Journal of Computing and information Technology - CIT 3, 1995, 4, 229-244

229

An approach to applying constraints
in geometric modelling

Borut Zalik and Nikola Guid

University of Maribor, Faculty of Electrical Engineering and Computer Science, Slovenia

A 2D constraint-based geometric modelling system is
considered in the paper. Constraints are solved by
local propagation of known states. The weakness of
local propagation (it cannot solve cyclic constraints) is
explained by an example. A biconnected constraint
description graph is used to support local propagation.
As a result of constraint solving an acyclic constraint
description graph is obtained and it can be observed
as a parametric description of a geometric object. The
acyclic constraint description graph stores the sequence
of applying constraints for generation of instances. It
is shown that the time complexity of the algorithm for
generation of an instance is O(n?), where n is the number
of basic geometrical elements included. In the last part
of the paper we demonstrate how geometrical relations
among geometrical objects can be established by the
introduced geometrical constraints.

Keywords: geometric modelling, constraints, local prop-
agation, constraint description graphs

1. Introduction

Design is a process of determining the proper-
ties of an emerging artefact. The design consists
of a designer’s idea and his/her skill to describe
this idea (A. BijL 1987). In geometric mod-
elling, the designer is primarily concerned with
the shape of a new geometric object. There-
fore, sketches and figures have for a long time
been the most natural way of describing geom-
etry. To support the designer to express his/her
ideas, geometric modelling systems have been
developed and they are at the heart of current
CAD/CAM systems. These systems are amaz-
ing in terms of their speed, visual effects, and
capabilities to analyse designed objects. But,
they also have some serious drawbacks such as:

e Current geometric modelling systems are built
on the base of the theory of rigid solids. There-

fore it is very hard to describe tolerances in a
natural way.

e For solving geometrical problems, analytic
geometry has been used exclusively. Many of
these problems can be solved more efficiently
using theorems of Euclidean geometry.

e User interfaces are inefficient. The main prob-
lems occur with the input to geometric mod-
elling systems which are not able to accept the
rich and concise engineering vocabulary. In-
stead, they force the user to think with and to
use primitive low-level geometric modelling op-
erators. An important step to rise the level of
geometric modelling operators has been made
with the introduction of features to design.

e Reusability of already created objects is rarely
supported. In many cases only small modifi-
cations are needed to already constructed geo-
metric objects to obtain a new object. If reuse
of geometrical objects is not supported by the
geometric modelling system, modifying an old
object becomes awkward and time consuming.

e It is not possible to handle different geometri-
cal meaning in various phases of the design and
manufacturing process. The geometric mod-
elling system should support the user from the
beginning to the end of these processes.

The most serious drawback of current geomet-
ric modelling systems is that they essentially
differ from the designers — they have no intel-
ligence. Because of this, the design process can
still be observed as the most primitive approach
of trial and error. The process of searching for
an artefact that satisfies given requirements is
still exclusively a task of the designer. Current
geometric modelling systems are usually not

230

An approach to applying constraints in geometric modelling

able to support even this approach effectively.
For example, are they able to position a hole in
the centre of an already existing slot? Or are
they able to move a hole that lies in the centre
of a slot if the slot is moved? In many cases
the answer is NO. The hole should be placed
in the middle of the slot very carefully by the
designer, taking into account the actual geom-
etry of the slot. Or, if the designer wants to
move the slot containing the hole, he/she has
to mark all geometric elements describing the
slot and the hole, then carefully change the adja-
cent geometrical elements of the slot and place
the slot with a hole at a new position. These
tasks are not creative and they just burden the
designer. Because of this, geometric modelling
systems should be able to capture somehow the
designer’s intention (to place a slot in the mid-
dle of an object, or to move a hole together
with a s_lot). As Rossignac said, a geometric
modelling system with such capability can be
observed as an intelligent assistant for design-
ers (J. R. ROSSIGNAC et al 1989). It should be
able to perform automatically all well defined,
but repetitive, awkward, and time consuming
tasks instead of them. One of the possibilities
to achieve this aim is to introduce geometric
constraints into geometric modelling.

2. Related works

From the authors’ point of view constraint-
based geometric modelling systems are divided
into two groups:

1. Systems that use numerical methods for
constraint solving exclusively

A constraint in such a system is immediately
converted into an equation. In this way a sys-
tem of (usually non-linear) equations is ob-
tained. Unknowns in the system of equations
are characteristic points of a geometric object.
The position and the shape of a geometrical
object is determined after the system of equa-
tions is solved. Representatives of geometric
modelling systems from this group have been
described, for example, by Fitzgerald (W. .
FITZGERALD 1981), Lin (V. C. LIN 1981),
Light (R. A. LIGHT AND D. GOSSARD, 1982),
and Nelson (G. NELSON 1985).

2. Systems which use geometric reasoning for
constraint solving

Constraints are normally described in the
form of predicates. The methods for con-
straint solving are very different. Some of the
systems explore the ability of the designer to
break the problem into independent or weakly
connected subproblems, which can be solved
independently using known procedural or fast
numerical methods. Such systems enable in-
teractive work. Let us take a brief summary
of some systems from this group. Sunde
constructed a very attractive 2D interactive
system, where the user can get a picture of
an object although it is not completely de-
scribed (G. SUNDE 1987). The system solves
the constraints by the help of two sets: the
set of constrained angles (CA — set) and
the set of constrained distances (CD — set).
In a 2D system presented by Aldefeld, con-
straints are described by means of n-placed
predicates (B. ALDEFELD 1988) (B. ALDE-
FELD et al 1991). The solution is reached in
two steps: in the first step a construction plan
is generated by a forward reasoning method.
It defines the order of calculations. In the
second step, the construction plan is used to
calculate characteristic points of an object.
Ando’s system is intended for construction of
iron-sheet elements (H. ANDO et al 1989).
The most important result of his work is the
introduction of predefined constraints which
are used in the case of underdimensioning.
Further, in his system the constraints have
the priority against topology which is not the
case in other systems. Kimura presented a 3D
system where tolerances can be added to the
constraints easily and naturally (F. KIMURA
et al 1987). Tolerances are divided into
three groups: tolerances of position, size, and
shape. Constraints are solved by a geomet-
ric reasoning system written in Lisp. Suzuki
presented a 2D system, where constraints are
applied for defining topological structure of
a geometric object, its geometrical structure,
and relations among an object’s geometrical
and topological elements (H. SUZUKI et al
1990). Kondo presented PIGMOD, a 3D ge-
ometric modelling system (K. KONDO 1990).
He introduced a history graph which stores
the geometrical relations among geometri-
cal elements and defines propagation of con-
straints. WRIGHT — a constraint based
spatial layout system has been represented

An approach to applying constraints in geometric modelling

231

by Baykan (C. A. BAYKAN AND M. S. FOX
1990). Constraints are used to represent ar-
bitrary amounts of expertise in a uniform and
principled manner. The system solves the
constraints by constrained heuristic search.
Verroust followed Aldefeld’s and Sunde’s ap-
proach (A. VERROUST et al 1992). The
method is based on an expert-system shell
which uses constraints and points as facts
to evaluate the location of the model points.
Kurlander noticed the difficulty of specifying
constraints by traditional methods. In order to
make constraints easier to declare, a method
based on multiple examples — snapshots —
has been suggested (D. KURLANDER AND S.
FEINER 1993).

3. Determination of the world of
observation

An experimental 2D system, based on geomet-
ric constraints, will be presented below. For
input, it accepts a sketch — the correct dimen-
sions of a geometric object are achieved interac-
tively by inserting constraints. The constraints
should be solved as rapidly as possible to en-
able the shape of the object to be updated. In
this way the user, while still using a trial and
error approach, can follow the effects of given
constraints. The order of inserting constraints
should not be important — the system should
store the way of applying the given constraints,
and a tool for their automatic execution should
be available.

3.1. Determination of the sets of geometric
elements

Basic elements in our system are points, lines,
and circles. Let us define:

1. A finite non empty set of point names:

P = {p1,p2, . Pn}-

For each point with the name p; € P (1 <i
< n), an ordered pair of real numbers exists
(Pix> Diy): Pix> Piy € Re, where pj, and p;y, are
the coordinates of the point p;.

2. A finite set of line names:
| PSS A ——

Each line with the name I; € L (1 <1 <
m) is determined by an ordered triple of real
numbers (L, ly, lig): lie, 1y, lia € Re,
lie € [0,7), where (li, i) are the coor-
dinates of a point through which the line I;
passes and tan(l;,) determines the slope of
the line 1;.

3. A finite set of circle names:

C= {6l @ysn s 6p)s

Each circle with the name ¢; € C (1 <1i <
p) is determined by an ordered triple of real
numbers (Cix, Ciy, Cir): Cix» Ciy, Cir € Re, ¢ >
0, where (cix, Ciy) is the centre of the circle ¢;
and c;, is its radius.

The common set G of all names of presented
geometrical elements is defined as a union

G=PLLEUC.

3.2. Predicates

To present geometrical constraints in an unam-
biguous way, predicates have been introduced.
Fach predicate consists of a name and a list of
arguments written in parentheses. Arguments
can be either constants or variables. Constants
are elements of the set G and are always writ-
ten in lowercase. In the formal description they
are sometimes divided by “/” which is read as
“or”. In this case, at an actual position in the
predicate one of the mentioned elements of a
different subset of the set G can occur. Vari-
ables are marked as optional combinations of
alphanumeric characters. Predicates are divided
into three groups: dimensional, structural, and
combined predicates. Similar divisions can be
found in many authors (B. ALDEFELD 1988) (B.
ALDEFELD et al 1991) (H. SUZUKI et al 1990).
In the following sections some typical predi-
cates from each group will be defined.

3.2.1. Predicates of dimensional constraints

These determine coordinates, distances, and an-
gles. Constituent parts of their formal descrip-
tion are variables (or numbers) which can take
their values from prescribed intervals. Vari-
ables presented in predicates of dimensional
constraints represent parameters of a generic

232

An approach to applying constraints in geometric modelling

geometrical object. It is natural to add the de-
scription of a tolerance into predicates of geo-
metrical constraints. A tolerance is denoted by
8. The value & determines the maximal toler-
ance deviation. If a predicate is written without
the tolerance, it is assumed that the tolerance
takes the default value §,. Predicates from this
group are:

e Point(p;, x, y,) — absolute coordinates of
the point p; are (x, y) within tolerance 6.

o AngleValue(l, a, 6) — absolute value of the
slope of the line |; is tan(«) within tolerance 8.

e Distance(p;, pj, d, §) — the distance between
points p; and p; is d within tolerance §.

® PosXY(pj, pj, xr, yr, 6, 6,) — relative distance
between points p; and p; in the x and y direc-
tions is xr and yr respectively within tolerances
9y and 6.

e Angle(l;, l;, o, 8) — the angle between lines
l; and |; is o within tolerance 8.

3.2.2. Predicates of structural constraints

Structural constraints refer to those spatial rela-
tions among geometrical elements which cannot
be changed continuously. In a formal descrip-
tion they contain only the elements of the set G.
Attributes of structural constraints are invari-
ants of a generic object. They are set during
the process of creation of an object and they are
not changed subsequently. For example, if we
set n parallel guiding lines, they should remain
parallel permanently. The predicates of struc-
tural constraints do not contain the description
of tolerances. For example, if the constraint
Perpendicular is established between two lines,
then these two lines are perpendicular without
deviation. Of course, to express the tolerance
of the angle between the lines, the user can em-
ploy the metric constraint Angle. Predicates
from this group are:

o Through(p;, lj/cy) — the line 1; (or circle c;)
passes through the point p;.

e On(l;/cj, pr) — the point py lies on the line I
(or circle ¢;).

e Perpendicular(l;, I;) — lines 1; and l; are per-
pendicular.

® Parallel(l;, I;) — lines |; and 1; are parallel.

e Middle(p; pj, pi, l.) — the point p; is in
the middle of the points p; and pk; all three
points lie on the line 1,,. Predicate Middle can
be expressed as a conjunction of the following
predicates:

Middle(p;, pj, py, lw) = On(l,, p;) & On(l,, p;)
& On(ly, pr) & Middle_c(p;) & Middle_b(p;) &
Middle_b(py).

The additional predicates Middle_c and Mid-
dle_b determine the role of each individual point
as follows:

Middle_b(p;) — the point p; is the border point
in the constraint expressed by the predicate Mid-
dle.

Middle_c(p;) — the point p; is the centre point in
the constraint expressed by the predicate Mid-
dle.

3.3. Predicates of combined constraints

These constraints include both dimensional and
structural information and can therefore be ex-
pressed as conjunctions of metric and structural
predicates. For example:

o Line(l;, pj, x, y, a, &, &) — the line |; has
the slope tan(c) within tolerance &; and passes
through the point p; whose position (pj, = x, pj,
= y) is within tolerance §;.

Line(l; pj, x, y, &, 8, §;) = Point(pj, x, y, ;) &
AngleValue(l;, o, 6;) & Through(pj, 1,).

e Distance(l;, I;, d, §) — the lines 1; and l; are
parallel and are at a distance d within tolerance
0.

Distance(l;, I;, d, 8) = PosXY(p;, Djs X% ¥ Oy, 0y)
& Parallel(l, I;) & Through(p;, I;).

4. Constraint description graphs

The work in our geometric modelling system
begins with a sketch. Exact geometry is deter-
mined later in an interactive way by applying
constraints. This is why one should not expect
that constraints are inserted in an order which is
the most suitable for the solution. To support an
interactive design (or a design which is as close
to it as possible) constraints have to be solved

An approach to applying constraints in geometric modelling

233

Point(x, y)

@ . Paraliel . . Through/On .

a) b)

c)

Middie_b

Fig. 1. Labelling of Biconnected Constraint Description Graph

as soon as possible. Because of this, local prop-
agation of known states (called local propa-
gation for short) has been chosen (W. LELER
1988). Tt is not the most powerful method
for constraint solving, but it is quick, simple,
and does not require that the whole problem
is completely constrained. The well-known al-
gorithm for constraint solving called DeltaBlue
uses this method, too (B. N. FREEMAN-BENSON
et al 1990) (M. SANNELLA et al 1993). In gen-
eral, with case of cyclic constraints the local
propagation does not find a solution. An ex-
ample where local propagation fails is shown in
section 4.3.

4.1. Biconnected constraint description
graphs

In most cases a graph is used to represent how
local propagation works. The known states
propagate through the arcs of the graph. When a
node gets sufficient information to solve itself,
it fires and offers its data to the neighbouring
nodes. This process can be represented as a
chain-like reaction and it continues until there
is no node which can be fired. To support local
propagation and to make our system insensi-
tive to the order of inserted constraints, a struc-
ture called a biconnected constraint description
graph (BCDG) has been developed (B. ZALIK
et al 1992a). It is defined as a triple:

BCDG = (N, A, D)
where:
¢ N is non-empty finite set of BCDG nodes,

e A is finite set of arcs between BCDG nodes,
and

e D is non-empty finite set of real numbers (ge-
ometrical parameters) which control the actual
appearance of the designed geometrical object.

The set N of BCDG nodes stores the elements
of the set G. Each node contains exactly one
element.

An arc from the set A is oriented. We represent
it as a curve with an arrow. The arc carries a
predicate which determines the appropriate ge-
ometrical relation. Depending upon the number
of presented geometrical elements from the set
G in a predicate, the following situations are
possible:

1. A predicate contains exactly one geometric
element. In this case the arc attaches exactly
one BCDG node supplying it with informa-
tion which is self sufficient. Such predicates
are, for example, Point (which is shown in
Fig. 1a) and AngleValue.

2. A predicate contains exactly two geomet-
ric elements. The arc connects exactly two
BCDG nodes, establishing the required rela-
tion between them. We distinguish between
two cases:

e a relation with a symmetric effect (e.g.
Parallel(l;, Ib) shown in Fig. 1b). In this
case there is no need to orient the BCDG
arc. For practical reasons (to unify the algo-
rithm) there are two oriented arcs and each of
them carries the same predicate. To make our
graphical presentation clearer, only one pred-
icate is drawn on a curve representing the
BCDG arc. The curve is equipped by two ar-
rows indicating that there are physically two
oriented arcs.

e a rclation between two nodes depends

234

An approach to applying constraints in geometric modelling

upon the direction. Such a case is shown
in Fig. 1c where predicates On(ly, p1) and
Through(p1, 11) are represented. Two physi-
cal arcs are generated, each of them carrying
the appropriate predicate. For the same rea-
sons as in the previous case only one curve is
drawn between BCDG nodes. Corresponding
predicates separated by a slash are attached
to the curve (Fig. 1c).

3. A predicate contains three or more geometric
elements. Establishing the required relations
in such a graph is not as trivial as before. As
an example, the predicate Middle(p1, pa, p3,
l1) is shown in Fig. 1d. The points p; and p3
are boundary points denoted by the predicate
Middle_b, the point p; is the point placed in
the middle (centre) of the previous two and
it is denoted by the predicate Middle_c. All
points are placed on the line 1;.

Elements of the set D are parameters of met-
ric constraints. By changing these parameters
new instances of a generic geometric object are
generated automatically.

A proper data structure allows us to access each
BCDG node in linear polynomial time. Be-
hind the main data structure representing the
BCDG, one-way connected lists have been in-
troduced for each set of geometrical elements.
In our case, lists of points, lines, and circles
are needed. Each record in the lists contains an
identifier of the appropriate geometric element
and a pointer into BCDG. Consider the case
having n points, m lines, and p circles already
included into BCDG (n, m, p > 0). The total
of all included geometric elements is then k =
n + m + p. To access any point p; which is
already a member of the BCDG, only O(n) <
O(k) checks have to be made. :

4.2, Triggering mechanisms and
the triggering table

Building a BCDG is very simple. Each time
a new predicate is inserted by the user the
BCDG is expanded. First, geometric elements
presented in the predicate are checked to see
whether they exist in the set N. If they do not,
new BCDG nodes are created. Then new BCDG
arcs with corresponding predicates are added.
When all required changes in BCDG are per-
* formed, a triggering mechanism is made active.

Basic task of the triggering mechanism is to
find out if any of the existing BCDG nodes can
be locally solved (or fired). If there is such a
BCDG node, it is solved and the value of cor-
responding geometrical element is offered to its
neighbouring nodes. This process continues un-
til there are no more BCDG nodes which can
be locally solved. In (B. ZALIK et al 1992a) the
following definition has been given: Triggering
of the constraints is a process of determining
values of the maximal number of geometrical
parameters in a previously described part of a
geometrical object, after an explicit parameter
value has been set or a new geometric rela-
tion established. Conditions which have to be
fulfilled to fire a BCDG node are stored in a
triggering table. The triggering table consists
of:

e a predicate list; this stores the predicates which
must be presented at the input of a BCDG node
to fire this node,

e a condition predicate list; this contains the
predicates which must exist in the immediately
neighbouring BCDG nodes. To highlight this,
let us observe the predicate Distance(p;, pj, d,
). We would like to determine a point p; if p;
is known. Both points have to lie on the same
line I which is not in the list of parameters of
the predicate. To determine the position of the
point p;, once the point p; and the line 1; are
known, the point p; should be a member of the
line 1, too. Because of this, the BCDG node
storing either the line 1; or the point p; has to
be visited. From this node an arc carrying the
predicate On(ly, p;) (or Through(p;, I;)) should
exist. Of course, the additional checking is not
always necessary and the condition predicate
list is empty.

e an exact data list; this stores exact values of
geometrical elements which have to be known
in neighbouring nodes. Namely, some geomet-
rical elements can still have approximate values
obtained from a sketch and such data cannot
be used during local propagation. In addition,
in some cases only a part of the graphical in-
formation is sufficient for solving a constraint.
For example, if two lines are constrained by the
predicate Parallel, there is no need to know the
exact position of any line, it is enough to know
only the slope.

e a calculated data item; this informs us which
part of a geometric element is calculated. For

An approach to applying constraints in geometric modelling

235

Fig. 2. Completely determined triangle

example, in the case of a circle, only its radius
(or its centre point) can be determined.

If local propagation of known states is used for
constraint solving, only well-determined and
usually very simple calculations should be per-
formed (such as finding the intersection of two
lines). However, ambiguities can still occur in
some cases. Let us observe again the predicate
Distance(p;, pj, d, 6). An unknown point p; can
lie “on the left” or “on the right” side of the
point p; at the required distance d. To reduce
such problems, the principle of minimal distur-
bance is explored. All solutions (in our case,
two) are compared with old (or approximate)
values and the one which differs the least is pre-
sented to the user first. If the user does not want
this solution, the system may be utilised to get
other solutions obtained. Of course, only one
solution is then accepted by the system.

4.3. Weakness of local propagation;
an example

The main weakness of local propagation of
known states as a method for constraint solv-
ing is that it can use only the information which

is local to the observed graph node. There-
fore this some well-defined problems cannot be
solved (W. LELER 1988). Let us demonstrate
this with a simple geometrical problem. Con-
sider a triangle shown in Fig. 2. The following
data are known for it:

e exact position of the point p3 (denoted by a
squared marker),

e the slope tan(cy) of the line 1y,
e inner triangle angles o and a3, and
e the distance between the points p; and p;.

These data completely determine the triangle
and they can be formally expressed by using the
predicates introduced in Chapter 3. In Table 1
they are listed without stating tolerances.

The resulting BCDG is shown in Fig. 3, where
the propagation of known states is represented
by thicker arrows. By the predicate Point exact
position of the point p3 is determined and its
position is passed to the BCDG nodes storing
lines 1, and 13. The slopes of these two lines are
calculated from the known slope of the line I;
using the Angle predicates and these two lines
become completely known. By means of I, and
13, neither the position of the line 1; (only its
slope is known), nor the points p; or p; can be

1. [Point(ps3, X, y) 2. | Through(ps, l2)
3. | Through(ps, 13) 4.1 Angle(13, 11, 03)
55 Angle(lz, 11, Ctg) 6. AngleVaIue(ll, al)
7. | Distance(p1, p2,d) | 8. | On(ly, p1)
9. On(lg, p1) 10. On(lz, pg)
11. | On(ly, p2)

Tab. 1. Predicates describing a triangle

236

An approach to applying constraints in geometric modelling

AngleValue(Q)

Point(x, y)

Critical region

Fig. 3. Biconnected Constraint Description Graph of a triangle

determined. Exact position of the line 1| can be
calculated by knowing the point p; (or py) and
the exact position of the point p; (or p;) can be
determined using the line 1;. This situation can
be observed as a cycle. We call such parts in
the graph BCDG critical regions. The process
of constraint solving is stopped and the system
waits for an additional constraint. If the user in-
serts it, overdimensioning occurs. For example,
the user inserts a new constraint Distance(p;,
P3, ds), the position of the point p; can be cal-
culated now. From it, BCDG nodes carrying the
line 11 and the point p; are reachable. Position
of the point p; can be now determined in two
ways:

e directly from the point p; using the Distance(py,
P2, d) predicate, or

® as an intersection between the lines 1; and 1.

In general, two different positions of the point
p2 can be obtained. Because of this, inserting
redundant (and possibly conflicting) additional
constraints is not a good solution.

What we need is a tool able to determine that
one part of a geometrical object is already com-
pletely correctly described. After that, critical
regions have to be extracted and solved by other,
more powerful, techniques for constraint solv-
ing. A typical representative is relaxation, a

classical iterative numerical method (W. LELER
1988). Of course, it needs adequate starting
values to find a solution. Approximate values
of geometrical elements provide a good hint.
Critical regions are subgraphs of a BCDG and
the relaxation can be performed in a reasonable
time.

4.4. Acyclic constraint description graph

All arcs in BCDG, which have not been used
during constraint solving, are marked with a
flag unused and these arcs can be removed from
the BCDG. An acyclic constraint description
graph (ACDG) is obtained. ACDG = (N, A,
D) has the same number of nodes as the BCDG
from which ACDG has been extracted. If two
ACDG nodes are connected, there is exactly one
arc connecting them. Each arc carries a pred-
icate describing the required relation between
nodes. The elements of the set D have to be
accessible to the user and they must represent
the entries into ACDG. Each geometric object
determined by the ACDG can be observed as a
parametrically described geometrical object.

The following work gives a simple example of
design in our system. Suppose the user has

An approach to applying constraints in geometric modelling

237

1. [Point(p1, X, y) 2. | Through(py, Iy)
3. | AngleValue(ly, o) 4.1 On(1y, p2)
5. | Distance(py, p2, d1) | 6. | Perpendicular(ly, Ip)
7. | Through(py, L) 8. | Parallel(ly, 13)
9. | Through(py, I3) 10. [On(lz, ps)
11, Distance(ll, Ig, dg) 12. On(16, pg)
13. On(lG, p3) 14. Parallel(ls, 14)
15. ()D(l3,p3) 16. ()n(lé,p7)
17. | Distance(ps, p7, ds) | 18. | On(ls, p4)
19. | Distance(ps, ps4, d3) | 20. | Through(p7, l4)
21. | Parallel(ly, 15) 22. | Through(pa, ls)
23. | On(l4, ps) 24. | On(ls, ps)
25. | Distance(l7, 11, ds) | 26. | On(l7, pe)
27, On(l7, p5)

Tab. 2. Predicates describing the object containing a slot

already inserted the sketch of an object con-
taining a slot. For determining of the correct
dimensions and for establishing the required
geometrical relations shown in Fig. 4 the con-
straints given by means of predicates are in-
serted. These are shown in Table 2.

Constraints are solved by the BCDG and, as a
result, the corresponding ACDG is obtained. A
step-by-step example of constraint solving by
using BCDG can be found in (B. ZALIK et al
1992b). Suppose that the object from Fig. 4 has
already been completely determined and that its
ACDG (shown in Fig. 5) has been successfully
generated. The user has generated the instance
shown in Fig. 4a using the following values of
metric constraints: py, = 10, p1y = 10, oy
0°, dy = 100, dy = 50, d3 = 50, d4 = 30, and
ds = 15 (the values can be set, for example,
in millimetres). If the user is not satisfied with
the appearance of the generated object, it can be
changed very simply. The user perhaps wants

L, s I 5

d,=15 d,=50

v

d,=30

,=5
e ——
o

d1 :1 00

Fig. 4.

to increase the distance ds to 25 and decrease
the distance d3 to 40 (Fig. 4b). In this case
there is no need to recalculate the whole object
completely. In fact, only positions of the points
P4, Ps, Ps, and p7 have to be changed. This in-
formation is effectively captured by the ACDG
shown in Fig. 5. Only two new entries into
ACDG occur in this case (the distances d3 and
ds). At first, the ACDG nodes containing ge-
ometrical elements presented in the constraints
Distance(ps, ps, ds) and Distance(py, ps, ds)
are observed. Let us observe the constraint
Distance(ps, pa, d3) for a while. At first, the
algorithm should discover, which point (p3 or
p4) should be changed to satisfy the given con-
straint. As the point p4 is derived from the point
p3 position of the point ps should be recalcu-
lated. For the same reasons position of the point
p7 is corrected in the constraint Distance(p7, ps,
ds). Now, all ACDG nodes accessible from py
and p7 are visited (these nodes store 1y, 1s, ps,

|2 |4 IS

ds=25 d,=40
Pe[S ” P, R, <__"—>~,p3 le
2
B
i R R l;
o] % i
o, ay, |
P | g *
,=100
b)

An object containing a siot

238

An approach to applying constraints in geometric modelling

Parallel

Fig. 5. Acyclic Constraint Description Graph of the object containing a slot

and pe) and they are marked as ACDG nodes
storing only approximate values of geometrical
elements. After that, the determination of new
geometrical values in the newly marked ACDG
nodes is started. At first, new positions of the
points p4 and p7 are calculated. The line 14 is
reachable from the point p7. Its new geometrical
values can be calculated (the position is deter-
mined by means of the constraint Through(p7,
l4) and the slope by means of the constraint
Parallel(ls, 14)). From the line l4, the point pg
and the line |5 can be reached (see Fig. 5). New
position of the point pg is calculated as the inter-
section between the lines 14 and 1. The line 15
and the point ps are recalculated using the same
procedure.

From this example it is obvious that constraint
propagation through the whole ACDG graph
has to be performed only in cases where the pa-
rameters in the root ACDG node are changed.
Let us see the required time complexity of con-
straint propagation in such a case. Suppose the
cardinality of a set N is n. Let us say that each
ACDG node has m children 0 < m < n. From
the root node, m nodes can be developed and
they are stored in a queue Fy. For this task time
T4(m) = kym is needed, where ky is the time

needed to develop one ACDG node. With the
help of the triggering table, the first node which
can be fired is determined — let us denote it as
i(i € [1, m]). This can be done in time Ty =
kym, where k¢ is an average time needed for
checking if an ACDG node can be fired. To
fire the node 1, the time T, is needed which is
determined as:

T1(II]) = kym + kfm.

In the next step, a node j from the queue F; is
tried to be fired (j € ([1, m] - i)). In the worst
case all m-1 remaining nodes from the queue F;
are tried to be fired unsuccessfully. After that
children of the node i (i has again m children)
are developed and they are stored in the queue
F,. This task can be performed again in the time
T4. In the queue F; a node, which can be fired,
surely exists. It can be found again in the time
Tr. The worst possible time which is needed to
fire the second ACDG node is Ta:

T2(m) = kgm + ky(m - 1) + kym = kym +
kf(2m— 1).

The time needed to develop the last n-th ACDG
node is then:

239

An approach to applying constraints in geometric modelling

Tu(m) = kym + k¢ (nm - (n - 1)) + kpm =
kym + ky(nm - n 4 1).

The time needed to fire all ACDG nodes can be
easily obtained as:

T(m)

I

N+ +T3+...+T,

= (kam + krm) + (kgm + kp (2m — 1))
+(kgm + ke (3m —2)) + . ..
+(kym + kf (nm — n + 1))

= nkgm+ky(m+2m+ ...+ nm

~(1+2+3+...4+(n—1)))

= nkgm+ %kf (mn(n+1) — n(n - 1))

= n(kam + shke(m(n+1) — (n — 1)).

However, if n is large enough, many ACDG
nodes are without children. In this case m =
0, to obtain an average time needed to solve all
constraints, we can assert m << n and m can
be observed as a constant. Consider k,, is the
average number of children of an ACDG node.
The average time complexity is then:

Ta=n(kgkm+ ks (km(n+1)—(n—1)))=0(r?).

5. Combining geometrical objects
represented by ACDG's

In geometric modelling, users usually com-
bine already-made geometrical objects to ob-
tain more complicated geometrical shapes. For
this purpose in many cases Boolean regularised
operators are offered to the users. In spite of
certain disadvantages they have been widely ac-
cepted as the operators for simulating manufac-
turing operations; e.g. removing or adding por-
tions of material. Quick and robust algorithms
for regularised Boolean operations have been

proposed even in B-rep. Nowadays feature- .

based operators have been extensively intro-
duced in geometric modelling (J. R. ROSSIGNAC
1990). They capture the whole richness of engi-
neering vocabulary and represent the most natu-
ral way for integrating CAD, CAPP, and CAM.
Using either more primitive Boolean operators
or high-level feature-based operators, users still
have to do a lot of work without the support

of a geometric modelling system. Namely, they
have to place geometrical objects at the required
positions manually and then perform the desired
operations. In a 2D world, the users have to
maintain 3 degrees of freedom and in 3D space,
6 degrees of freedom.

These difficulties appear because expressing
spatial relationships in actual geometric mod-
elling systems is not supported. As was men-
tioned in the introduction, expressions like the
hole is in the centre of the slot or the slot is
in the top face of the object are not supported.
Previous sections have explained how geomet-
ric constraints can be used to establish spatial
relationships among geometrical elements rep-
resenting a geometric object. In this section, it
will be shown how geometrical constraints can
be used to express spatial relationships among
geometrical objects, and the problems associ-
ated with this task will be highlighted.

5.1. Expressing Geometrical relationships
among geometrical objects
represented by Acyclic Constraint
Description Graph

In Fig. 6a, a simple geometric object named A
is shown. Suppose the user wants to place an
object B (Fig. 6b) on the object A. We would
like to obtain a new geometric object C (Fig. 7a)
using the existing objects A and B. Consider the
objects A and B are represented by appropriate
ACDGs. Only the parameters of each ACDG
are accessible, as shown schematically in Fig.
6a and 6b. To have complete control over the
new object C, an appropriate ACDG represent-
ing it should be generated.

At this point we are interested mainly in the pro-
cess of establishing appropriate space relations
between geometrical objects A and B. Because
of this, necessary changes in the topology of
the new object C will not be observed. To put
object B on the object A we require:

e pp1 lies on the line 1,

e the distance between vertices pp; and pg 1S
¢, and

e the lines I and 1, are perpendicular.

All expressions written in bold type are already
known to us. They are exactly the constraints

240

An approach to applying constraints in geometric modelling

On(l,, ps1)
Distance(pa1, Pp1, C, 0)
Perpendicular(l,, I)

) b=

Tab. 3. Predicates needed to express spatial
relationship between objects A and B

introduced in section 3 and they can be eas-
ily transformed into corresponding predicates
shown in Table 3. They are stored in the so-
called “constraint interface” CI.

An ACDG the representing the object C can
be easily obtained by connecting the ACDGs
of the objects A and B by the predicates men-
tioned above. Fig. 7b shows established spa-
tial relationships between the objects A and B.
Constraints used for this task are stored in the
constraint interface CI;. A very clear hierarchi-
cal structure between the objects A and B has
been obtained. If any parameter of the object
A is changed, all necessary changes in the po-
sition of the object B are made automatically,
as explained in section 5. The whole struc-

8
Sy
R R.
Oy — < 34 s —p- < b,
a.—>| A ACDG B: ACDG
S -« 3, S - lf)2
(paux' B.Dy) a) (Enx, '?!1) b)
Fig. 6. Basic geometricobjects AandB
(R By —> <~—a,
o, A: ACDG !
oy —> -« a
E 4 pa1 v Ia E
.| ontp,y Ch |
! Distance(p,, , p,, , ©) - g
| Perpendicular(l,, I,) :
E \rpm y&e :'
; <—i— b,
: |«—Db

a)

Fig. 7. a) Target geometrical object C b) Connecting geometrical objects A and B

An approach to applying constraints in geometric modelling

241

ture can be observed as one common ACDG
(it is schematically presented in Fig. 8) and one
could completely eliminate the borders between
its constituent parts. However, this is not prac-
tical for at least two reasons:

e individual parts may be supplemented by ad-
ditional local information (such as colour, ma-
terial, etc.) and

e removing individual parts from an object
would no longer be trivial.

The case when all geometrical elements of hier-
archically inferior geometrical objects, which
are needed to establish spatial relationships
among geometrical objects (in our case the point
pp1 and the slope of the line 1), are directly ac-
cessible by the user is called a “well-adopted
graph”. Serious problems occur in other cases,
named “ill-adopted graphs™.

5.2. Establishing spatial relationships
in case of an ill-adopted graph

Reconsider establishment of the spatial relation-
ship between geometrical objects A and B. This

— e e e o o

I
(P Py) 2> (pay

o e o = = = == == —

time the user does not have explicit access to the
point pp; and the slope of the line 1,. The posi-
tion of the point ppy is calculated from the point
ppo Which is in this case, the root node of our
ACDG. Similarly, the line 1, slope is obtained
from the line 1py (see Fig. 9a). Of course, to
establish required spatial relationships between
objects A and B, the same list of predicates is
needed as in the previous case (see Table 3).
To put the object B at the required position the
following steps have to be performed:

1. Using the constraints from the constraint in-
terface CI; (Table 3) and known values of
the point p,; and the line 1, determine the re-
quired values for the point ppy and the line

"

2. Propagate constraints through ACDG of the
object B using old (or even approximate) val-
ues for the point ppo and the line lpp. The
values 1’y and p’p; are found — these values
usually differ from required values obtained
in the step 1. The calculated values 1’5, and
p’p1 are used to correct the values of the point
ppo and the slope of the line lpo. This is done
by using the constraints stored in the con-

Fig. 8. ACDG of the object C

242

An approach to applying constraints in geometric modelling

B B o B o0 .
C *"]ab L4 » luo
R, AA
-
Y
) R
aw—h— 4—b1
B: ACDG
®, P
m’;»o,)" < b,
a)

G'g_'—'—"—>' - .ai
o——» A:ACDG :

] +:— a2
®, B) |
aix RD) : V pa1 vlau :
: onf,.p,) Ch | |

: Distamceatpm » Pay» C) |+ C

; Perpendicular(l,, 1,) :
I:(p " pb1 Ibu E
! B: ACDG |

| O <+—b,
: I
: Poox = Poox * Poix - p?1x :
i Peay = Peoy + Poty = Poty :
: a‘bﬂ =ab0+|;u.- Iba :
J I — :

b)

Fig. 9. a) Geometric object B with point py as a root ACDG node b) ACDG of the object C in the case of
ill-adopted graph

straint interface CI, which are not geometric
but purely algebraic (Fig. 9b).

3. Constraint propagation through the ACDG of
the object B is performed again. This time
corrected values of the point pyg and the line
10 are used to put all geometrical elements of
the object B at the required position.

At the first sight this approach is not convenient
because:

e it is fairly complicated,

e it is unquestionably slow; constraint propa-
gation through the ACDG of the object B must
always to be done twice if any of the parameters
belonging to the hierarchically superior object
(inour case a1, a, Pao, Ga, A1) OF the constraint
interface (in our case parameter c) are changed.

However, this approach also has certain benefits
because the reusability of a geometrical object
is completely preserved (B. ZALIK et al 1993).
Of course, our aim should be to combine geo-
metrical objects with “well-adopted graphs”.

6. Conclusion

In geometric modelling a lot of research consid-
ering B-rep has been done mainly on the topol-
ogy of adjacent relationship among topologi-
cal elements like vertices, edges, faces, loops,
rings, holes, and shells. Euler operators have
been known for a long time and these assure
correctness of a topology. Topological infor-
mation is easily accessible and the user can
obtain answers to questions such as: has the
face f any hole? Or which edges ends in the
vertex v? Geometry is built directly into the
framework topology has defined so far. It has
been controlled by the so-called local operators
which are very fundamental such as: position
of a point p is (x, y), move the edge e for a dis-
tance d. Geometric relations like: the distance
between two vertices is d, or the face f| and the
face f> are parallel, have not been able to be ex-
pressed explicitly. Because of this, geometric
modelling systems have not been able to give
the answers to questions such as: how large is
the distance between points py and p,? Or are
the faces fi and f, parallel? without additional

An approach to applying constraints in geometric modelling

243

high-level

Feature-based operators

abstraction
add slot,
remove slot,
the hole is at
the center of a slot
___________________________________ e IR
level of constructive Boolean operators
geometry _
sl T
difference
. Geometric constraints
level of geometric
relations B A
Ve,
__________ T e i M G A S
fundamental Euler operators Local operators
level -)
%.'kev, ' emc?;ee igo;nt,
mef, kef, Hermite curve,
kemr, mekr, move surface, ...
kfmrh, mfkrh
data structure -

Topology

Geometry

vertex, edge, face, hole, solid

point, curve, surface

Fig. 10. Hierarchy of operators in geometric modelling

calculations. Because of the problem of finite
arithmetic, inserted constraints have been lost
many times. Fig. 10 shows the authors’ view
of the hierarchy of geometric modelling oper-
ators in B-rep. Geometric constraints can be
observed as a missing level in describing geo-
metrical objects. They are able to capture ge-
ometrical relations and offer the user operators
which have been used in engineering for many
years.

The presented constraint-based approach has
been used as a base for a system for describ-
ing scaleable oulines of fonts (B. Zalik 1995).

Acknowledgements

The authors thank the referees for their valuable
comments and suggestions for improvements.

References

(1] B. Aldefeld, Variation of Geometries Based on
a Geometric-Reasoning Method. Computer-Aided
Design, 20, (1988) 117-126.

[2] B. ALDEFELD, H. MALBERG, H. RICHTER, AND

K. Voss, Rule-Based Variational Geometry in

Computer-Aided Design. In Artificial Intelligence

in Design (D. T. PHAM, Ed.), (1991) pp. 27-46.

Springer Verlag, Berlin.

[3] H. ANDO, H. Suzuki, F. KIMURA, A Geometric
Reasoning System for Mechanical Product Design.
In Computer Applications in Production and En-
gineering (F. KIMURA AND A. ROLSTADAS, Eds.),
(1989) pp. 131-139. Elsevier Science Publishers,
Amsterdam.

[4] C. A. BAYKAN AND M. S. Fox WRIGHT, A Con-
straint Based Spatial Layout System. In Artifical
Intelligence in Engineering Design— Design Repre-
sentation and Models of Routine Design (C. TONG

244

An approach to applying constraints in geometric modelling

(5]

- [6]

[7]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

AND S. DUVVURU, Eds.), (1990) pp. 395-431. Aca-
demic Press, San Diego.

A. BUL, An Approach to Design Theory. In De-
sign theory for CAD (H. YOSHIKAWA AND E. A.
WARMAN, Eds.), (1987) pp. 3-25. Elsevier Science
Publishers, Amsterdam.

B. N. FREEMAN-BENSON, J. MALONEY AND A.
BORNING, An Incremental Constraint Solver. Com-
munications of the ACM, 33 (1990), 54-63.

W. J. FITZGERALD, Using Axial Dimensions to
Determine the Proportions of Line Drawings in
Computer Graphics. Computer-Aided Design, 13
(1981), 377-382.

F. KIMURA, H. SUZUKI1, AND L. A. WINGARD, Uni-
form Approach to Dimensioning and Tolerancing
in Product Modelling. In Computer Applications in
Production and Engineering (K. B@. L. ESTENSEN,
P. FALSTER, AND E. A. WARMAN, Eds.), (1987) pp.
165-178. Elsevier Science Publishers, Amsterdam.

K. KoNDO, PIGMOD, Parametric and Interac-
tive Geometric Modeller for Mechanical Design.
Computer-Aided Design, 22 (1990), 633-644.

D. KURLANDER AND S. FEINER, Inferring Con-
straints from Multiple Snapshots. ACM Transac-
tions on Graphics, 12 (1993), 227-304.

W. LELER, Constraint Programming Language.
Addison—Wesley, Reading MA, 1988.

V. C. LIN, D. C. GOSSARD, AND R. A. LIGHT, Varia-
tional Geometry in Computer Aided Design. Com-
puter Graphics, 15, (1981), 171-177.

R. A. LIGHT AND D. GOSSARD, Modification of
Geometric Models Through Variational Geometry.
Computer-Aided Design, 14, (1982), 209-214.

G. NELSON, Juno, a Constraint-Based Graphics
System. Computer Graphics, 19, (1985), 235-243.

J. R. ROSSIGNAC, P. BORREL, AND L. R. NACKMAN,
Interactive Design with Sequences of Parametrized
Transformations. In [ntelligent CAD Systems I
(V. AKMAN, P. J. W. TEN HAGEN, P. J. VEERKAMP,
Eds.), (1989) pp. 93-125. Springer Verlag, Berlin.

J. R. ROSSIGNAC, Issues on Feature-Based editing
and interrogation of solid models. Computer &
Graphics, 14 (1990), 149-172.

M. SANNELLA, J. MALONEY, B. N. FREEMAN—
BENSON, AND A. BORNING, Multi-Way Versus
One—way Constraints in User Interfaces: Expe-
rience with the DeltaBlue Algorithm. Sofiware-
Practice and Experience, 23 (1993), 529-566.

G. SUNDE, CAD System with Declarative Speci-
fication of Shape. Presented at the Eurographics
Workshop on Intelligent CAD Systems, (1987), No-
ordwijkerhout, The Netherlands.

H. Suzuki, H. ANDO, AND F. KIMURA, Geometric
Constraints and Reasoning for Geometrical CAD
Systems. Computer & Graphics, 14 (1990), 211—
224,

[20] A. VERROUST, F. SCHONEK, D. ROLLER, Rule-
Oriented Method for Parametrized Computer-Aided
Design. Computer-Aided Design, 24 (1992), 531
540.

B. ZALIK, N. GUID, AND A. VESEL, Representing
Geometric Objects Using Constraint Description
Graphs. In Indusirial and Engineering Applica-
tions of Artificial Intelligence and Expert Systems
(F. BELLI, F. . RADERMACHER, Eds.), (1992) pp.
505-514. Springer Verlag, Berlin. é

21]

[22] B. ZALIK, N. GUID, AND A. VESEL FLEXI, An Ex-
perimental Constraint-Based Modeling System. In
CG International 92 (T. L. Kunn, Ed.), (1992) pp.
697-710. Springer Verlag, Tokyo.

[23] B. ZALIK, N. GUID, AND A. VESEL, Reusability of
Parametrized Geometric Objects. Programming and
Computer Software, 19 (1993), 165-176.

[24] B. ZALIK, Font Design with Incompletely Con-
strained Font Features. In Computer Graphics and
Applications (S. Y. SHIN, T. L. Kunil, Eds.), (1995)
pp- 512-526. World Scientific, Singapore.

Received: March, 1995
Accepted: November, 1995

Contact address:

Borut Zalik

Laboratory for Computer Graphics and Artificial Intelligence
Department of Computer Science

Faculty of Electrical Engineering and Computer Science
University of Maribor

Smetanova 17

S1-2000 Maribor, Slovenia

phone: ++ 386 62 25-461

fax: ++ 386 62 225-013

e-mail: zalik@uni-mb.si

BORUT ZALIK is an Assistant professor of Computer Science at the Uni-
veristy of Maribor. Currently, he is a head of a Centre for Geometric
Modelling at the Faculty of Electrical Engineering and Computer Sci-
ence Maribor and a member of a Laboratory for Computer Graphics and
Artificial Intelligence. His research interests include computer graph-
ics, geometric modelling, CAD, computational geometry, multimedia,
and computer pheripheral devices. Zalik received a Ph.D. in Computer
Science from the University of Maribor, Slovenia in 1993,

NikoLA GUID is presently a Full Professor at the Faculty of Electri-
cal Engineering and Computer Science in the Univeristy of Maribor,
Slovenia, and a head of Laboratory for Computer Graphics and Artifi-
cial Intelligence. His current research interests are computer graphics,
computer aided geometric design, geometric modelling, computer sim-
ulation, search strategies, and knowledge representation. He wrote two
textbooks on computer graphics. Guid received both a B.Sc. and M.Sc.
in Electrical Engineering from the University of Ljubljana in 1974 and
1977, respectively, while a Ph.D. from the University of Maribor in
1984. He is a member of the IEEE and Eurographics.

