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One Step Strategy for Learning
RBF Network Parameters

Mladen Siroki

Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia

In this paper a new, one step strategy for learning Radial
Basis Functions network parameters is proposed. In the
RBF network model developed by Poggio and Girosi
three modifiable sets of parameters: positions of the
centers t, weighed norm ||x — t||% and output layer
weights ¢ have to be determined during the learning
stage. The authors suggest that these parameters be
set by some iterative nonlinear optimization method,
such as gradient descent, conjugate gradient or simulated
annealing method. The basic idea of this work is:
if hidden layer radial basis functions are set to be a
multivariate Gaussian function, unknown parameters can
be learned from the training set much faster, in a single
step, by well known statistical methods, than by iterative
optimization. In this approach the positions of the cen-
ters are learned by K-means clustering method, weighed
norms are calculated as a Mahalanobis distances between
x and t, and optimal output layer weights are found by
pseudoinversion. Calculation of Mahalanobis distances
involves estimation of hidden units covariance matrices
=, that replace weighed matrices W. Two classification
examples illustrate the usefulness of the method.

Keywords: Neural Networks, Radial Basis Functions
Networks, Learning, Classification

1. Introduction

The Radial Basis Functions networks (RBFE,
also called regularization networks or Hyper
Basis Functions — Hyper BFs) are three layer
- feedforeward artificial neural networks shown
in Fig. 1. The first layer of the network consists
of the input units, whose number n is equiva-
lent to the number of variables of the problem
(dimension of the input vector x). Second (hid-
den) layer is made of nonlinear units fully con-
nected to the input layer. Each hidden unit is
parametrizied by its center (vector t). Number
and positions of the hidden units should be set
during the learning stage. Each hidden unit i

evaluate the function A(||x — t;||), where h is
a radial basis function, ||x — t;|| is a distance
between input point given by vector x and the
center of the hidden unit i given by vector t; in
n dimensional space. Output layer is linear and
fully connected to the hidden layer. Weights of
the output layer ¢ are the unknown coefficients
that should be determined during the learning
stage.

Poggio and Girosi [Po89] have shown that learn-
ing an input-output mapping from an example is
a problem of hypersurface reconstruction, and
is related to classical approximation techniques,
including regularization theory. They have also
shown that regularization is equivalent to the
RBF network shown on Fig. 1. when all data
points are used as centers of hidden units.

RBF networks form mappings from an » dimen-
sional input vector x to an output F(x) ((R" — R
mapping) of the form

N
F(x) =) cih(||lx—ti]) (1)
i=1

where c; are the weights to be determined, and
N is the total number of data points. In the
case of interpolation (expansion 1) all points
from the training set should be used as cen-
ters. The unknown coefficients ¢; can be re-
covered imposing the interpolation conditions
F(x;) = yj(j = 1,...,N), that substituted in
equation (1) yields the linear system

N

yi=> ch(lx—tll) j=1...,N (2)

i=1
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Fig. 1. Three layer feedforward RBF network

where X; is the input vector and y; is the desired
output of pattern j from the training set.

Defining vectors (y); = yj, (¢); = ¢; and sym-
metric (N X N) matrix (H); = A([|x; — t;[|), the
coefficients of the equation (2) are given by

c=Hy (3)

‘According to the equations (1)—(3) structure of
the RBF network is completely determined by
the problem, and, what is even more important,
weights ¢; can be calculated by inversion of the
matrix H in only one step. Disadvantage of the
method is in the number of samples N which is
often very large, which makes the calculation
of matrix inversion very time consuming, if not
even practically impossible. Also, the training
data mostly contain a certain amount of noise,
and in this case generalization of the network
could be better accomplished if hypersurface is
approximated rather than interpolated through
the training points. Approximation can be ac-
complished by an expansion of the following
form
K
F(x) =" cih(|x - ti]) (4)

i=1

where t; are K points (centers), whose coordi-
nates have to be chosen, and K < N.

Imposing F(x;) = y; in expansion (4) leads to
the following linear system

K
= ch(lx—tl) j=1,...,N (5)
=1

The system is overconstrained (N equations for
K unknowns) and by least-squares approach the
optimal solution can be found by expansion

c=Hty (6)

where (H); = h(||x; — t;||) is a rectangular
(N x K) matrix and H™ is the Moore—Penrose
pseudoinverse of H that can be computed as

H" = (H'H)"'H" (7)

Poggio and Girosi went further proposing an ex-
tension to RBE network with two sets of mod-
ifiable parameters in addition to the weights
¢: moving centers and adjustable norm-weights
[Po90]. They have suggested that moving cen-
ters is equivalent to task-dependent clustering
and changing the norm weights is equivalent to
task-dependent dimensionality reduction.
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With this extension the output of the RBF net-
work is calculated by expansion

K
C;

F(x) =Y cih(|[x— i)

=1

(8)

where ||x — t;||3y is weighed norm calculated by

(9)

and W is the square matrix that is the subject of
learning.

Ix — il = (x — )W (x — t;)

So far, RBF network has been presented as a
method for interpolation and approximation of
continuous functions. Computer experiments
show that RBF network can also be successfully
used for classification and Boolean learning
problem. Broomhed and Lowe used RBF net-
work to learn XOR problem [Br88|, Moody and
Darken used similar kind of network for clas-
sification of 10 distinct vowel sounds [Mo89],
Wolpert showed that a simple form of RBF per-
form well on the classification task of NetTalk
[Po89], etc. In the case of classification the
structure of RBF network is the same as pre-
sented in Fig. 1., only the output layer has more
units, and their number is equal to the number
of classes present in the problem. This paper is
mainly concerned with using RBF network as a
classifier, and in the following section the one
step learning strategy for classification prob-
lems will be proposed.

2. One Step learning Method

According to the expansion (8), RBF networks
have three modifiable sets of parameters (¢, t, W)
that have to be determined during the learning
stage. When compared to other neural networks
paradigms, the main advantages of RBF net-
work are that these parameters have a clear in-
terpretation, and also, that the original form of
learning (equations 1-7) can be performed in
one step only. Every center vectors t; present
one cluster of training data, W weighs the im-
portance of input variables and C weighs the
output from hidden layer units. Poggio and
Girosi have shown that these parameters can be
optimized using gradient-descent method anal-
ogous to backpropagation. They have also sug-
gested that some other iterative optimization

methods, such as conjugate gradient or simu-
lated annealing method may be more efficient
than gradient descent and should be used in
practice. In their model they used the same
matrix W for all hidden units.

In this work hidden layer radial basis functions
are set to be a general multivariate normal den-
sity function (Gaussian) defined by

1
M0~ G

x exp(~3(x — )5 (x - ui))(m)

where X is an n component input vector, y; is an
n component mean vector (in our case center of
hidden layer unit i(y; = t;)), and 2; is a covari-
ance matrix of training set points that belongs
to center i.

The quantity

2= (- ) I - ) (1)

s called the squared Mahalanobis distance
[Du73] from x to w;, and is obvious that it has
the same meaning as the weighed norm used
in Poggio and Girosi development, defined by
expansion (9).

The basic idea of this work is that if the hid-
den layer radial basis functions are set to be
multivariate Gaussian functions defined by ex-
pansion (10), unknown hidden layer parameters
(centers coordinates t; = w;, and covariance
matrices ;) can be determined directly from
the training set using some well known statisti-
cal pattern recognition techniques, much faster
than by optimization process proposed by Pog-
gio and Girosi.

The first problem is to find centers coordinates
t;. In this work, similarly as in the works of Pog-
gio and Girossi, Moody and Darken and others,
the positions of the centers are determined by K-
means clustering method. Some other unsuper-
vised clustering techniques, including Kohonen
networks can also be applied. The second and
more critical problem is estimation of the co-
variance matrices Z;. If it is possible to assume
that training data belongs to cluster i, present
by its center t;, are normaly distributed over this
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Fig. 2. RBF network for classification problem

cluster, covariance matrices Z; can be estimated
by expansion

1 i
&= N1 ;(Xz‘j —w)(x — )" (12)

where 2; is square symmetrical covariance ma-
trix of samples belongs to cluster i, N; is number
of samples belongs to cluster i, x;; are training
data belongs to cluster i and y; = t; is cluster i
mean vector. '

According to the expansion (11), matrix Z; must
be inverted to obtain Mahalanobis distances. In
[Du73] it is shown that if the number of samples
per cluster N; is less or equal to the number of
input variables n, matrix Z; is guaranteed to be
singular. This means that the training set should
consist of at least n + 1 samples per cluster, and
in most of the cases a good estimate of Z; re-
quires several times more samples per cluster
than is the dimension #n of input vector.

This method is primarily developed for clas-
sification problems, and in this case experi-
ments have shown that better results accom-
plished when hidden layer parameters (t,X)
were learned for each class, and each cluster
of the class separately. After the hidden layer

parameters are determined, optimal output layer
weights C can be calculated by the least square
approach using equations (4)—(7). Estimation
of hidden layer covariance matrices is derived
from Bayesian learning, and when there is only
one center set for each class (in this case the
center is the mean vector of the class) output
from hidden layer unit i h;(x) is equivalent to
the Bayesian determination of conditional den-
sities p(x|w;) (probability that input vector x
belongs to class w;). The difference between
this method and the Bayes classifier is that here
it is possible to set more clusters for the same
class, and also the outputs from the hidden units
are weighed by output layer weights C.

The proposed RBF network for classification is
shown in Fig. 2. Unknown parameters can be
determined by the following algorithm.

Algorithm

1. Set the number of centers for each class.

2. Calculate the position of centers for each
class separately using K-means clustering
method, or some other clustering technique.

3. Group the data to the clusters for each class
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separately, and estimate clusters unbiased co-
variance matrices by expansion (12).

4. Calculate the inversion of covariance matri-
CEes.

5. Calculate the squared Mahalanobis distance
r? from each input vector x of the training set to
each hidden unit center t;, what yields rectangu-
lar (N x K) matrix R, where N is total number

of training data and K is total number of centers
(RBF hidden units).

6. Calculate matrix H by expansion
(H); = h(R); (13)

where A(r) is multivariate Gaussian function
defined by expansion (10). In equation (10)
(2)"/?|%;| is only a scaling factor and it can be
dropped in calculation.

7. According to the equations (4)—(7) impose
the interpolation conditions to calculate the out-
put layer weights C by expansion

C=H*Y (14)
where C is (K x M) weight matrix, H' is
(K x N) Moore Penrose pseudoinversion of H,
and Y is (N x M) target output matrix and M

is the number of different classes present in the
problem.

If the number of training samples is not large
enough, some of the covariance matrices Z; can
be singular (as is described, this happens when
N; is less or equal to n). In this case one solu-
tion is to choose a smaller number of centers per
class, and another possibility is to pool the data
that belong to the same class, and calculate only
one covariance matrix for each class. With the
second approach all hidden layer units that rep-
resent the same class share the same covariance
matrix.

The proposed method is local in terms of cal-
culating centers and covariance matrices, but
global in terms of calculating the output layer
weights. The advantages of local training is that
it teaches hidden units centers t; for each class
separately. Italso weighs the influences of input
variables for each class and each cluster of the
class separately, as it is reasonable to assume
that some variables are not equally important
for every class. Global training of output layer
weights ensures that weights are optimal (by

least-squares approach) for the chosen parame-
ters of hidden layer units. The number of hidden
units per class has to be established during the
learning process by trial and error method.

3. Examples

In this section two classification examples are
presented to illustrate the usefulness of the pro-
posed method. In both examples there is one
output unit per class. For each class, if an in-
put is a member of that class, the corresponding
training output is 1, otherwise it is 0. The RBF
classifier performs classification by assigning
each input to the class corresponding to the lin-
ear output unit with the largest output value.
The error rate is determined by computing the
percentage of samples of a given class that were
wrongly assigned to some other class by the
RBF classifier. The overall error rate is the
percentage of all input samples that were mis-
classified. The learning error rate is an average
square error rate on training set calculated by
expansion

N M
2><N><MZZOUT” v (15)
i=1 j=1

where N is the total number of training data, M
is the number of output units (classes), OUT; is
the actual output of output unit j calculated for
i-th training sample, and y;; is the desired output
of output unit j for the i-th training sample.

Computer programs were written in 3L Paral-
lel C Programming language, and run on the
single Intel T800, 20 MHz transputer. In all
simulations the positions of the centers were
determined by K-means clustering method for
each class separately, and the pseudoinversion
of matrix H is calculated by singular value de-
composition [Pr89].

3.1 Circle-in-the-square example

The circle-in-the-square problem requires a sys-
tem to identify which points of the square lie
inside (class A) and which lie outside a cir-
cle (class B) whose area is half that of the
square. This task was specified as a benchmark
problem for system performance evaluation in
the DARPA artificial neural network technology
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(ANNT) program [Wi90]. Wilensky examined
the performance of 2 — n — 1 back-propagation
systems on this problem. He studied systems
where the number (#) of hidden units ranged
from 5 to 100, and corresponding number of
weights ranged from 21 to 401. Training sets
ranged in size from 150 to 14000. To avoid over-
fitting, the training was stopped when accuracy
on the training set reached 90%. This criterion
level was reached most quickly (5 000 epochs)
in systems with 20 to 40 hidden units. In this
condition, approximately 90% of test set points,
as well as training set points, were correctly
classified. Carpenter at al. have investigated
the same problem with Fuzzy ARTMAP classi-
fier [Ca92]. They have shown that test set error
rate is reduced from 11.4% to 2% as training
set increases from 100 to 100 000 in one epoch
simulations (single step learning). They have
also shown that with iterative learning test error
rate is reduced, and for training set of 100 items
error rate is 11%, 1 000 items 5%, 10 000 items
1.7 % and finally for 100 000 items error rate
is only 0.5%. In all experiments test set consist
of 1 000 randomly chosen exemplars. In this
work, due to the equipment limitation, experi-
ments with only 100 and 1 000 samples training
sets were performed. Same as in [Ca92], the test
set was made of 1 000 samples. The RBF net-
works were trained and tested with a different
number of centers (hidden units). In all of the
simulations the number of centers was the same
for each class, because all of the classes share
equal a priori probability, and also the number

of training data were the same for each class.

In the firstexperiment a 100 item training set (50
per class) was used. In simulations the number
of centers (hidden units) increases from 1 to 50
per class (2 to 100 hidden units). In the last case,
when 100 centers were set, all of the training
data points were used as centers. In this experi-
ment only two covariance matrices, one for each
class, were estimated. So, all the centers (hid-
den units) that belong to the same class share
the same covariance matrix. Results of this ex-
periment are presented in Tab. 1. Tab. 1. shows
that increasing the number of centers decreases
the learning error rate. Using all training data
as centers leads to the interpolation approach
(matrix H becomes square, and weights C can
be recovered by inversion of H), and learning
error becomes zero. However, increasing the
number of centers doesn’t necessarily decrease
classification error rate measured on the test set,
because of the generalization problem, and the
Tab. 1. shows that the best performance was
achieved with 15 centers per class.

In the second experiment (Tab. 2.) same train-
ing and test sets as in the first experiment were
used. The difference was that covariance matri-
ces were estimated for each center separately, so
each hidden unit had its own covariance matrix.
In this experiment smaller number of centers per
class was used than in the first experiment, to en-
sure that some of the covariance matrices were
not singular, or close to singular, when numeri-
cal error occured. Comparison of the Tab. 1. and

15

Centers per class 1 2 3 > 7 110 20| 30 | 50

Class Aerrorrate % | 25.0 [252| 18 [14.6 (8032 |34 |44 | 48 | 10.6
ClassBerrorrate % [ 6.4 |45.0 | 274 52 [6.0 |56 | 5.0 8.6 | 21.2 | 462
Overall errorrate % | 15.7 |35.1 [22.7[ 99 [7.0 |44 42| 6.5 | 13.0 | 284
Learning errorrate % | 7.7 | 7.8 | 54 | 3.2 |23 [ 18 |15 1.1] 05 | 0.0

Tab. 1. Classification results on circle-in-the square example, training set consists of 100 samples, one covariance
matrix for each class estimated

Centers per class 1 2 3 4 5

Class A errorrate % | 25.0 | 24.0 | 13.4 | 10.0 | 6.6
Class Berrorrate % | 6.4 [ 152 | 144 | 98 | 7.6
Overall errorrate % | 157 | 19.6 | 13.9 | 99 | 7.1

Tab. 2. Classification results on circle-in-the square exam
estimated for eac

h

le, training set consists of 100 samples, covariance matrix
center separately
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Centers per class | 3 5 10 | 15 | 20 | 25

Class A error rate % 2861121132 ] 62 | 14 | 24 | 2.0
Class B error rate % 00 276 42 | 14 |12 118 ] 1.6
Overall error rate % 1431194 | 87 | 3.8 | 13 | 2.1 1.8
Learning time seconds | 0.7 | 34 | 9.2 | 269 [55.7 [ 65.7 | 83.6

Tab. 3. Classification results on circle-in-the square example, training set consists of 1 000 samples, covariance
matrix estimated for each center separately

Centers per class 1121351101525
No. Wrong Setosa 0j]0j0[0]O0O]O]O
No. Wrong Versicolor [0 [0 [0 [0 2 [ 1 [0
No. Wrong Virginica |1 [0 |0 [1] 2 [ 3 | 4
No. Wrong Total 1/0{0(1] 4| 4] 4

Tab. 4. Iris example — classification results on test set consisting of 75 samples, one covariance matrix per class
estimated

2. shows that, with equal number of centers per
class, better results were obtained when covari-
ance matrices were estimated for each hidden
units separately. However with more then 5
centers per class, some of the covariance matri-
ces became singular, and the network failed to
learn the problem. That leads to the conclusion,
that a larger training set should be used, if co-
variance matrices are to be estimated for each
hidden unit separately.

Finally in the last experiment (Tab. 3.) a train-
ing set of 1 000 samples (500 per class) was
used. Same as in previous experiment covari-
ance matrices were estimated for each class sep-
arately. Tab. 3. shows that the best result was
achieved with 15 centers per class (in this case
the structure of the RBF network was 2-30-2)
when only 1.3% of test samples were misclassi-
fied, and learning took only 55.7 seconds. This
results are much better then the performances of
back-propagation system [Wi90], and they are
also better than fuzzy ARTMARP results [Ca92]
on the training set of the same size.

3.2 Iris example

The second example is the famous E. Anderson
iris data example used by R. A. Fisher in his
classic paper on discriminant analysis (Fisher
1936). This example was selected because of
the tremendous number of results available from
a wide range of classification techniques that
will provide a measure of relative performance.
The iris data consisted of 150 four-dimensional
feature vectors in three separate classes (setosa,
versicolor and virginica), 50 vectors per each
class. In the first experiment (Tab. 4. and Tab.
5.) the training set is produced by 25 randomly
selected patterns from each class. Remaining
patterns were used for testing. The second ex-
periment (Tab. 6.) was performed by leaving
one out method (N experiments where N is the
total number of data available — 150 in this
problem, in each experiment N — 1 samples are
used for training and remaining one for test-
ing) [Du73]. Like in the first example, the RBF

Centers per class i 2 3 5 10 15 | 25
No. Wrong Setosa 0 0 0 0 0 0 0
No Wrong Versicolor 2 2 2 2 1 1 0
No Wrong Virginica 1 1 1 0 0 0 0
No Wrong Total 3 3 3 2 1 1 0
Learning Errorrate % | 6.95 [ 591 | 4.95 [ 441 [ 1.94 | 0.91 | 0.00

Tab. 5. Iris example — classification results of training set consisting of 75 samples, one covariance matrix per class
estimated
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Centers per class 1{2[3|5[10]15]25
No. Wrong Setosa 0(0j0{0]l 1010
No. Wrong Versicolor |3 |2 (4|4 2 | 2 | 3
No. Wrong Virginica [0 [0 [0 |0 1 | 2 | §
No. Wrong Total 31214(414 |48

Tab. 6. Iris example — classification results of all 150 patterns by leaving one out experiment, one covariance matrix
per class estimated

network was trained and tested with a different
number of centers, the number of centers be-
ing equal for all classes. In both experiments
only one covariance matrix per class was esti-
mated, so all the hidden units that represent the
same class share the same covariance matrix.
Finally in the last experiment, also performed
by leaving one out method, for each cluster its
own covariance matrix was estimated. In this
experiment only up to 3 clusters per class were
set. With more than 3 clusters per class some
of the covariance matrices became singular, and
it wasn’t possible to calculate Mahalanobis dis-
tances from these centers. The results of this
experiment are shown in Tab. 7.

Tab. 4. shows interesting results where the clas-
sifications with 5 or less centers per class per-
formed better on the test set than on the training
set (Tab. 5). An explanation could be that most
of the problematic patterns were randomly se-
lected to the training set. In another experiment
the sets were exchanged: the test set was used
for training and the training set was used for
testing. The results obtained by exchanged set
were opposite to these shown in tables 4 and 5.
(better performance on training set than on test
set). Tab. 4. also shows very good generaliza-
tion property especially for networks with 5 and
less centers per class. This example shows the
same tendency as the previous example where
increasing the number of centers decrease the
learning error but doesn’t necessarily decrease
the classification error rate measured on the test
set. To produce more reliable results leaving
one-out experiment was performed. Results of
this experiment are shown in Tab. 6. This table
shows that the best classification was performed
with only two centers per class resulting in only
two of 150 samples being misclassified. Tab.
7. shows the result of leaving one-out experi-
ment, when covariance matrices were estimated
for each center (hidden unit) separately. This
experiment is equal to the previous one when

only one center per class is set, so the classifi-
cation results for this case correspond to those
in Tab. 6., with two and three centers per class
results are better, and only one of 150 samples
being misclassified. For the purpose of compar-
1son, classification results obtained by different
classification methods for the same problem are
shown in Tab. 8. This table is taken from the
work of P. K. Simpson [Si92].

Results presented in Tab. 8. show that classifica-
tion technique proposed in this work performs
better on Iris example than any other traditional,
fuzzy and neural network classifiers shown in
Tab. 8. -

4. Conclusion and further Work

In this paper a one step strategy for learning
classification problems with RBF network is
proposed. The main advantage of the method
is that, unlike many other iterative methods, pa-
rameters of a network can be learned very fast in
one step only. Experimental results presented
in this paper are very promising.

Restrictions, and possibly the areas where more
progress with further investigation could be
achieved are:

a) the number of hidden units has to be set by
trial and error method

Centers per class

No. Wrong Setosa
No. Wrong Versicolor
No. Wrong Virginica
No. Wrong Total

W O I O =
= O = O
= O = O W

Tab. 7. Iris example — classification results of all 150
patterns by leaving one out experiment, covariance
matrices estimated for each center separately
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Technique

No. Wrong

Bayes classifier!

2

k-nearest neighbor!

Fuzzy k-NN?

Fisher ratios!

Ho-Kashyap'

Perceptron’

Fuzzy perceptron’

Fuzzy min-max network!

RBF proposed in this work®

PIRRWIN W A

Tab. 8. A Comparison of the Classification performance of Various Traditional, Fuzzy and Neural Classifiers (Table
is taken from [Si92])

! The training set comprised 75 data points (25 from each class) and the test set comprised the

remaining points.

2 The training set comprised 36 data points (12 from each class) and the test set comprised another
36 data points. The results were then scaled up to 150 total points for the comparison.

3 The training and testing data were the same

# All data points were used for training and testing by leaving one out method

b) the method holds only for problems where it
is possible to assume that patterns are normally
distributed over the centers of the classes

c) the number of samples per center should be
greater than the number of input variables of the
problem

The experiments presented here are quite sim-
ple, with small number of inputs (2 in the first
and 4 in the second experiments), and small
number of classes (two and three classes prob-
lems). Currently, the author is trying to ap-
ply the method to more complicated problems
with much bigger number of inputs and output
classes, such as alphabetical character recogni-
tion, texture classification and others. In these
problems insufficient data problem may arise,
and some modification to the approach pre-
sented in this paper should be applied. The
results obtained so far seem to be promising,
and the author hopes that they will be presented
in some further paper.
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