover, if an object is decomposed
into shape features, we can use the aspects to
represent a small set of primitives rather than the
entire object. This could lead to a possible ap-
plication of a “recognition-by-part” procedure.
An open issue is whether the process knowl-
edge embedded in a feature-based model can
facilitate the object recognition process.
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