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Discriminators in Lambda Calculus
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The paper treats the problems of discriminability and
separability for a wide class of infinite sets of terms
in the pure lambda calculus. The technique used is a
generalization of the Béhm out technique for extracting
substitutional instances from the sets of terms. A unifi-
cation of this technique on an appropriate class of terms
enables the construction of an algorithm of extraction
which leads to the construction of a discriminator for
an infinite set of terms having the distinctive paths. In
[11] some conditions under which a re. set of terms
1s a numeral system were done. For the opposite
direction, i.e. construction of the distinctive paths for
the discriminable or separable set of terms, we used the
sequentiality and continuity theorem with a combination
of a slight generalization of the Wadsworth’s version of
the AL calculus (cf. [8]). The connection between
the semantic notion of discriminability and the syntactic
notion of distinctiveness, as known in the case of finite
sets of terms, is extended here to the class of terms
on which the (generalized) Bohm out technique can be
applied.

Keywords: Lambda calculus, lambda term, discrimina-
tor, separability of terms, discriminability, numeral

1. Introduction

The problem of separability of lambda terms
was completely solved 1978 by Coppo et all. in
(8] for finite sets of A—terms. The case of infi-
nite sets was studied by Ronchi della Rocca in
[11], and some interesting cases of numeral sys-
tems were treated by Wadsworth in [12]. Our
main interest is in generalizing the BoShm-out
technique to treat the connection between the
semantic notion of separability and syntactic
notion of distinctiveness — analogously as in the
finite case was done by Coppo et all. Together
with the generalization of the Bohm-out tech-
nique, the sequentiality and continuity theorems
are applied in the constructions. One reason for
investigating the separability of infinite sets of

terms is the fact that there exist many countable
sets of terms (numerals, sequences) that have
to be discriminated inside the A—calculus. An-
other motivation (stated by Bohm and others)
is the connection between the separability and
solvability of systems of equations in A-calculus
(see for example [7]).

A discriminator for a term M € M is a term
Dy such that forall N € M

T, if N=M,

DyN =
M {F, otherwise,

where: T= Axy.x and F= Axy.y are the terms
representing true and false in A—calculus. We
shall say a term M € M is discriminable in M
if it has a discriminator in M. The set of terms
M has discriminators, or M is discriminable
if each of its members has a discriminator. A
stronger property is complete discriminability:
M is completely discriminable if there exists a
term D such that

T, if N=M,

DMN = ;
F, otherwise.

The term D is called a complete discriminator

for M.

A finite set of closed terms {My,...,M,} is
separable if there exists a term F such that
FM; = x;, where x; are pointwise distinct vari-
ables. A finite set of terms is separable if the
set of their closures is separable. Hence the
set of separable terms (resp. closed separa-
ble terms) can be mapped by an appropriate
context (resp. term) onto any set of terms of
less or equal cardinality. This notion can be
generalized to infinite sets. An infinite set of

This paper is in final form and no version of it will be submitted for publication elsewhere.
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terms is separable if there exists a term map-
ping the closures of its members one—to—one to
the set of numerals (and hence to any sequence).
An adequate numeral system is a countable set
N ={0,71,...,n,...} of terms (usually
but not necessarily normal forms) associated
with three terms:

1. the test of zero Zero such that Zero 0" =
and Zero 'n’ =Fforn=1,2,...,

2. the successor RT suchthatRt 'n" = n+1

3. the predecessor R~ suchthatR~'n+ 1" =
n.

We shall call an adequate numeral system sim-
ply a numeral system.

The implications as follows are evident for the
closed terms:

M is a numeral system
= M is separable
= M is completely discriminable
= M is discriminable.

The preceding implications are proper.
A sequence of terms is a set of terms defined
uniformly as follows. {M,|M, = F'n",n € N},

where £ is an appropriate term — a generator of
the sequence.

Recursive definitions of terms are based on
‘paradoxical combinators’. We shall use the

term © = (Axy.y(oy))(Axy.y(xxy)), a well-
known fixed point combinator, for this purpose.

A characteristic example is as follows. A gen-
eral recursive function f defined by:

B it n=20,
ih(f"n—l if nz£1,
can be represented by a term F such that:
F'n' =Zero'n G(HF(R™ ")),
where G, H represent g and 4, respectively. A
solution of this equation is

F = O(Axy.Zeroy G (Hx(R™y))).

The sets of all A—terms, of A—terms with the
free variables in {¥} and of closed A—terms,
will be denoted as usual A, A(¥) and A, re-
spectively. Let us choose an effective enumer-
ation of the set A(¥) and denote 4M the number

assigned to the term M. Hence the numeral of
hM in a fixed numeral system is 1M~ . We shall
write ‘M~ instead of M" since it is clear from
the context in which sense the symbol =  is
used (if we remember that a fixed enumeration
of objects, i.e. A-terms, and a fixed numeral
system is supposed.) A term E so that for all
M € A(X), E'M" = M is available (see Baren-
dregt [1] 8.1.7.).

Effective functions on objects (nodes,finite sets,
trees) will be considered as computable func-
tions on the numbers corresponding to objects
and (Church thesis is supposed) hence partially
recursive. Since in A—calculus all partial recur-
sive functions are representable, the construc-
tion of numerical algorithms will be enough to
prove the existence of a term with the desired
properties when applied on numerals. This fact
and Church thesis will be used without men-
tioning them.

It is well-known that M < A either is unsolv-
able or it has a head normal form (shortly hnf)

Axy ... %, yMy .. M. If M reduces to the hnf
Axy...xp yMy ... M via head reductions only
Axi...xyM7 ... M is called the principal hnf

of M. The Béhm tree of M € A is defined re-
cursively as follows:

4, if M is unsolvable,
Axy. . Xy
BT(M)= ,
] VCR | if Axp. . x,. yMy. . M
BT(M,).. BT(M,) is the principal infof M.

If BT (M) is pruned at the depth k, BT(M) will
denote the resulting tree. Nodes of Bohm trees
will be denoted as usually by finite sequences
of numbers. For o € Seq we shall denote lA(cx)
the length of . M|, will denote the label of the
Bohm tree of the term M at the node . Let us
suppose the Bom tree is developed only until
the depth d = [h(«), i.e. head reductions have
been executed until the depth d. The term that
“seats” at the node o after this operation will
be called subterm at (the node) a and denoted
M. The term M is equivalent at (the node) a
toN (M ~y N) if M, and N, are both unsolv-
able ot Mg = Axy ... %, yM7 ... M, and N, =
AX1...Xp.zN1.. . Nyandm—n =m' —r and
y = z (more precisely y and z are both bounded
at i~th place at a node 8 where /h(f) < Ih(a)
(i.e. y = z = ¢; for some t;) or y and z are the
same free variable in M, or N,. ey will be
written ~.
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2. The Béhm-out technique

The Béhm—out technique (first used in [3]) is a
method of extracting an appropriate subterm, in
fact a substitutional instance of the head normal
form at a given node o from the Bohm tree of
a term. This is made using Bohm transforma-
tions ([1] p.p. 246-249). We shall modify these
transformations so that an appropriate class of
infinite sets of terms can be treated. The prob-
lem which arises is that the number of “fresh”
variables used in the construction of the B6hm
transformations is not limited. Our idea is to
replace the fresh variables in Bohm transforma-
tions by another appropriate terms which can
be recursively defined. We shall use for this
purpose terms of the form ai’ where i € N and
a is a fresh variable. The result is a sharpen-
ing of the Bohm-out technique; it is made in
some sense uniform on an appropriate subset of
A which is denoted A (¥).

Let f be any total recursive function of one vari-

able. Then for all natural x there exist natural

m and n such that {m, n) = f (x), where (., .)
is a surjective recursive pairing. Hence the pro-

jections f st and snd are total recursive functions

so that fst o {m,ny=m and snd o {m,ny=n.
In the next we shall use the notions of M, and

of the Anf of M as defined in the introduction.

Definition 2.1. 1. Let f be a total recursive
function. The set of terms As(X) C A
is defined as follows. M € As(X) if for
all a € Seq, My, is either unsolvable or
it has a hnf Ayy...y..zM7y...Ms, such
that 0 < r < mg,0 < s < ng, where

(ma,nay = (Ih(a)).

2. Let T beatree. M € A?(f) C A if the
condition for My, given in (1) is valid for
all o € nodes(T).

We shall omit the subscripts @ whenever it is
possible. The number r (resp. s) is called the or-
der (tesp. the degree) of My, hence M € As (%)
if and only if the order and the degree of any
M, are bounded by a total recursive function.
Clearly, either z € {¥} = {x1,...,x} oritis
bounded at a depth less than or equal lh(a).
Using this terminology the preceding definition
can be retold as follows: Ag(X) is the set of
terms such that each their subterm has the order

at most m = fstof (Ih(ct)), the degree at most
n = snd o f(Ih(c)) and all free variables are
from the set {x1,...,x;}. The item (2) of the
definition is a relativization, i.e. the conditions
in the definition are valid for subterms whose
nodes lie in 7. Evidently Af (X) # A iff T # 0.
The use of the symbols r, m, mq, s, n, ny and
[ as defined in this paragraph will be standard
throughout this section.

The following properties are evident for a set
A ().

(1)  f<g=A@®CA@,
(2) T1CT=APFCAH, (21)
(3) {7} € U} = Af (%) C AL D).

A hnf Axi...x.yMy...M; is called A—free if
r=0 and head original if y ¢ FV(M). A term
is ready if it is unsolvable or has a A—free and
head original hnf .

Before we begin explaining our construction,
let us recall some known notions and results we
shall need (see Barendregt [1] pp.245-254 for
the details).

A permutator P§ (where o is a permutation) is a
term permuting its arguments accordingly to o,
when it is applied ton + 1 terms M ... M1 :
Lg: POMyws i Mupi = MU(U ars -Mo(n+])- We
shall need only a special kind of permutators,
ie. Py = Axi...Xp41.Xnt1%1.. X, and we
shall call them permutators. The next evident
property of permutators are crucial in-our con-
struction.

Fact2.2. For m>n+1
PHM1 . Mm :Mn+1M1 - -MnMrH—Z . .Mm.

A selector is aterm U? = Axg...xp.%;, 0 <
i < n. First we shall prove that the permutators
P, = Axy...Xp41-Xnt1X1 . - - Xn, and the selec-
tors U? = Axg...Xp.x;, 0 < i < ncanbe
recursively defined.

Lemma 2.3. There exist terms P and U such
that
(1)

(2)

P, =Pn;
Ur=0n 1.
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Proof.

1. Let us define

On=Ayxy... Xnt1-YXnp41X1 - . - Xy
and
A = Axyz.x(At.ytz).
Then one has: AQ, = Q11 and P, = O,/
where I = Ax.x is the identity combinator.
Let Q be recursively defined as follows.

Q = O(Axy. Zeroy Qg (A(x(R™y)))).

It is easy to verify that Q'n" = Q,,. There-
fore we can define

P = Azihl,

2. Let K =T = Axyx and B = Axyz.xy.
Then KU? = UZH, BUZ = U2*), and
finally U = K'(B"'Uj). Now the con-
struction of U is straightforward, by ap-
plying twice the fixed point combinator:

Let us construct a term Dif so that Dif ‘m’ 'n’

= ‘m—n' form > n. Dif accomplishes
the following equation:

Dif ‘'m''n’
=Zero'n 'm (RY(Dif (R™'m’)'n")).
Hence

Dif = ©(Axyz.Zerozy(Rt (x(R™y)z)).

For any term F' F"M can be recursively
defined by the aid of the term

F = ©(Axyz.Zeroyl (F(x(R™y)z))),
since
F'm'M = Zero 'm' I(F(F(R™"m")M)),

hence F"M = F''n’M. Using the notation
from the preceding equations, U is given
explicitly as follows:

U = Axy.Ky(B(Dif xy)Up),

where K is as usual.

Remark 2.4.  The referee suggested that using
Church numerals we can avoid the use of ® and
we obtain results in normal forms.

Let ¢, denotes 'n’ in Church representation, i.e.
¢p = Afx.f"x. We have that Q = Ax.xAQy
satisfies QOc, = Q,. Analogously

U = Axy.yK(yR™xBUY)

satisfies item (2) of the preceeding lemma.

Let M € Af(%), where T # 0 s.t. M is un-
solvable or M = Ayq...y,.zM, ... M, where
Ogrgm:mo =fstof(0)and 0 < s <
n=n¢, = sndof(0). Let a be a fresh variable
(thatisa & {x1,...,x} = FV(A(X))). Let us
define

Fim=Atta1l)...(a'm). (2.2)

For any term N N* will denote a substitutional

instance of N, i.e. N* = N[y := P] for some y

and P. Then :

(xiMT .. MZ(a'r+17)...(a'm),
it z=x,

ajMy.. . Mi(ar+1")...(am)
if z=y

)

Fi nM=¢

unsolvable,

\ if M is unsolvable,
(2.3)

forany x; € {x1,...,x} orany 0 <j < r ie.
Y € {y]a"'ayr}-

Let k be a natural number and b be a fresh vari-
able. Let

F5 = AtFut(b' 1) ... (bK),  (2.4)

hence F5 M = Fi ,M(b'1")...(b"K).

Let us define a transformation p on terms as
follows.

Mpz(Fé‘:mM) ii=a'm+ 1. . [xp=a"m+I].
Explicitly:
MP =aiM;.. Mi(ar+1)...
(@am)(dT1)...(b°k"), (2.5)

where 1 < i < m + [, when M has a hnf, and
otherwise p transforms an unsolvable term into
an unsolvable term.

Let dg(M) denotes the degree of M.
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Fact 2.5. 1. The numerals after the head
variable of MP are in one-to-one corre-
spondence with the head variables of M,

2. dgMP)ism+k—r+s+1,

3. M is a closed term implies MP = F’imM :

Proof.

1. By equations 2.3 and 2.5 it is clear that
j corresponds to a bound head variable y;
if 1 < j < m and corresponds to a free
variable xj_, if m < j < m+ 1L

2. By equation 2.5. Since j < r orj > m the
head variable a is followed by i', s M*’s,
m—rau’sand k b'v'’s (see Example
2.6.)

3. Immediately by the definition of M*.

O

Let us enumerate the ~ —equivalence classes of
A} (X). For any head variable x; € {x1,...x;}
the inequality —n < r—s < mis accomplished.
Hence there exist I(m + r + 1) possibilities for
the difference » — s. Similarly for the bound
head variable y; there exist m + n 4+ 1 — i pos-
sibilities for the difference r — s. We shall de-
note p=Im+n+1)+(m+n+1-1)+
it m+n+1 -0 +...+(m+1) =
(Il +m)(m+nrn+1)—m(m+ 1)/2 the num-
ber of ~-equivalence classes of terms of A? (%)

having a hnf (there is one more class of unsolv-
able terms).

The idea is now to replace the head terms a i’
by terms b} so that j ’s are in one-to-one corre-
spondence with the ~ —equivalence classes. Of
course it must be supposed k > p. This replace-
ment will be done with the aid of an appropriate
permutator which will pick up a b7 and will
put it at the head of MP. The following example
illustrates the idea.

Example 2.6. Let

L f(x) = {2,2), wherex = Ih(a), a € Seg,
hence the order my and the degree ny of
any My are both equal 2 fora M € As (%),

2. FV(As (D) = {x1}, ie I = 1.

The number of ~ —equivalence classes p is
12. Applications of 1,y and F5 , (k=12) to the
term M = Ay1.xiMq, and MP are respectively
as follows.

Fl,mM :x]Mi(a
Fk M =x1Mi(a

2),
| 2)bT)...(bT12),
! 2

= a3 M:(a2)(b1)...(b712).

Let us consider the ~ —equivalence classes of
Ay (X). Four of them correspond to the head
variable y,, i.e. head variable bound by the
leftmost lambda abstraction in the hnf of the
term (say N). Note that this means that the first
two terms of NP are a'1". Analogously three
~ —equivalence classes correspond to a2,
and five to a’3’.

In Figure 1 all possible hnf ’s of terms from
Ay (X) and their p—transforms are collected.
In the third column of the Figure 1 there are
equivalence class numbers eqn(MP) (see Defi-
nition 2.8 (2) computed by the algorithm in the
proof of Proposition 2.9. In the fourth column
there are the degrees of the terms MP. Note that
eqn(MP)’s which correspond to a given head
variable lie on an interval. Hence the numeral
i succiding the head variable a in MP can be
computed from the given j = eqn(MP). Let us
denote j* the maximal j corresponding to the
same i as j. Note j* = eqn((Ay1...Yym.yi)P) or
j* = eqn((x;)P). Hencej* can be computed from
i, hence from j. Hence the degree of MP can be
computed from j (dg(MP) = 13 + j* — j in the
present example).

For internalizing the previously mentioned sub-
stitution the fact that Fy ,, and F’Zc ., can be de-
fined recursively, is required.

Lemma 2.7. There exist terms F and F such
that

ra coarn ok
Fym —'Fl,m: Fym k “‘FZ,m'

Proof. We shall prove

F1= O(Axy.ZeroyI(Aux(R™y)u(ay))),
Fy = O(Axyz.Zeroz(F1y)(Auxy(R™z)u(bz))).

Note
F1'm'=Zero'm’ I(Au.F1(R™ "'m Ju(a'm’)),
Fy'm k=Zero'k (F1'm)
(AuFy'm (R~ "k u(b'k)).
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Class MP eqn dg
i (Ayiyay1)P =a1(b1)...(b712") 4 13
2. (Ayiy)P =aU(a2)(b'1)...(b127) 3 14
(}Ly1y2y]M1)p =4a ].MT(b )(b 12)
3. (Ay1yiM)P =a’I'Mi(a2))(b1) (b7127) 2 15
(}uy]yz y]Mle)'o =¥ il MTM; b1 )(b 12 )
4, (AyrnMiMz)P = a UMIM3(@2)(b'1). .. (b"12)) 1 16
5. (Ayy2.y2)f =a2°(6°1)...(67127) 713
6. (Ayy2yoM1)P =a2Mi(b1U)...(b712) 6 14
7 ()&y1y2 szlMg)p =g 2 M*M*(b 1 ) . (br121) 5 15
8. ()Ly]yz xl)p =¥ 4§ (b i ) (brlf) 12 13
9. (Ay1x1)P =a3(a2)(b1)...(b7127) 11 14
()\.ylyf)_le])'o =a 3MT(b )(b 12)
10. (x1)P =a3(a1)(@2)(b1)...(b712") 10 15
(Ay x1M1)p =a3M(a2)(b1)...(b"12")
(?Lylyg X1M1M2)p = ar3ﬁMTM’2k brlq) 5w (b r121)
i (xiM1)P =a I M (a 1) (a2 )(b'T)...(b"12") 9 16
(A1 xiMiM,)P = a3 MiM5(a2) (1) ... (b"127)
12 (i MiMR)P = a3 MIM(a 1) (@2)(b'1)...(b712°) 8 17

Fig. 1. p—transforms of Anf s having the order at most 2 and the degree at most 2.

The proof is by the induction on m resp. k.

Note that F1 0" =1 = Fy9. Let M > 0.
Fi'm' = AuFi(R™'m )u(a'm)
=Au.(Att(a'l)...(am—1"))
u(a'm’) induction hypothesis
=Auu(al)...(a'm).

Analogously Fy 'm' 0" = AtL.Fyput =
k> 0.

By b

Fl,m- Let

= Autor'm (R™ 'K Ju(b'k)

= A (AtLF 1 pt(b'17). . (b —17))
u(b'k’) induction hypothesis

= AuFimu(db1)...(b'k).

O

The next step is the replacement of ai" in M*
by ab’j" such thatj reflects the ~ —equivalence
class of M.

Definition 2.8. 1. A transformation

i g AJc (%) — A is faithful if

(a) for any solvable M,N < A}"(f) M*
has the form
bjiM;.. . Mi(a'r

: .(a m)(b17)...

(BT -1)(bT+1) ...
and
M~N iff M®=b7M ...

and =bjNT...,

i.e. the numerals lying after the head
variable b are in one-to-one corre-
spondence with ~ —equivalence clas-
ses,

(b) M™ is unsolvable if and only if M is
unsolvable.

2. A number j is the ~ —equivalence class
number of the term M ¢ A}r (%) with re-

spect to the faithful transformation n if
M*=bjM7...

The equivalence class number of the term M
will be denoted eqn(M).
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Proposition 2.9. T # () implies

1. there exists a faithful transformation 7 :
A}r (X) — A,
2. there exists a term Il such that for any
closed term M € A} (X) IM = M™,
3. For any Mf b & FV(M}).
Proof.
1. We shall construct an algorithm that will

replace the head terms a'i’ by b'j" where
/" depends on the ~ —equivalence classes
of M only.

Let us define a function g as follows.

(i(n+1),
ifm=0,
(m+n)+(m+n—1)
(i) = +.. 4+ (m+n—(i-1))—1;
if 1<i<m,
@(m)+(i—m)(m+n+1);
{ if m<i<m + 1.

The announced algorithm is as follows:
pickup ab’j and replace a’i’ by it, i.e.

MPla’{ := Pyl = bTM; ...

The function ¢ is chosen so that supposing
k > p, different j’s correspond to different
~ —equivalent classes of solvable terms
from AI(¥). This is easy to see on Ex-
ample 2.6, but the general case is treated
analogously:

i=1 () =3 1<j<A4,
i=2 @2) =6 s B
i=3 p3) =11 8<j<I12

The next step is an internalization of the
preceding algorithm. Let @ be a term rep-
resenting the function @ in A —calculus.
2.3 implies Py = P(®'("). Hence the
transformation st can be defined as fol-
lows.

M™ = (Aa.MP)(Ax.(P(®x))).

Notice that with the obvious choice for P
we will have dg(M™) = dg(MF) — 1.

2. Since the substitution of free variables
X1,...,x; 1s the only action which cannot
be internalized in A —calculus, i.e. substi-
tuted by an application, the assertion is
immediately by 2.5 (3) and (1).

3. Evidently by the construction of 7.
a

Let us suppose f and g are general recursive
functions so that fstof < fstogandsndof <
snd o g. Then A}F(E) is a subset of Ag (¥) for any

tree 7', by the equation 2.1 (1). Hence

Fact 2.10. = : Ag(f) — A is a faithful trans-

formation implies the restriction of m to A}ﬂ (X)
is a faithful transformation.

Remark 2.11. 1. Note that the equivalence
class number with respect to the algorithm
represented by ¢ contains a complete in-
formation about the ~ —equivalence class,
in particular the information about the
length of M™, while the head a'i’ of the
term MP contains only information about
the head variable. Despite of the lack of
information the construction was success-
ful since only permutators were used and
so the exact length of the term was not
necessary. The situation is strictly differ-
ent when a selector is applied to a term;
the length must be exactly known because
to choose the right selector.

2. The assertion (3) of the preceding proposi-
tion is an analogon to the head originality
in the finite case (cf. [1] p.247).

Proposition 2.12. Let M be any member of
AL(X) where T # 0, having a hnf
Axy...xp.2My .. .M. Then

1. there exists a transformation 1 depend-
ing on the parameter i such that for any
1<i<sMD =,

2. there exists a transformation v such that
MY = "eqn(M)’,

3. there exist terms Ext and Eqn such that if
M e AfT (X) is closed, then

ExtiM =M"D  EqnM =M".
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Proof.

1. Let us suppose k& = p, hence Fact 2.5 (2)
implies dg(MP), where M € Af(¥) de-
pends on m, n, and r — s. Remember the
terms having different r — s’s lie in the
different ~ — equivalence classes. Hence
dg(MP) depends on the ~ — equivalence
class of M. Let us suppose the transforma-
tion s is fixed, hence the correspondence
between the ~ — equlvalence classes of
AT()_C') and egn(M)’s, i.e. s (the numer-
als succeedlng the head variable b in M”,

M e Af (X)) is fixed. Hence dg(MP) can

be computed from m, n, and egn(M) (see
the proof of 2.9 (1) and 2.6 for an example
of such computation). Hence dg(M™) =
dg(MP) — 1 can be computed from m, n,
and eqgn(M). Let us denote LA a term such
that Lh'm" 'n’ "eqn(M)" = "dg(M™) — 1
(that is the degree of the term without the
head term 7j'). The transformation 7 is as
follows.

MTr(i) —
(AbM™)(Ax.U(R™(Lh'm 'n" x))(R™ 7))
where U is as in 2.3. The correctness
of the preceding definition is shown by a
simple calculation on an example, but the
general case is treated analogously. Let
n = — 2, b= I,M = }Ly].JC]M]MQ
(see Example 2.6, Figure 1 and the proof
of 2.9). Hence

M™ = b MM (a2)(b1). ..
(b'8)(b7107) ... (b"12)).

Remember dg(M™) = dg(MP) — 1 = 15.
Let us suppose i = 2.

M"D= (AbbTM...)
(Ax.U (R~ (Lhr " x))(R™T))
=UR (Lh'm 'n 7)) (R™ T M. ..
3 ME)—Z *
= U13M*M* )(b’f) .
(b8 (Zb 10')...(612)
= MQ.

2. The transformation v is defined as follows:

MY = (AbM™)(Ax.U (Lh'm" 'W"x) 0'x).

Let us use the same example as in (1) and
calculate:

MY = (AbDOM?.. )
(Ax.U(Lh'm 'n’ x) 0'x)
U(Lhrmﬂ rn“ 90T MEL

Ug YoM
Lg' 9M*M*( 2)(bT)..‘
( 8)(b°10°)... (b71Z)

3. Immediately by the proofs of (1) and (2)
and Fact 2.5 (3).

O

The next step is an iteration of the operation of
extraction which will enable to reach a substi-
tutional instance of a subterm at any node of the
Bohm tree of the term.

Remember we denoted M, (o € Seq) the sub-
term at the node a (of M), i.e. the subterm
seating at the node a when on the term M only
the "iead reduction to the depth d = k() has
been executed.

Lemma 2.13. There exists a faithful transfor-
mation o such that for any term N € A;;r (%)s

where T # 0 and for any a € nodes(T), if

Ih(a) = d,d € N, then the subterm N, =
Axy .. X ZNgy(1y - Naags) 18 transformed as
follows.

1. If the head variable of N, is bound at the
root node or it is free then

()Lxl. Xy ZNa*<1>. 3 .Na*<3>)0 =
AX1 . XpYsi1. ytp( N+1-Ye(i)+1
Na*a) a*<5>y9+] Yo(i))

where @ is the function defined in the proof
of 2.9 and i is the number assigned to the
head variable of M as in the equation 2.5.

2. If the head variable is not as in the previ-
ous case, i.e. it is bound in a node different
from the root then

(Axy .. .20 2Ng iy - -
—- )L)Cl ¥

-Na*<s>)0

.xr.ZN;*<1>... :;*<S>'
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Proof. The following modification of the trans-
formation & of Proposition 2.9 is necessary to
obtain 0. Let m = max{my, ..., mq}, 188p. n =
max{ny, ...,nq}, where m; = fsto f(i),n =
sndof (i) and d = lha must be replaced tom =
mo = fstof(0), resp. n = ny = snd o f(0).
Letusdefineg = {(m,nyif0 <i<dandg=f
if i > d. Then there exists a faithful transfor-
mation 7 : A;f;(f) — A by 2.9. Let o be the

restriction of 7 to A}" (X). Hence o is a faithful

transformation by 2.10. The rest is a simple
calculation as in [1] 10.3.6
a

Remark 2.14. Informally, if ¢ in the permutator
P, is greater than or equal to the maximal degree
of M, then an application of the transformation
o to the term N doesn’t mix the subtrees at any
node a of BT (N) lying in the tree 7 and having
the length less or equal to d. Note that this con-
dition is accomplished since t = ¢(i) > n > s.
Hence o doesn’t mix the subtrees at the set of
nodes {a € T|lh(a) < d}. This fact together
with 2.9 means that o doesn’t lose any informa-
tion about the set A{(X) to the depth d. In the

finite case o coincides with the notion of qual-
ified context. The notion of qualified context
was introduced in [7] where an infinite number
of such contexts was constructed.

Let 1)(i) be the transformation extracting M} as
in 2.12 defined with respect to the transforma-
tion o from the 2.13: For any nonempty tree T
and any d € N, T} will denote the subtree of
T which will include all and only nodes having
the depth less than or equal to d. As in pre-
vious lemma, g is the function obtained from
f by replacing the d + 1 initial first compo-
nents of f by their maximal value and analo-
gously the d + 1 initial second components. Put
k=p=(+m)(m+n+1)—m(m+1)/2. Then
k is the number of ~ —equivalence classes of
solvable terms of A; . Let us denote A the general
recursive function defined as follows.

[stoh=Ffstof +k sndoh = k.

Corollary 2.15. The transformation 7(i) in-
creases the order of k and makes the degree
equal k at any node having the length less or
equal d for-any term in Af (X), when applied to
it, i.e. ’

ni) s A = (A,

assuming d > 0.

Proof. M () doesn’t contain free variables Xj,
nor a nor b since all of them were substituted
by permutators or selectors. The orders and the
degrees of the transformed subterms seating at
the nodes of 7’ follow immediately by the pre-
ceding lemma since the depth of nodes in 7" is
less or equal d.

a

A generalization of the transformations 7 and
v to any node of the Bohm tree of the term is
now straightforward by induction on the depth
of the nodes. Let gg = f and g,.1 = h(gy)
where £ is as in the previous Corollary 2.15.
The algorithm for g, is clear: at each step of
calculation the corresponding m = max{f st o
g(v+1),...,fstog.(lh(a))} are taken, and
analogously the other parameters » and k for
computing g,41. Then the described method of
extraction is repeated by using the new param-
eters.

Theorem 2.16. [Generalized Bohm-out lemma]

1. There exists a transformation 1) depending
on a € Seq such that for any M € A]f(fc’)

and any o € nodes(BT(M)) N nodes(T)

Mn(a) = Mc*x: lf M|OL J'!
unsolvable otherwise.

2. If M is a closed term then there exists a
term By so that

B() ‘aM = M”(a)

Proof.

1. In the following we define some terms rep-
resenting the general recursive functions
we shall use in the construction. G is a
term such that G'v' represents the func-
tion gy, G|v' (resp. G,'v') represents
fstog, (resp. snd o g,), Gi1'v''w' (resp.
G,V W) represents max{f stog v < t <
w} (resp. max{snd o gilv < t < w}).
Suppose v = lh(f) < w = Ih(a) and
B * i is a subsequence of a. By the in-
duction hypothesis 1(f) is defined. Put
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‘m = GiVvV'w and ' = G,V W in
2.12 (2.13 explains why m and n have been
calculated as we stated) and define

MNB=) (M) yn (@),

2. We shall prove the construction in (1) can
be made inside the A —calculus. Let

e Z be a test for the non-emptiness of
sequences, i.e.Z a = Tif a#{ ) and
Za =Fifa=),

e Head and Tail be (non standard) de-
structors of sequences, i.e. ¢ = f§ * i

implies Head o =" and Tail o' ="7".

A term computing the length of sequences
is a solution of the equation:

Lgh = Ax. Zx(RT (Lgh(Headx))) 0",

Ateach step 'm’ and 'n’ are calculated as
in (1). Analogously as in the proof of 2.12
a term L# is built such that

Lh'm 'n'"egn(M) = "dg(M™) — 1",

The term By is defined as follows.
Bo'a'M =7 o (Ext(Tail &)
(Bo(Head o YM))M.
O

A generalization of the notion of ~ —equivalen-
ce class number is straightforward as follows.
The ~ —equivalence class number of the term
M with respect to the transformation 7 is the ~
—equivalence class number of M%), egn, (M)
will denote the ~, —equivalence class number
of the term M.

The following corollary is an instance of the
preceding theorem and of 2.12.

Corollary 2.17. 1. There exists a transfor-
mation v depending on a € Seq such
that for any M € AJ{(JE’) and any a €
nodes(BT(M)) N nodes(T)

M(a) :{ reqna(M)ﬂa if M'a &

unsolvable otherwise.

2. If M is a closed term then there exists a
term By so that

Bia"M = M%),

Proof.

M@ = (pyn(@yv,
Bi'a’M = Eqn(By o’ M),

where u and Egn are defined in 2.12.

Remark 2.18. In the preceding results we used
the transformations. It is evident that we can
use contexts instead, i.e. for any of the previous
defined transformation u there exists a context
C[ ] such that for any term M belonging to
Ag (X) M* = C[M].

The following definition and corollary are purely
technical generalizations of the preceding result
to finite sets of nodes.

Definition 2.19. Let S C Seq be finite and
M,N € A](%).

M~sN if YaeSM~gN.

We shall denote M|s | if Yoo € SM|, | . An
effective enumeration of finite sets of sequences
is supposed. The number assigned to § will be
denoted by S and 'S” will be written instead of
'1S".2.16 can be generalized to finite sequences
of nodes (in most cases finite trees).

Corollary 2.20. For all finite S C nodes(T)
there exists a term B such that for an]y closed
terms M and N such that M,N € Az (X) and
Mls |, Nls | we have B'SM = B'S'N if an
only if M ~g N.

Proof. The assertion is implied by the following
facts:

1. There exists a one—to—one general recur-
sive function ¢ such that
L B - it k) = Chimgy o « b S Toat
@ denote the term which represents ¢ in
A—calculus.
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2. There exists a term B’ such that
B'{aj,..., oy SM={"{ay,B1 01’ M),
cory Lo, By oy M)

where By is asin 2.17

To build B’ we need a representation of fi-
nite sequences of integers in the A—calculus,
together with the concatenation operator
and the test of empty sequence, as in [4].
H is the concatenation operator if

HCx1s ¢ onsZmy{Pogvso V)

= <)C1_, e Xmy Y1,y - -yyn>

is valid. Let Z denotes a test for the empty
sequence, i.e. Z{ ) =T and

Z{x1,...,%,y = F is valid. Let T denote
a sequence. Now B’ can be be defined as
follows:

B'(H{ & yr)M=2t({"{"o’, By a’M)})
(H{ ("o, By o’ M))(B'1)M).

3. There exists a term Num such that
Num(FnH, ey rn:ﬂk> = r<PI1!11, vaay rnﬁk>1.

This assertion is a straightforward gener-
alization of the results of [9].

Now B is defined as follows:
B'SM = Num(B'(®'S")M)
= r(B’((I) S )M)“

3. Sufficient conditions for separability

In this section we shall construct a discriminator
for some sets of terms. The intuitive idea is the
following. The Bohm out technique described
in the preceding paragraph enables an extrac-
tion of the (numeral of the) ~q-class number
from the term (asuming that the subterm at the
node « is solvable). Let M € M and let there
exists a finite path, say p, i.e. a finite sequence
of nodes, such that a) M, | at any node a of
p, b) for any member M’ € M, if M/ € M
differs from M, then there exists a node 8 on

the path such that the ~g-class numbers of M
and M’ differ, and M}, | at any node y of p that
precedes or is equal to 3. Then a discriminator
for M can be easily constructed by extracting
~g-class numbers of the terms M and M’ and
comparing them.

An appropriate formulation of the notion of dis-
tinctiveness which can be used for infinite sets
seems now standard and can be found in Ronchi
[11]. Our Definition 3.1 is equivalent to it but,
by our opinion, written in a more convenient
form for using the Bohm-out technique (as for-
mulated in 2.16) in constructing discriminators.
A method for constructing discriminators simi-
lar to ours is used in a different context by Bohm
etal. [7].

A natural definition of the finite path having the
length nis a function p : {0, ...,n} — Seq. We
shall modify this definition so that the informa-
tion about the length is contained in the defini-
tion of the function. Let * denotes anything not
being a sequence. A finite path is a total func-
tion p : N — Seq U {x}, such that there exists
n € N such that for all i € N, i < n implies
p(i) € Seqwhile i > n implies p(i) = . Hence
the length of p is the maximal number n such
that p(n) € Seq. The length of the path p will be
denoted Ih(p). We shall say the node o € Seg
lies on the path p if & = p(i) for some i € N.
We assume that paths are without cycles, i.e. pis
injective. Let x : Seq U {*} — N be partial re-
cursive (in an effective enumeration). The func-
tion {p, xop):N—(SeqU {*})xN will be called
labeled path and denoted p', i.e. p' = {p,xop).
The number m is the label of a if p(i) = «
and x o p(i) = m for some i € {0,...,n}.
Informally a labeled path is a path having la-
beled milestones. Erasing labels of the labeled
path p’ results the underlying path of pl. More
formally the underlying path of plis fsto P
The underlying path of p' will be denoted p.
For an unlabeled path p the terms M and N are
~p-equivalent if they are ~-equivalent with re-
spect to each node a lying on the path p. A path
pisdefined in a term M if M, | for any o on the
path, i.e. in the BT (M) the node « is not labeled
by L. A path p is defined in a set of terms M
if it is defined in any member of M. We shall
say the A —term P (resp. P') represents the path
p (resp. the labeled path p) if for any i € N
less or equal the length of p Pi’ = "a’ (resp.



266

Discriminators in Lambda Calculus

P77 = (a’,'m'y = Axx'a” ‘m’), where o
is the i—th node on the path and m is its label.
* will denote the term such that P7" = « for
any I greater than the length of the path. The
double meaning of x does not lead to confusion,
since it is obvious from the context which of
them is used. Let A/ be a set of numerals. We
shall suppose A/ U {x} is a separable set, i.c.
distinguishable in the lambda calculus. Hence
Pi’ = x iff p(i) = * (note the two different
meanings of ).

Suppose M € M and p is a path of length r. Let
us denote p; the initial segment of p having the
length i, i.e. the path p; : {0, ...,i} — Seq, and
pi(j) = = forany j > i. Let us denote [M];/ M’
the ~,-equivalence class of the term M with
respect to p; in the set M’ C M.

Definition 3.1. p is a distinctive path for M
in M if there exists a finite sequence of sets

Mo, M1, ... M, C M such that

1. piis defined in M, for each i, 0 < i < n,
2. Mo = [M]o/ M,

3. Mg = [M]ip1 /M,

4. M, = {M}.

Intuitively: Walking along a distinctive path the
terms are thrown over at milestones where their
equivalence class numbers become different of
M’s one and at the end of the path only M is re-
tained. Note that a distinctive path is not empty.

We shall say “p is a distinctive path for M” if
M is fixed. We shall say that M C A has dis-
tinctive paths if each of its members has a dis-
tinctive path. A set of terms M will be called
distinct if each of its members has a distinctive
path in M. The underlying unlabeled path of
the distinctive labeled path will be called the
underlying distinctive path. The minimal (la-
beled) tree containing the (labeled) distinctive
tree will be called the (labeled) distinctive tree.

Note that p’ is a labeled distinctive path for
M e {My,...} C A(X) iff it is a labeled dis-
tinctive path for AX.M in {AZ.M, ...} C A?. We
shall call A¥.M the closure of M with respect to
A(X) and shall denote M the set of closures
(with respect to all free variables of A7 (X)) of
the members of M, i.e. M = {AXM|M € M}
where {xX} = FV{M}.

As in the previous section 7" will denote any
tree and we will suppose that the orders and the
degrees of subterms M, of a given term M for
a € nodes(T') are bound by a general recursive
function.

Let Eq € A be an equality test for the numeral
system i.e.

TN It W=,
n Rl ﬁ{F, i m#n.
Let By be as in 2.17 and suppose M,N ¢
A}"()E'), where T is a nonempty tree. Hence
Eq(B1 o’ (AXM))(B1 o (AXN)) = Tiff M ~g
N, asuming M, |, Ng, | and a € nodesT.

We shall generalize the preceding test of the
equivalence at nodes to the fest of equivalence
on paths. Denote P a term representing a path
and L a term representing an algorithm that cal-
culates the length of the path. An algorithm
calculating the length of the path can be con-
structed as follows.

_ Calculate P'0°,...,P7,.. . while
P'i'#xand return n" if P'n+1"=x.

A construction of the term representing the pre-
ceding algorithm is in Appendix. Hence L is a
term such that LP represents the preceding al-
gorithm in A —calculus. Let A be a solution of
the equation

A = AwxyzIf Eq(B1(x)y) (By (xu) )

then (If Equ (Lx)
then T
else (A(RTu)xyz))
elseF.
(3.1)
Hence
AuP(AZ.M) (AX.N) )
= If Eq(By(Pu)(A.M)) (B1(Pu) (AZN))
then (If Equ (LP)
thenT
else (A(RTu)P(AX.M)(AZ.N)))
elseF.
(3.2)

We shall prove that A0’ is a test of equivalence
on paths.
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Lemma 3.2. 1. If M ~y N and My, | for
any node o of the path p then

A OCP(AZM)(AZN) = T.

2. If exists a node o = p(i) on the path p
such that: a) M oto N, b) Mg | and Ng |

at any node 8 = p(j), 0 < j < i then
A0 P(AXM)(AZN) = F,

Proof. Suppose lh(p) = n,i.e. LP = 'n". The
following equation is a consequence of equation
3.2.

ATP(AZM)(AZN) )
—If Eq(By(P"7 )(AZM))(By(PT) (ALN)
then(If Eq'i" 'n
then T
else (A(i + 1")P(AX.M)(AZN) )
elsek:

Suppose a) a = P(i) where 0 < i < n, b)
Mg |, Ng | and M ~g N, for any f8 that pre-
cedes o on the path.

Casel:i<nand M ~g4 N.

Hence

AT P(AEM)(AEN)=A"i+1" P(AZM)(AZ.N),

by induction on i,
Case2: i=nand M ~,4 N.

A" P(AXM)(AXN) =T,
by Case 1.
Case3: M Ay N.

AT P(AZM)(AZN)

=i
Hence A'0'P(AXM)(AXN) = T (resp. F) if
M ~; N (resp. M 5 N).

O

Let us suppose M € M C A has a distinc-
tive path, say p. Obviously for any N € M, if
N # M then there exists an initial segment g
of p such that M £, N. Let us suppose a dis-
tinctive path for M € M is fixed. For any term
N € M C A, py will denote:

e the distinctive path, if N = M,

e an initial segment of the distinctive path
Py such that M L5 N, if N # M.

We can assume that py is the shortest such initial
segment, i.e. M ~4 N where g is an initial seg-
ment of pps whose length is less that the length
of py is. Let us denote T the tree that spans
the nodes of py.

The following example shows an idea for con-
structing a discriminator.

Example 3.3. LetA = Axy.xx, B = Axy.yQ,
Cn = Axy.y(K™), forn = 0,1,...and D =
Axy.xy. A distinctive path py for A in M =
{A, B, D} {Cpn|n=0,1.. }isequalto {{),{1)}.
Obviously pr=pc,={< ) and pp={( 5, (13}.
A discriminator for A in M is a A—representation
of the following algorithm:

]fN 75<>A then F
elseif N £y A then¥

else T,

where N is any term of M. Note that us-
ing the Bohm-out technique a representation
of the preceding algorithm in the A—calculus
that will work on M, can be built. Obviously
B,C, € (A7)0 and A,D € (AKPVHp,
Note that building a discriminator using the
Bohm-out technique, the condition N € (ATN i

f
where [ is an appropriate general recursive

function (f (n) = (2, 1) in the present example),
requires for all N € M.

Proposition3.4. Let M C A(X) and f be a
general recursive function. Suppose

1. M € M has a distinctive path,
2. forany N € M N € A{¥(%).

Then AX.M has a discriminator in M.

Proof. Obviously each Ty is nonvoid. Let
Py € A be a term representing the distinctive
path of M. Hence

Dy = A0 PyM
is a discriminator for AX.M € M by 3.2.
a

Remark 3.5. Evidently Dy is a discriminator
forMinM € M C A(X) implies Ay.Dy(y%) is
a discriminator for AX.M in the set M.



268

Discriminators in Lambda Calculus

An inspection of the construction in the preced-
ing proof shows DyN = Dy, for any term N
meeting the demand N ~;, N. In other words
DyN depends only on ~,—class numbers for
o’s that lies on the (unlabeled) distinctive path.
If anything out of it is changed in the (the
Bohm trees of) terms, the discriminator does
not change. Hence there exist separable sets of
terms which are not sequences of terms, since
any sequence is r.e. while discriminable or sep-
arable may be not r.e.

Example 3.6. Az.zMN is an ordered pair in
A—calculus having the first projection 11 =
ACAT.

Let M be the set {iz.zc,M,|n € N}, where
cn = Axf.f"x are Church numerals and M}, are
any terms. Let us denote M, = Az.zc,M,,. Two
examples of subterms seating on the nodes of
the length 1 are as follows: M| 1y = Ax.x and

M0|<2> = M. The distinctive path for the term
M, is p, defined as follows: p,(0) = (1,15, ...,
pu(D)=1,...,1) (i4+11’s) for 0<i<n, p,(i)=x,
for i>n. The tree Ty, is the tree having the set

of nodes {5, (1), {1,1),...}(1,...,

1’s). Since terms M,, n = 0,1, ... are out of
T they can be chosen freely. The discriminator
for M,, = is Ax.Eq.(I11x)c,, where Eq, is an
equality test for Church numerals. It is obvious
that M is separable.

The followmg example shows that the condi-
tion M € Af is not necessary for having a

discriminator.

Example 3.7. Ax.xT is a discriminator for
Axx in M = {Ax.x, AxxFF, AxxFFFF, ..}
The distinctive path of Ax.x is { ), i.e. T=Ty=
() for any N € M. It is obvious M ¢ AfT(f)
for any f since the degrees of its members grow
into infinity.

The discriminator as built in 3.2 has a particular
shape. In general the result of the application
of a discriminator to a term can depend on sub-
terms lying out of the distinctive path, as the
previous example shows.

Suppose each member of M C A has a distinc-
tive path. Denote fjs a function corresponding

to the distinctive path for M so that N € A]{ﬁ (X).
Suppose there exists f = supysc 1 fy. Hence

1) (n+1

the construction of the Bohm-out term and the
construction of A can be made uniformly with
respect to f. Denote Tyy the tree that spans
the nodes of an initial segment pysy of the dis-
tinctive path py for M € M C A such that
N thpyy M. Let T = Upsye g Tuw

Corollary 3.8. If any member of M C A]? (%)

has a distinctive path in M then M = {AX.N|N
€ M} has discriminators.

Proof. Obviously T, C T; imply A (x) C Af
Hence the assumptions for b ]y 3 4 are accom-
plished for any M € M C Ag

a

4. Necessary conditions for separability

In this section we shall construct distinctive
paths for discriminable sets. The first step is
a slight generalization of Wadsworth’s A L cal-
culus. The idea is to mark the |’s by labels of
the nodes on which this L seat in the BT (M),
and then trace which L in the term M causes
L in the term FM. The construction will be
based on Wadsworth’s w-normal formsin A 1 —
calculus ([1] 14.3.1. and 14.3.6.) which is used
for constructing an approximation of a term in
the Scott’s topology. We shall add labels of the
form {a,1) and («,2) to the tokens L. The
idea is as follows: for a given finite tree T o
marks a node while the second index marks
which of the two possible alternative reasons
caused a (sub)term reduced to L: if the node
o lies out of T or the (sub)term is not in Anf.
These marks will be used for constructing the
distinctive path for a term M € M where M
is discriminable. The idea for constructing
the distinctive path is as follows: suppose in
BT (M) some labels are replaced by (marked)
1’s, hence the resulting tree is BT (M') for a
term M’ C M. If the application of the discrim-
inator results T or F then it is the discriminator
for M’ too. If not we can replace the L in
BT (M) which causes the L in FM by the label
of BT (M) and put L’s for its sons. The informa-
tion of the label can be extracted by 2.17. Since
FM has an w—normal form the algorithm stops
after a finite number of steps. Beginning at the
root node the algorithm gives the minimal term
for which D is a discriminator. The soundness
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of the algorithm is based on the continuity and
sequentiality theorem of the A-calculus.

Let L = {{a,i)|a € Seq, i € {1,2}}. We
shall denote:

1. 1;, wherel € L, a | labeled by [,

2. Al the set of terms built of variables,
L ’storl € L, abstraction and application.

The members of ALy will be called A 1 ;—terms.
A definition of the A 1 ; —calculus is as follows.

Definition 4.1. 1. A _Lj—termsarerecursive-

ly defined as follows:
M:u=x | 1; | MM, | Ax.My,
2. BLp—reduction:
Bis (Ax.M)N —p M[x := N,
lr: Axly— Ljend LM — | 1,
Blye BU Ly,
3. Substitution:
J_[[x = M = 1
=M =M,
yx:=M =y if y#x,

if N is free for x in M.

The proof that 8 _L ; —reduction is weakly Church—
Ros$ser and that each term has a unique .1;—
normal form is the same as for A f—calculus. A
characteristic example is

(Ax. L))M —p Lix:=M] = 1,,
(Ax. LM =1, LM —, 1.

L¢a,iy will be written Lg ;.

A can be embedded into AL, in an obvious
way. Note the f.1;-normal form of any term
M ¢ A C Al coincides with its f—normal
form (normal form in the pure A-calculus).
Nevertheless we shall write “B-normal form
instead” of “normal form” whenever want to
emphasize it is | ;—free.

The following definition is a variant of [1] 14.3.6
for labeled 1 ’s.

Definition 4.2. Let T be a finite tree and o €
Seq. The wf—normal form of the termM € ALy
is recursively defined as follows.

w{!x(-i-l) = J—Ot,‘la
w%(AZy) = XXy
YC«Z Mn) :)Lf.yN1...Nn

if o % (iy€enodes (T),
otherwise.

Informally: if L, is contained in m§> (M), where
I = {a,iy, then o marks the position of 1; in

the Béhm tree of w§> (M), while the meaning
of i is as follows: if M|, = L; or M|, lies out
of T then { = 1, if the subterm at the node o of
the “partially developed’ Bohm tree of M is not
in head normal form then, i = 2.

Example 4.3. Let M = Ax.x(xI)((Ay.y)zz)
J~<]>,2x and T = {< >1 <1>3 <2>! <3>9 <1= 1>}

w§ % (Axx(x)((Ry.y)zz) L1y 2X)
= Ax,wa<1>(xI)w§2> ((ly-Y)ZZ)w§3>
(Lery2)Leayn
= Axx(xof"" (1) Lezy 2L ay1-Lay
= Axx(xl) Loy oLy 1 Leay e

<>
7

Instead of w;” we shall write wy. It is evident
that wy is a L —normal form. Remember that
BT"(M) denotes the tree resulting from BT (M)

when it is pruned at depth n and M| denotes a
term whose Bohm tree is BT"(M). Let C denote
the relation of approximation between terms, i.e
M C N iff BT(M) C BT(N). Note that labels
of L do not play any role in the definition of
C, for example 1; T 1, for any [ and m.
The wr-normal forms, belonging to the same
equivalence class of the equivalence relation &2
induced by the preorder C (M & N iff M C N
and M 3 N) are exactly the wp-normal forms
which differ only for the labels of ’s. Hence
the partial order relation C modulo 2 is the well
known partial order on A L -terms and so the re-
sults of this theory will be applied freely. We
shall use the same symbol C for both relations.
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It is evident that if the depth of the tree T is
less or equal n then wr(M) C M. Let T de-
note a A—term having a normal form whose
Bohm tree has at most one son at each node.
The last condition is not essential for our con-
struction but makes it simpler. Some terms of
this kind that will be used are Church numerals
¢n = Afx.f"x, and combinators denoting true
and false, i.e. T and F.

We shall say that FM |, is caused by some Mg,
if FM|, = L;and foranyM’ JMFM' |, = 1,
assuming M'|g = Ly (in fact [ = I', see later)
and FM'|o # L;assuming M’|g = z for a fresh
variable z. The term M is aa—constant if for any
M 3 MFM|, = L (see [1] 14.4.2). We
shall say Ly at the node B of the term wz(M)
is created by the application of wr on M if
wr(M)|g = Ly, while M|g # L;forall/ € L.

C[ ] will denote a context. By “context” we
ever mean a multiple context, i.e. a term having a

finite number of holes. We shall denote by C[M]

or C[My, ..., M,] the term that results by substi-
tuting a string of terms My, ..., M, for all holes
of C[ ]. Whenever M = My, ..., M, we shall

write C[M] instead of C[M] or C[M,...,M].
This notation is convenient for a unified treat-
ing of terms and contexts. If M is closed, then
for any context C[ | there is a term Q so that
OM = C[M]. The statement “C[M]|o = L is
caused by some M|g”, will mean C|M||q = L;
is caused by some M|g in some copy of M|g
etc. Note the double meaning of [ ]:[ ]in
C[ ] = Axx[ ][ ]isastring of holes while
[ ]inAx.[ |Ci...C,isasingle hole.

Lemma 4.4. Let C[ | be any context and M
be any term such that C]M| = I’ where I is a
normal form of the A —calculus. Then

Clor(M)] C T,
TCT, = Clor(M)] C Clor,(M)]
M—N = or(M)LC wr(N),

3T, T finite A Clowr(M)] =T,

SR W N

VT, T finite = Clor(M)]le = L; is
caused by some wr(M)|g, which is cre-
ated by the application of wr on M.

Proof.

1. Since wr(M) C M the assertion is implied
by [1] 14.3.20 (iii).

2. Analogously as (1) since T; C T
wr, (M) C wr, (M).

=

3. Thisis [1] 14.3.7.

4. By [1] 14.3.19. and [1] 14.3.20. there ex-
ists an increasing sequence of finite trees
Ty,T,, ... such that

ClM] =T = sup{F(wr, (41))|n € N}.

Since I is a normal form there exists an m
such that C[wr,,(M)] = T.

5. Clwr(M))]|q is not a—constant since C[M]
has a f—normal form, i.e. a 1 ;—free nor-
mal form. Hence Clwr(M)]|q is caused
by some wr(M)|g (see [1] 14.4.8). There
are two possibilities: a) wr(M)|g = L,
since M|g = L} and b) wr(M)|g is cre-
ated by the application of wy on M. Since
C[M] has a f—normal form only the sec-
ond of the preceding two possibilities can
happen.

O

The assertion 4.4 (5) can be sharpened. It is
obvious that the subscript of | ; doesn’t change
when B L -reductions are executed. Hence in
the label of Clwr(M)]| gives us the informa-
tion which wr(M)|g causes Clwy(M)]|o. The
following proposition corresponds to [1] 14.4.4.
for labeled L * s.

Proposition 4.5. Let Clwr(M)]|q be caused
by some wr(M)|g. Then wr(M)|g = L, implies
F(or(M)|a) = L.

Now we define a syntactical algorithm for the
distinctive path construction. Let Tbe ' = T
orI' = ForI' = Af x.f"x, hence 4.4 applies to
M and Clwr,(M)] contains at most one | ;.

Definition 4.6. Let C| | be any context and
M be any term such that C[M| = T. We define
recursively a finite sequence of trees Ty, T1, . . .
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and a finite sequence of terms My, M1, ... as
follows.
To = _ .
My = a)TO(M), iLe. M():A.y.ZJ_U),l_. : .J_<S>!1
or My= J_<>32.

If C[My] = T then the process is finished; else
C[My| C T contains exactly one subterm of the
shape 1q ;.

Ifi = 1 then

T = T U{a},
Mpyq = mTk+1(M)'

ffi = 2 then M|y, is not in hnf. Make a step of
a head B-reduction on o: M — g M’ and put

Example 4.7. LetM = Ax.xFT(IT),andC| |
= [ |I, hence FM = C[M] for F = Ay.yl.

Tg${<>}, M[]:)\.x.xla)’lJ_<2>,].L<3>’1,

FMo=1¢1y,1,

Ti={, {1},  Mi=AxxFLleyiley,
FMi=13y1,

Ty={(>, {17, B }Ma=AxxF L3y 1, Ly 2,

2=i—<3>,2:
T3={ <1, <3>}1M3:)“X-XF-L<2),1T:
Me=T.
‘We shall denote:

1. TM the last member in the sequences Ty, T4,
.in 4.6,

2. M the term obtained by replacing Q =
(Ax.xx)(Ax.xx) to all L’s in the last mem-
ber of the sequences My, M1, . ..

3. pu (resp. p),) the path (resp. the path la-
beled by ~, —equivalence class numbers
of M) as constructed by the algorithm in
the definition 4.6, i.e. ppr(n) = ay,, where
@y, is the node constructed in the n’th step.

Let I, I'1 and I'y denote Church numerals or T
or F,

Lemma 4.8. 1. Thealgorithm definedin4.6
stops in a finite number of steps.

2. M is the C—minimal term such that C[M] =
I" is accomplished.

3. Va € nodes(Ty) we have M, | .

Proof.

1. 44 (2) and (3) imply that the sequence
CIMg], k = 0,1,... is C—growing. 4.4
(4) implies that only a finite number of
steps of the first type where a new node is
added to the tree T} is possible.

If a term M| has a principal Anf it re-
duces to it by a finite number of head re-
ductions. Hence the number of steps of
the second type in the preceding definition
is finite in this case. If a term M|y does
not have a principal inf then it is unsolv-
able, hence BT(M)|, = ;. Hence a Ly

in C[M] is caused by M|, which is impos-
sible since C[M] has a $—normal form.

2. This is evident from the construction of
algorithm defined in 4.6.

3. This is in the proof of (1).
O

An n—expansion of the term M is Ay.My, where
all variables in y are fresh. Denote M" a string

of terms as follows: M]’ is obtained from M;
by replacing some subterms (M;)y by their
n—expansions, where ; € Seq, 1 < i < m.

Fact4.9. Let C[ | be a context so that C[M]
reduces to T (resp. F) for some string of terms

M. Then for any finite sequence of sequences a
and L any 1)—expansions of some subterms of M,
C[M"] reduces to an n—expansion of T (resp.

F).

This fact is easy to prove. For example, let
Cl ] = Ax[ ]x and M = Axy.y. Hence
ClAuvw Muvw] = Ax.[Auvw.yw|x = Axovw.vw
A formal proof is as follows.

Proof of 4.9. Let =, denote the equality rela-
tion in Bn—calculus, 1.e. the reflexive, symetric
and transitive closure of the $n—reduction.
Case A: d = {),...,{ ). Hence M" is an
n—expansion of M. The assertion is accom-
plished since M; =, M, implies C[M] =
C[M;].
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Case B: Suppose that aj,...,q, is any fi-
nite sequence of sequences. Let us substitute
a hole for each My, in M;. Hence there are,
say, m holes in n terms M;. Denote the con-
structed contexts M;[ ]. Denote (M;)g the se-

quence of terms such that M; = M;[(M;),]. De-
fine C1[ | = C[My] ],...,M,[ ]]. Hence
CIMM=CM (M)} ;. .(Ma)], ]| =C1[(M1) g,
...(My)d ] teduces to an n—expansion of T
(resp. F) by A. O

It is easy to see that the set {Ay1. Ty, Ayn.Fyn }
is separable. Hence the preceding Fact im-
plies that {M", N} is separable presuming that
{M,N} is so. A consequence of the preceding
fact is that a substitution of M by some of its
n—expansion does not affect the discriminabil-

ity.
Lemma 4.10. Let

1. C[ ] be a context and M,N € A be any
terms so that CIM] = T and C[N] = F,

2. pu be the path constructed by 4.6 for the
term M.

Then there exists an initial segment p' of the
path py having the length, say, n' such that

7. NLf,f 1

2. N ~q M for any a = p'(i), where 0 <
i<,

3. M 4 N for o = p'(n).

Proof. By induction on the length of the path
Pm. M is solvable otherwise C[M] = C|N| =
C[L] contradicting the assumption C[M] = T
and C[N]=F. Henceithasahnfsay Ay.zM;. . Mj.
Hence the first term constructed by 4.6 is as fol-
lows:

wr(M) =Ay1...yrzLley 1. Lesya

for T = {{ )}. Analogously N has a hnf having
the order ' and the degree s’. We can suppose
¥’ < r, otherwise we interchange M and N. De-
note

N =Ay1..92ZN1 .. .Nyypoi...y,

an m—expansion of N having the same order as
the hnf of M. Hence the set {M, N'} is separa-
ble.

Let h(53) = 0. Then
Clor(M)]=C[Ay1.. yrzLliy 1. - Ly al=T.

Suppose M ~ N. Since M and N’ have the
same order, they have the same degree and the
same head variable, i.e. wr(M) = wr(N') =
Ayt ¥rzlogyg... Legy 1. Hence Clor(M))
= Clwr(N")] = T, contradicting the presump-
tion that {M, N'} is separable.

Let lh(py) = n > 0. As in the case n = 0,
we have that M ~ N implies Clor(M)] =
Clor(N")] = Ly 1 for some 1 < j < r, since
Clor(M)|C T and L is the only term accom-
plishing the relation L  T. Let

Cl[ ] = C[)\,y] F: .yr.ZJ_<]>1] 3 0¥
J—(i—1>,1[ ]J-<r:+l>,1 sisies l<s>,l]'

Then C'|M;] = C[M] and C'[N;] = C[N'] (N; =
Yi_si4p fori > '), i.e. the set {M;, N;} is sepa-
rable. Since the length of the path pyy, isn — 1,
the assertion of the lemma is accomplished for
M;, N; by the induction hypothesis. Hence the
assertion of the lemma is accomplished for M, N
since p’ is constructed from the corresponding
path for M;, N; by adding a node at the begin-
ning.

a

Corollary 4.11. If M has a discriminator in
M C A® then M has a distinctive path.

Proof. Suppose D is a discriminator for M in M.
Define a context C[ ] such that C[N] = DN
for any closed term N. Evidently the previous
lemma implies that the path constructed by the
algorithm 4.6 is the distinctive path for M in M.

0O

5. Application to Complete Discriminability
and Separability

Let Py € A be a term representing the (unla-
beled) distinctive path of the term M as in the
proof of 3.4. We shall say that M has uniform
distinctive paths if there exists a term P such
that for any member M of M Py = P(AX.M).
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In the rest of this paragraph we shall use this a
bit changed denotation: we shall denote Py, Py
etc. representations of paths while P will denote
a term whose application to a term (i.e. PM) is
the representation of a path. We shall use the
“If then_else” notation of terms, i.e. we shall
write If B then M else N instead BMN, where
B = T or B = F, from now to the end of this
paper. This notation is more readable if terms
are complex.

Proposition 5.1. If the set M C A[ (%) has

uniform distinctive paths lying in T then its clo-
sure has a complete discriminator.

Proof. A complete discriminator for M is built
analogously to the discriminator in 3.4. Only a
small modification in A is needed, i.e. x is sub-
stituted by xy in the equation 3.1. Hence Py
becomes P(AX.M) in equation 3.2. The rest of
the construction remains unchanged.

Let A be a solution of the equation

A = AuxyzIf Eq(B1(xyu)y) (B (yw) 2)
rhengf ETqu (L(xy))

else (A(R™u)(xy)yz))
elseF.

Hence

AuP(AZ.M)(AX.N) = If Eq(B;
(AZ.M))(B1(P(AX.M)u) (AX.N))

then (If Equ (L(PAX.M))
then T
[ ela};e (A(RTu)(PAXM)(AX.M)(AXN)))

This is equation 3.2, since P(AX.M) = Py = P.
The rest of the proof is equal to the proof of 3.2
and 3.4.

O

Our next aim is to obtain some results concern-
ing separability of terms. We start with some
results which are instances of the definition of
separability and don’t concern distinctive paths.

M C A(X) is r.e. (is an enumeration) iff it is
uniform, i.e. a sequence in the A —calculus. A
sequence is trivially r.e. For proving the other
direction use the fact that there exists a term Ez
such that Eg'M" = M for any M € A(X). If
x N — {§M|M € M} is a bijection onto and
= represents ) in A-calculus, then the generator
of the sequence is Ay.Ez(Zy).

Proposition 5.2. A separable sequence is a
numeral system.

Proof. Let M be a sequence having M as gener-
ator, i.e. M = {Myln € N} = {M'n
Let S be a separator of the sequence. We shall
construct an inverse of S on M, i.e. a term S~
such that for all n € N S™I(SM,,) = M, is
available.

Let SM,, = 'k’. An algorithm for computing the
inverse of S on M is as follows. Fix k and calcu-
lateMi",i=0,1,...whileS(M'i") # k. The
algorithm returns n such that S(M'n") = k.
51 1s a term representing the described algo-
rithm. More precisely S™!k" = M 'n’. More
formally: let F be a solution of the equation

F = Axy.If Eq(Mx)ythen 0 elseRT (F(R*x)y).
Then S™!' = Ax.M(F'0x) (see the proof of

5.8 for more details). Now we can build terms
Zero, R}, and R}y, such that:

Zeror 4T if SM,="0,
M = F otherwise,
R M, =M, where R*(SM,)= SMy,
Ry M, =M, where R™(SM,)=SM,u,
where R and R~ are as usual. In fact
Zeroy, = Ax.Zero(Sx),
Rt = AxSTI(RT(Sx)),
Ry, = AxSTYR™(Sx)),
where Zero, RT and R~ are as usual.
|

A term M is left invertible iff there exists a term
M; " such that M; ' o M = Ax.M; ' (Mx) = I.
A weaker notion would be as follows: a term M
has a left inverse on numerals if

L e AVvne NL(M'n') = 'n'.

It is known that a sequence whose generator
has a left inverse is a numeral system (see

(11]). In fact this property is enough since
m' = L(M'n') = LM,, i.e. the sequence M,,
n=10,1,...1s separable, hence it is a numeral
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system by 5.2. Obviously L represents a bi-
jective map from M = {M;,...} to numerals.
It is well known that there exists a bijective
map between any of two numeral systems (ade-
quate numeral system in Barendregt’s terminol-
ogy), i.e. a term H such that H'n' = M, and
H™IM, = "n’". (see [1] p.140 for the details).
Hence the notion of left inverse on numerals
coincides with the notion of bijective map on
numerals.

We recapitulate the last results in a proposition
as follows.

Proposition 5.3.  The next assertions are equiv-
alent for a set of terms M:

1. M is a numeral system
2. M is a separable sequence.

3. M is a sequence such that its generator is
a bijection on numerals.

4. M is a sequence such that its generator
has a left inverse on numerals.

Example 3.6 shows that there exist separable
sets that are not numeral systems. The set M =
{Az.z(Axy.f"x)M|n € N} is separable but it is
not a numeral system if M’ = {M}|n € N} is
not a sequence. In fact the existence of a suc-
cessor for M would imply the existence of a
generator for M’ (the second projection of the
iteration of the successor).

Definition 5.4. A labeled path p' is the labeled
distinctive path for the term M in M if its un-
derlying path p is the distinctive path for M in
M and each of its nodes o is labeled by the
~a —equivalence class number eqny of M.

Remark 5.5. The definition of the labeled dis-
tinctive path is relative to transformation since
the definition of egn,, is such.

We shall say M C A has labeled uniform dis-
tinctive paths if there exists a term P’ such that

for any M € M P'M is the labeled distinctive
path for M.

Corollary 5.6. If M C A}r (%), and it has uni-

form distinctive paths lying in T, then it has
labeled uniform distinctive paths.

Proof. Let us denote (M,N) an ordered pair
of M and N in the A—calculus (for example
Ax.xMN). Since there exists a term P such that,
for any M € M, PM is the distinctive path of
M, P! is as follows.

Pl = )L.X,y<ny}B1(P)Q))X>,

where B is defined in 2.17
O

Warning. The r.e. variant of preceding corollary
fails since a set of distinctive paths can be r.e.,
while the corresponding set of labeled distinc-
tive paths may not.

We shall denote pys resp. py the distinctive
paths of terms M resp. N. Their representatives
in A —calculus will be terms Py resp. Py. Anal-
ogously we shall denote pfw resp. p]"\, the labeled
distinctive paths of terms M resp. N and P},
resp. va their representatives in A —calculus.

Lemma 5.7. 1. There exists a test of equal-
ity of paths, i.e a term Egp such that

T pm=pn,
Eqp Py Py =
w N { F pMm # PN
2. There exists a test of equality of labeled
paths, i.e a term Eqp' such that

T Lo gl
S
F Py # Py

Proof.

1. Remember Py'i' = * iff ppsi = . Since
N U {*} is separable there exists a test
of validity of the equation Pyi = =.
The algorithm for equality of paths is now
straightforward: compare Py, i and Py i’
fori =0,1,...,n where n is the minimal
such that Pyy'n’ = % or Py'n’ = x. Eqp
is a term representing the preceding algo-
rithm in the A —calculus.

2. Analogously as in (1). At each step we
have to test not only equality of nodes but
equality of labels too.

O
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Proposition 5.8. If M C A}r (X) has a re. set
of labeled uniform distinctive paths such that
the corresponding underlying paths lie in T,
then M is separable.

Proof. Let P, = P'M be the distinctive labeled
path of the term M € M. Since M is r.e., there
exists a general recursive function 6/ mapping
N onto {§(P'M)|M € M} We can suppose that
6' is one—to—one if M is infinite or it is one—to—
one from {0,...,m} to the set of paths for an
appropriate m if it is finite. In the following we
shall omit the finite case since it can be treated
analogously to the infinite one.

We can suppose that the numerals are closed
normal forms. Since P, 7" can be reduced to
a closed normal form we can suppose that wa
is a closed term. Let @ represent 6! in the
A—calculus, hence foranyn € N©''n" = P}/
for some M € M. Remember that there exists
a term £ such that for any closed term M the
equation E'M" = M is accomplished. Hence
E@'n) =P,

The idea of the proof is as follows: find a
number v so that the v’th labeled path is equal
to the labeled distinctive path of the term M,
i.e. Egp'(PPM)(E(®'v')) = T (see Appendix).
Let I be a solution of the following equation.

F = AxyIf Eqp'(P'y)(E(0'))
then 0" else R* (F(RTx)y).

Denote F = F'0". Hence FM = V. It follows
that the term F = F'0’ is a separator for the set
M as proved in the Appendix.

a

The theorem is not true in the other direction as
shown by the following example.

Example5.9. Letf : N — N be a general
recursive function which is onto and such that
each Ny = {ilf (i) = k} is infinite. Choose
exactly one number from each Ny such that the
set of chosen numbers, say N, is not re. Sup-
pose that there exists a bijection between N and
a set of labeled distinctive paths. The set of

Church numerals assigned to the the set N C N
is separable by I — the term representing f in
the A-calculus. It is easy to see that the set of
labeled distinctive paths is not r.e.

An open problem is if the situation in the previ-
ous example is in some sense characteristic, i.e.
if any separable set can be embedded into a sep-
arable set having a r.e. set of distinctive paths.
Combining 5.6 and 5.8 we obtain the following
proposition.

Proposition 5.10.  Letus suppose M C Af (%)
has a set of uniform distinctive paths lying in T,
so that the corresponding set of labeled distinc-
tive paths is r.e. Then M is separable.

Proof. 5.6 implies M has labeled uniform dis-
tinctive paths. Since the set of labeled uniform

distinctive paths is r.e. the assertion is implied
by 5.8.
O

Since a separable sequence is a numeral system
the following corollary is an immediate instance
of the preceding proposition.

Corollary 5.11. Letasequence M = {M,|n €
N} have a set of uniform distinctive path lying
in T so that the corresponding set of labeled
distinctive path is re. Then M is a numeral
system. :

Appendix

In the appendix we shall construct some terms
that we used in the paper.

Let us denote Eq an equality test for the numeral
sysytem, i.e.

c e A i if m=n
E = ’ Sl
e = {F, i mdm o
If, for example Eq is defined as follows:

Eq = ©(Axyz.Zero y(Zero zTF)
(ZerozF(x(R™y)(R™2)))),

then the equation

Eq'm 'n’ = Zero ‘m’ (Zero 'n" TF)
(Zero 'n F(Eq(R™ 'm’ )(R™ "))

is accomplished, hence Eq approaches 5.1.
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On some places we use an algorithm counting
steps until a condition is fulfilled, i.e.

n:=10;

do mn:=n+1 whilenot Cond(n).

A term representing the preceding algorithm is
as follows. Let F be a solution of the following
equation.

F = AxIf Condxthen 0" else RT(F(R"x)),

where Cond is a Boolean term representing the
condition Cond, i.e. Cond'n’ = T if Cond(n) is
true and Cond n' = F if Cond(n) is false. R™
denotes successor. Define F = F'0". Suppose
Cond(n) is false for n < v and Cond(v) is true,
forav € N. Hence -

F=FT =
=If Cond'0" then 0" else RY(F("1"))
=If Cond (" then () else
If Cond'1" then 1" else
RTR*(F("2)),
etc.

Hence F = v'.

The first application of the preceding result is
the construction of a term representing an algo-
rithm which calculates the length of paths. We
supposed that the set N'U{x} is separable, hence
there exists a test of equality for it, say g, i.e.
EqMN =T if M = N and Eq.MN = F if
M # N, for any M,N € N U {x}. Let the term
L be a solution of the following equation.

L = Axy.If Eq.((yx)*)
then 0" else R (L(R*x)y).

Hence

LOP =1If Eq.((P'0")%)
then "0 else R (L("1")P).
Obviously £ 0"P counts the number of nodes
lying on the (nonvoid) path represented by P.

Hence L = RTL 0" is a term that calculates the
length of the path.

Using the notation from the proof of 5.8 a sep-
arator is constructed as follows. Let I be a
solution of the followin equation.

F = Jxy.If Eqp'(P'y)(E(@'x))
then 0" else RT (F(R'x)y).

Denote F = F'(0". Hence
FM=FO0M="v,

presuming the v’th labeled path is equal to the
distinctive path P'M. Hence the term F = F'(
is a separator for the set M.
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