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An Object-Oriented Approach

for Temporal Data
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There is a growing need for easier access to temporal
data. Recent developments of object-oriented data mod-
cls represent the most promising approach to modeling
complex aspects of the real world. Here, we present
an object-oriented data model for supporting the storage
and access of temporal information. The model consists
of two parts. In the first part, we present the definition
of a class for time object. The class is general enough so
that it can be applied for various applications. Another
part of the data model integrates time objects with entity
objects and their attributes by following the pervasive
three-dimensional metaphor of time. Particularly, the
model incorporates with object-oriented technique all the
three primary dimensions, which are time, entity, and
attribute, of the metaphor.
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1. Introduction

Time is ubiquitous in our daily life and in data
processing. We have seen an increasing effort
to introduce time into database technology. Par-
ticularly, the relational data model, the entity-
relationship data model, and the object-oriented
data model have been targeted for incorporat-
‘ing time as'a new dimension of data. In recent
years, computers are more accessible for many
new applications in different areas like CAD

and CASE as well as in business management.

It is obvious that the wider range of applicat ions
of computer and database technology proposes
a wider range of demands, which include the
storage and management of temporal informa-
tion.

An important issue in designing a data model
for temporal information is the representation
of time. We should integrate a variety of for-
mats of time to satisfy the various applications.

Many new database applications are based on
knowledge. A database system may need to
understand and reason about the dynamic as-
pects of the real world (Maiocchi et al. 1992).
A temporal data model must closely reflect the
models of intelligent activities.

In this paper, we propose an object-oriented data
model for modeling temporal information. The
data model consists of two parts. First, we de-
sign time classes for encapsulating basic time
objects like time point and time interval and
other features of time. Then, we integrate the
time objects with entities and attributes so that
we can realize the three-dimensional metaphor
of time. The data model is an object-oriented
and temporal one. We study how to answer
temporal queries for databases that are based on
the data model.

We shall use the basic object-oriented syntax of
C++ to describe code. It is easy for a reader
to use other object-oriented programming lan-
guages such as Smalltalk (Goldberg and Rob-
son 1989) or Eiffel (Meyer 1992) to encode the
classes and functions declared here.

2. Preliminary Materials

2.1. Object-Oriented Data Model
and Database Languages

Object-oriented concepts have been implement-
ed in computer programming languages (Gold-
berg and Robson 1989, Ellis and Stroustrup
1990, Meyer 1992). The core concepts (Kim
1990) are:
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e object and class. In an object-oriented data-
base, real world entities are represented as ob-
jects, each of which has a system-wide unique
identifier. A group of similar objects are de-
scribed by a class. An object belonging to a
class is called an instance of the class.

e encapsulation of attributes and methods. A
class encapsulates the attributes and methods of
its instances as its members. The interface of

a class consists of some of the methods. Other -

members are hidden from the outside of the in-
stances.

e class inheritance. The members defined in
a class can be inherited (reused) by another
class. The former class is called a superclass and
the latter a subclass. The inheritance relation-
ships between the classes of an object-oriented
database form an acyclic directed graph, which
is called a class hierarchy.

2.2. Allen’s Model of Action and Time

Three of the characteristics of time intervals
are important for reasoning temporal knowl-
edge and modeling actions and processes (Allen
1983, p. 833). First, it allows imprecision so
that relative temporal knowledge such as a time
interval A before another time interval B can be
represented. Second, it allows one to vary the
granularity (grain) of reasoning. For instance,
day and year can be used as different temporal
granularities. Third, it supports temporal per-
sistence, endorsed by default reasoning.

Allen’s temporal logic is a typed first-order
predicate calculus. Three types are used in
Allen’s model (Allen 1984):

e type TIME-INTERVAL for defining time in-
tervals;

e type PROPERTY for defining propositions
that hold during time intervals;

e terms that correspond to objects (real world
entities) in the domain.

To describe a fact that a property p holds during
a time interval ¢, the predicate HOLDS is used
in the proposition

HOLDS(p, ©).

There is a set of mutually exclusive primitive
relations that can hold between time intervals.

The temporal relations between two time inter-

vals #1 and £, described by Allen (Allen 1983,
Allen 1984) are:

e DURING(#4, 1) : t1 is contained within tp; =~

e STARTS(¢, 1) : t; shares the same beginning
as t» but ends before ;;

e FINISHES(#,, #;) : #; shares the same end as
tp but begins after #, begins;

e BEFORE(#4, 12) : t; ends before t, begins;

e OVERLAP(#1,1) : t; begins before 1, begins
and ends before 1, ends, t; begins before £ ends;

e MEETS(#y, ;) : #; ends when #, begins;
e EQUAL(#1,1) : t; and #, are the same.

Allen’s model of action and time defines a set of
axioms for reasoning the occurrences of events
and describing actions and processes. The ax-
ioms define the behavior of the above relations.
The predicate IN is defined with the above re-
lations by the logical equivalence

IN(fl,tz) =y ((DURING(tl,tg)
V (STARTS(t1, 1) V (FINISHES (#1, 12)).

2.3. Temporal Data Cube and lIts
Internal View

The pervasive spatial metaphor of time, which
is a cube of temporal data, has been refined in
Ariav’s paper (Ariav 1986) to define a tempo-
rally oriented data model, TODM. The model
is a consistent set of temporally oriented data
constructs, operations, and constraints. The fol-
lowing three principles have been used by Ariav
to extend the relational data model:

e temporal completeness. The complete set of
recorded events, which brings about the state
transitions of a historical database and describes
the enterprise over the period of time covered
by the database.

“e temporal density. The state of a historic

database between events can be determined by
the persistency of the latest recorded event.

e temporal isomorphism. A historical database
evolves in an order and pace with respect to the
events.

The temporal path through which a database,
which may not be a historical database, has pro-
gressed can be described by a three-dimensional
cube,
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3. Time Classes

Usually, the representation of a time point is
relative to a reference point, which may be an
assumed origin of time. For example, the years
are counted with respect to the year of Lord.
Therefore, we can have both a negative time
point like the year 1 BC and a positive time
point like AD 1995. Another property of the
representation of time point is that a time grain
or granularity must be used to determine the dis-
tance between the time point and the reference
point. Forinstance, the difference between Sun-
day and Tuesday can be internally described as
2 — 0 = 2 in a computer program. Without the
granularity of day, the value 2 is meaningless or
confusing.

We assume all the time points are relative to the
same temporal reference point. The representa-
tion of the unknown unique temporal reference
point may be refined to any finer granularity
level, say a minute, a second, even a nanosec-
ond. It may also be abstracted to any coarser
granularity level say a year, a decade, or even a
century.

In a temporal database system, we have to
deal with different grains, or granularities, of
time. We assume an enumeration type Granu-
larity, the constant enumerators defined by the
type may include second, minute, hour, day,
month, year, etc.

3.1. Time Point vs. Time Interval

We shall include both time point and time in-
terval as fundamental objects in the proposed
temporal data model. The integration of both
forms of time will enhance not only the expres-
sive power of a database but also the flexibility
of reasoning about temporal information. In the
real world, we often have situations where the
only reasonable index for an activity is an in-
stantaneous time point. For example, we often
hear the phrase “the official startin g time” for a
scheduled activity. We may not be able to dis-
tinguish one tenth of a second. However, using
a time interval between the starting and ending
points of the first tenth of a second as the for-
mal interpretation of “the official starting time”
is obviously not acceptable psychologically and
technically.

For temporal information, there may be uncer-
tainty about the distinction between a time point
and a time interval. Sometimes, we do not know
whether a user of the temporal database will
treat the time associated with an event as a time
point or as a time interval. With a robot as
example, the action of taking a picture by the
robot may be interpreted as happening instanta-
neously by a user of the robot. It may also be
interpreted as lasting for a while by the robot
builder. If the action has to be recorded i n a
database, a time object should be assigned with
the action. But, the type of the time object
is uncertain when the database is designed. A
possible solution for a temporal data model is
to provide support for converting a time point
to a time interval, and vice versa.

Another reason for the conversion between time
points and intervals is related to abstraction.
Abstraction is used to control the complexity
of representation. For example, we may need
to describe an activity of writing a report started
at 8:00 am of Monday, pausing an hour for lunch
break, and continuing till 4:00 PM. The activ-
ity is often described as “writing a repott on
Monday.” On the other hand, we may need to
provide details for the abstraction so that the “t
ime point” or the time interval Monday should
be replaced by several time intervals.

3.2. A First Abstraction of Time Object

In object-oriented programming, the abstract
view of an object is its interface. The data stored
in the object can be accessed only through the
interface. Thus, the private data and other im-
plementation details can be hidden. Here, we
present both the time point and the time inter-
val as instances of an abstract data type (ADT).
We consider what functions should be included
in the interface of the ADT. The result is an
interface for a class called TIME.

An intrinsic property of a time object is its
length. In our daily life, we often take the length
of a time point as equal to zero by default. This
is no longer true in database area. As presented
before, a time point at a coarse granularity may
be interpreted as a disguised time interval at a
fine granularity. For instance, the date 90/6/11
may be used as an abstraction of a time in-
terval, which includes all the minutes between
the minutes 90/6,/11/0/0and 90/6/11/23/59.
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We shall treat the proper ty of lengt h as an at-
tribute of a time object.

In Smalltalk (Goldberg and Robson 1989) and
Eiffel (Meyer 1992), a method or function with
no argument may not be distinguished from an
attribute by its clients. This favorable ambi-
guity gives the interface designer a freedom to
change the design of an attribute into a method,
and vice versa. The length of a time object
could be implemented as an attribute if we can
save repeated computation of the value. In this
paper, we propose implementing the property
length as a function for two reasons.

1. The length of a time object may depend on
other attributes. For example, the length of a
time interval depends on the granularity as well
as its endpoints. If the length is implemented as
an attribute, it must be modified each time when
we modify the positions of its ends or when we
change the granularity.

2. The interface of an object should consist of
only functions, which are accessors and imple-
mentors (Coad and Nicola 1993). The function
implementation of length does not prevent us
from having a private data member, say Length,
encapsulated in the object.

Therefore, the inclusion of a length function in
the interface of time objects introduces flexibil-
ity for the programmers of a time class.

The length function needs an actual argument
of type Granularity. Thus, a user can request
the length of a time object with respect to the
user’s assumed granularity rather than the gran-
ularity encapsulated in the time object. In terms
of C++, the member function length in the in-
terface of class TIME has a prototype

float length(Granularity = NULL);

The default value NULL can be used to indicate
that the granularity stored in the target object
should be used to calculate the length.

Related to the length of a time object, we have
a group of arithmetic functions for class TIME.
For the completeness, the length function is also
included in the following list of arithmetic func-
tion prototypes:

o float length(Granularity = NULL);
e float add(float, Granularity = NULL);
o float add(TIME&);

o float subtract(float, Granularity = NULL);
e float subtract(TIME&);

e float multiply(float);

o float divide(float);

In the above list, we have two add functions and
two subtract functions. The first add requires a
scalar value along with an optional granularity
as arguments. It accommodates the information
connoted in sentence “I finished the job in ten
more minutes than another job.” If the men-
tioned another job encapsulates a time object,
which is an instance ¢; of class TIME, the time
required by the current job will be

tj.add(10, minute).

The second add has an instance of TIME as
argument. It is designed to calculate the time
described in sentence: “To finish this job, I have
to do job 1 and job 2.” If the time objects en-
capsulated in jobs 1 and 2 are ¢; and 5, the time
required by the whole job will be

t1.add(ty).
The two subtract functions are used similarly.

The function multiply is used to compute the
length of a TIME object multiplied by a scalar
value. The function divide returns the length of
a TIME object divided by the actual argument.
As amatter of fact, only one of the two functions
is necessary since the former function with ac-
tual argument f* can be simulated by the second
with argument 1/f, and vice versa. For the sake
of conceptual completeness, we include both
member functions in class TIME.

Note that each of the above arithmetic functions,
except length, can be realized by an expres-
sion that involves function length and arithmetic
operators +, — %, and /. But, the functions
do more than just simple arithmetic operations.
For example, the first add function understands
granularity, which is not understood by the or-
dinary addition operator +.

In temporal data processing, we often need to
compare the lengths of two time intervals. We
define relational operators that compare the
lengths of two TIME objects. Particularly, we
overload the C++ binary operators >=, <=, >,
<, ==, and != as follows:

¢ Boolean operator >= (TIME&);
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e Boolean operator <= (TIME&);
¢ Boolean operator > (TIME&);

e Boolean operator < (TIME&);

e Boolean operator == (TIME&);
e Boolean operator != (TIME&);

The relational operators can be implemented
with the length function and the ordinary rela-
tional operators. In the implementation, a prob-
lem is that how we can compare two lengths that
may be measured in different granularities. A
solution is when we invoke the function length
for two TIME objects, we can pass the same
value for the optional Granularity argument.
Thus, we do not have to explicitly deal with the
granularities for the relational functions. The
above operators make it easy to encode queries
against a temporal database.

The spatial relation between time intervals is
important for AT (Allen 1984) and for temporal
information deduction (Maiocchi et al. 1992).
In addition to the above arithmetic relational
operators, we include the following spatial re-
lational functions in the interface of class TIME:

e Boolean before(TIME&);
e Boolean equal(TIME&);

e Boolean meets(TIME&);

e Boolean overlap(TIME&);
e Boolean during(TIME&);
e Boolean starts(TIME&);

e Boolean finishes(TIME&);

To simplify the discussion, we now assume that
each time point is a genuine time point, and each
time interval is a genuine time interval. That is
the length of each time point is zero and the
length of each time interval is greater then zero.

For two time intervals with both ends closed,
the meaning of the above functions follows the
usual semantics of the corresponding relations,
which has been well established (Allen 1983,
Allen 1984, Maiocchi et al. 1992). Since we no
longer insist that both ends of a time interval be
closed, we need to extend the above relational
functions for time points and intervals with open
ends. The principle is that a time point that hap-
pens to be the open end of a time interval does
not meet, overlap, start, or finish the time in-
terval. It is before the time interval if the time

point is the lower open end of the interval, and
the interval is before the point if the point is
the higher open end of the interval. Based on
the principle, we can uniquely determine the
relative positions between any two TIME ob-
jects. For example, if two time points represent
the same spatial position, the only relationship
between the two points is equal, they do not sat-
isfy any of the relations meets, overlap, during,
starts, and finishes. For a time point ¢ and a
time interval s, if the interval includes the point,
there are three possible relationships between
them, which are

e t meets s, if s has its lower end point closed
and equal to ¢;

e ¢ is during s, if t is between the two end points
(each of which may be open) of s;

e 5 meets t, if s has its higher end point closed
and equal to t.

We now assume that each TIME object is ei-
ther a time point, which is a genuine point or a
disguised interval, or a time interval, which has
a length equal to zero or a non-zero value. We
can generalize Allen’s completeness conclusion
with the following proposition.

Proposition 3.1. For any two TIME objects t
andt,, exactly one of the relational functions be-
fore, equal, meets, overlap, during, staris, and
finishes can be used to replace the function name
Func so that the disjunctive Boolean expression

H .FUI]C(IQ) V tz.Func(t])

has truth value true.

PROOF. By simple enumeration of all the pos-
sible functions and the relative spatial positions
of the two time objects #1 and #;. O

The spatial relational functions described above
for TIME objects can help avoid the truth incon-
sistency. A proposition that is true at an open
end of a time interval may be false during the
whole time interval, and vice versa.

The TIME class does not prevent the interpreta-
tion of a time interval as an infinite set of time
points or as a discrete set of chronons. If we
regard a time interval as a set of time points, the
ordinary set operations can provide convenient
ways to combine two TIME objects or subtract
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a TIME object from another. Here, a time point
is regarded as a singleton set. We include the

following set operations in the interface of class
TIME:

o TIME& intersect(TIME&);
e TIME& union(TIME&);
o TIME& subtract(TIME&);

Note that applying a set operation to two TIME
objects may not always make sense because the
operation may not be able to produce a valid
TIME object. For example, if two time objects
do not intersect with each other, the function in-
tersect applied to the two objects cannot find any
meaningful TIME object as the result. There-
fore, the responsibility of correctly applying the
above functions will be delegated to the clients
of the TIME class. Testing the intersection of
two TIME objects should be conducted before
the function intersect is invoked for them.

In the above list of interface functions for class
TIME, we have not declared a function for cre-
ating TIME objects. In terms of the C++ lan-
guage, we have not declared a constructor for
the class yet. Since a constructor of a class is
responsible for initializing the data members in
each instance, the design of a constructor for the
class needs the design of an internal data rep-
resentation for the class. We shall address the
question of constructor design after we decide
the internal structure for TIME objects.

3.3. Basic Time Objects and Time Class
Hierarchies

Traditionally, time point and interval are two
different notions. As mentioned before, for in-
formation processing, we may need to interpret
a time point as a time interval, and vice versa
(Ariav 1986, Maiocchi et al. 1992). We shall
present two object-oriented designs for time ob-
ject. The first design follows the traditional
viewpoint and provides two different classes for
time point and time interval. The second design
integrates time point with time interval.

For the first design, the class TIME described in
the last subsection will be designated as an ab-
stract class, which cannot have any instance and
which provides common conventional functions
for temporal information. To honor the distinc-
tions between a time point and a time inter-
val, we derive subclasses TPoint and Tlinterval

from the class TIME. Since the two subclasses
inherit class TIME, we only need to declare new
attributes (data members) and define methods
(member functions).

In class TPoint, a variable called position of
float type records the spatial position of a time
point. The granularity is recorded in a variable
granularity of type Granularity. In class TIn-
terval of time intervals, variables s_position
and e_position of float type records the star-
ing and ending positions of a time interval. A
variable granularity of type Granularity is also
declared in class TInterval. The classes TPoint
and TInterval inherit arithmetic functions from
the class TIME. The definitions of the func-
tions are based on the above interpretations of
function length. The constructor for the class
TPoint or TInterval should assign default val-
ues for the data member position or data mem-
bers s_position and e_position. It should also
assign a default value of Granularity to the data
member granularity.

With the above design, it is not easy to phys-
ically convert an object in class TPoint to an
object in class TInterval, nor vice versa. If we
need to abstract a time interval into a time point
or interpret a time point as a time interval, we
have to explicitly create a new instance of a time
class, say Tinterval, initialize the object with
the information stored in an existing instance
of another class, TPoint, and finally delete the
existing object. The “conversion” is expensive
in terms of computation time.

In the second class design for time objects, a no-
tion of general programming technique called
variant record (Headington and Riley 1994,
p. 223) is used to accommodate different types
of data with the definition of one class. The
class TIME will be expanded with data mem-
bers to accommodate a time point or a time
interval. Particularly, we declare two variables,
called s_position and e_position, in the class
TIME. To represent a time point with an instance
of the class TIME, we can simply assign both
s_position and e_position with the same float
value. A variable named granularity is in the
class TIME. It is used to determine the distances
of the positions s_position and e_position from
their common reference point and the length of
the TIME object.
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For both designs of time class, there are four
possible types of closeness for a time interval:

e a time interval may be open at both ends;
e a time interval may be closed at both ends;

e a time interval may be semi-closed with only
the lower end closed;

e a time interval may be semi-open with only
the lower end open.

The four closeness types will be used to define
an enumeration type, named Closeness, which
consists of four constant enumerators open,
closed, semi_closed, and semi_open. It is
possible to use all the four types of time inter-
vals in a single application. For the first design
of time classes, we declare variable closeness
only in the class TInterval. The variable is in
class TIME in the second design.

In addition to the property closeness, another
property for a time interval is discreteness or
denseness. In some applications, a finite time
interval must be interpreted as a dense inter-
val, i.e., it consists of an unaccountable num-
ber of points. For other applications, the same
time interval may be interpreted as consisting
of chronons and, thus, it is discrete. The dense-
ness of a time interval should be decided by
the applications. We leave the specification of
denseness of time intervals to the users.

3.4. Time Structures

In the study of temporal data model, a history
is a linearly ordered list indexed on pairwise
disjoint time points and/or intervals. A linear
data structure such as an array or a linked list
is appropriate for a history. As a matter of fact,
a set of time objects recorded for a property,
an event, or an activity may not be pairwise
disjoint. A forest may be applied to store the
time intervals that satisfy the IN-property. In
each tree of the forest, the parent node repre-
sents a time interval which includes each of its
child time objects. A forest is also appropriate
for time branching property, studied in temporal
logic (Van Benthem 1982).

4. An Object-Oriented Temporal Data
Model

Ariav (Ariav 1986) provided an operational
temporal data model, named TODM, based on
the three-dimensional metaphor of time. The
notion of a data cube consists of the three
concepts, entity, attribute, and time. There is
psychological evidence (Aaronson 1972) which
suggests the cubic form is the favorite metaphor
for presenting temporal information, and a ver-
tical axis for the time dimension is the least
ambiguous to identify temporal relationships
(Ariav 1986, p.501). The temporal path through
which a database has progressed is indexed with
the dense and continuous time axis. A database
based on TODM contains three-dimensional
cubes of data as its data spaces.

We can apply Ariav’s approach to the object-
oriented data model. For an entity object and a
time object, say an aircraft ¢ and a time point ¢,
we can uniquely determine a readiness level by
a function named readinessHistory. Let us as-
sume two class names: the class READINESS
describes the domain of the readiness level, and
the instances of class AIRCRAFT represent air-
craft. A C++4 prototype of the function would
be

READINESS AIRCRAFT
::readinessHistory (TIME&);

Note that the member function readinessHis-
tory included in an instance of AIRCRAFT may
not be interesting or important for a user. But,
the function allows a user of the object-oriented
system to move upwhen and downwhen by in-
voking the function with different time objects.
To present the relationship directly for an end-
user of database, a simple interface between
the database and the user should be designed to
hide the function readinessHistory. The inter-
face can be used to provide a three-dimensional
cubic representation for the stored data.

In terms of the above example, we describe a
conceptual temporal data model, named object-
oriented temporal data model (OOTDM). Like
other object-oriented data models, it has the or-
dinary object-oriented concepts. In a class in
OOTDM, we provide a member function such
as readinessHistory to describe a dynamic prop-
erty for the instances of the class. The member
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function is called a femporal function, which re-
quires a time object as an argument and which
returns an attribute value as result. By varying
the time object argument, we may observe the
states of an object at different moments.

Note that the object dimension in Ariav’s TODM
is realized with the notion of a relational tu-
ple. The data model OOTDM is more flexible
than TODM. It provides more expressive power
than Ariav’s TODM. Since the function used in
Ariav’s approach and that used in the OOTDM
for integrating time with attribute have similar
syntax and interpretation, we can ascribe the
OOTDM as an object-oriented data model that
is based on the three-dimensional metaphor of
time.

We use an object-oriented modeling and de-
sign (OOMD) approach to analyze the model
OOTDM. In OOTDM, we use a member func-
tion to describe a dynamic aspect of real world
entities. The function associates TIME objects
with the domain of an attribute. In OOMD, we
often need to describe the relationship between
two classes. If we make the involved object ex-
plicit, the relationship between the class TIME
and the attribute can be described as a ternary
association, which is an important notion of the
OOMD approach proposed by Rumbaugh et al
(Rumbaugh et al. 1991). The three dimensions
of OOTDM are modeled by a ternary associa-
tion.

4.3. An Internal Representation of
Temporal Data

For data management, a temporal attribute is
essentially a finite collection of binary tuples.
Each tuple has a basic value from the domain
of the attribute as one component and a TIME
object as another component. The second com-
ponent may be a structure of TIME objects so
that the entity may have the attribute value at
different times.

We can use the data structure dictionary to man-
age TIME objects for temporal attributes. A dic-
tionary can be used to answer whether a key k is
in the structure with query MEMBER (k). It can
be modified by the insertion and deletion of keys
with commands INSERT(k) and DELETE(k)
(Aho et al. 1974). In this paper, we assume that
along with each key £, the dictionary also keeps
an “explanation” of the key. The explanation is

a structure v; of TIME objects ¢ such that the en-
tity has the attribute v. We assume the structure
Vi to be a vector. To use the information stored
in the vector v, we need to extend the opera-
tions on the dictionary as follows. The answer
to a query MEMBER (k) is a vector v of TIME
objects. The query returns an empty vector v to
indicate that the entity has not been in the state
which has the attribute value k. The operation
INSERT (£, t) has a TIME object ¢ as its second
argument. It stores the object ¢ in to the vector
vk. The operations DELETE(k, 1), DELETE(¢),
and DELETE (k) can be similarly implemented
for deleting a value-time tuple, a time object,
or an attribute value. Note that when we use
the command DELETE(%) to delete an attribute
value k, the vector v, has to be deleted as well.

The method of encapsulation applies to record
temporal information in two ways in the model
OOTDM. First, encapsulation is applied to de-
fine the classes for entities by encapsulating
temporal attributes into the entities. Secondly,
the temporal attributes encapsulate both the or-
dinary domain values and the TIME objects.

5. Temporal Queries

- Let us assume an object-oriented database that

is based on the model OOTDM. For an entity
object described in the database and a temporal
attribute of the entity, we assume that a dictio-
nary is used to keep the history of the changes
of the attribute value. Particularly, we assume
that the dictionary associates a vector of TIME
objects for each basic value in the domain of the
attribute.

To simplify the following discussion, we as-
sume that the TIME objects in the vector for an
attribute value do not intersect; otherwise, we
can replace the intersecting TIME objects with
their union, which is a single TIME object. We
also assume that if a TIME object is an inter-
val with positive length, the lower end of the
interval is closed and the upper end is open. A
reader can modify the following algorithms for
the general situations, in which a vector may
contain time point and all the four types of time
intervals.

For an entity class E and an attribute A of the en-
tities described in class £, we use the predicate
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HOLDSE 4, or simply HOLDS when the class
FE and attribute A are clear from the context, to
describe the contents of a temporal database.
The predicate HOLDS(o, k, t) is used to indi-
cate that an entity object o in class £ has value &
for attribute A at time ¢. For a temporal database
based on OOTDM, the predicate has a unique
truth value for each combination of the argu-
ment values o, k,¢. The meaning of the pred-
icate HOLDS with respect to model OOTDM
is that in an object o, if the vector v from the
data member A contains the TIME object ¢, the
predicate HOLDS(o, &, t) is true. By replac-
ing the arguments o, k, and/or ¢ with variables
of appropriate types, the predicate can be used
to query the database for an entity, for an at-
tribute value, and/or for a TIME object such
that the predicate holds. We can extend the
exiting object-oriented database languages with
the predicate HOLDS so that a user can propose
temporal queries to access the temporal infor-
mation stored in an OOTDM-based database.

In this section, we study three types of temporal
query. Other types of temporal query can be
handled similarly. First, we study how to an-
swer the query for the attribute value of a given
entity at a given time point. The second type of
query asks for the sequence of attribute values
for a given object in a given time interval. The
third type of query requests for the time objects
when we already know the attribute value of a
given entity. The three types of temporal query
are discussed in the following three subsections.
In the first two subsections, we assume that there
is no implication or subsumption relationships
between the values of the attribute. This as-
sumption will be relaxed in the last subsection.
In the following discussion, we assume a given
object o.

5.1. Query for Attribute Value at Time
Point

We use this type of query to illustrate how to
apply the temporal density principle to deduce
the attribute value. The question to be answered
is for a given TIME object ¢ that is a time point,
we need to find a value k of attribute A such
that the predicate HOLDS(o, k, t) is true with
respect to a temporal database. It is possible
that no TIME object that is equal to or contains
t has recorded in the database for the entity o

and attribute A. In this case, we have to apply
the temporal density principle (Ariav 1986) to
determine an attribute value. That is if prior to
the given TIME object ¢, the latest time point
that has been recorded for the entity is ¢ and at
t' the entity o has attribute value k, the answer
to the query should be £.

We now describe an algorithm for answering the
query. In the following algorithm, for TIME ob-
ject t and value k of the attribute A, we try to find
in the vector v a TIME object # that is equal to
or includes the given TIME object. If we can
find such arecorded TIME object ¢ in some vec-
tor vy, the value k is returned as the answer. If
the search fails for every vector vy, we apply the
temporal density principle. This requires us to
determine a TIME object s(k, ¢) from the TIME
vector v such that s(k, 1) is the latest among all
the object in v, that are earlier than t. We can
determine the latest TIME object from the set of
TIME objects s(k, t) for all the attribute values
k. If the latest TIME object comes from vec-
tor vg, the value k is returned as the answer to
the query. Note that the TIME vector v; can be
returned by a query MEMBER(k) for the data
member A.

In the presentation of algorithms for processing
temporal queries, we often use the term earlier
to indicate the relationship before between two
time objects. The term later will be used as the
inversion of before. We use the term the latest
time object with respect to a given time object
t to refer to a time object s in a set S of time
objects such that s is earlier than ¢ but later than
all other time objects in S that are earlier than .

Algorithm 5.1: Query for Attribute Value at
Time Point

Input: Entity object o, time point ¢, and tem-

poral attribute A.

Output: A value k in the domain of attribute A
such that the predicate HOLDS(o, k, t)
is true for the given database.

Step 0 (Initialization) Let S represent a set
of TIME objects. Initialize S with an

empty set.

Step 1 For each value & of attribute A, select a
TIME object, denoted by s(k, t), from

the vector vy such that

e cither s(k, 7) is a point and is equal to
t or s(k, t) is an interval and contains
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t if such a TIME object exists in vy;
otherwise,

e determine a TIME object s(%, ¢) from
the vector v such that s(k, ¢) is ear-
lier than ¢ and it is later than all other
objects in v that are earlier than ¢.
Add the object s(k, t) to the set S.

If a TIME object s(k,t) can be found
in the first case for any value &, return
the value k as the answer and terminate
the algorithm; otherwise, if the set S is
empty, return and report that “no value
of attribute A can be determined for the
time point £.”

Step 2 Note that the TIME objects in set S do
not intersect with each other. Deter-
mine the latest object s(k,?) from S.

Return the value k as the answer. O

The above algorithm determines the attribute
value k for a given entity o of class £ and a
given TIME object ¢, which is a time point, so
that the predicate HOLDS(o, k, t) holds for the
database. We explain Algorithm 5.1 as follows.
The vectors v; of all the values k£ can be com-
bined into a linear list T of TIME objects such
that each pair of adjacent objects #; and #; ;1 in
the list satisfies the relationship before(t;, ti11).
If the given time point ¢ is equal to or is included
in some element ¢; in the list T, the value k that
is associated with the TIME object  is returned
as the answer in the first case of Step 1. Oth-
erwise, we have to find the latest TIME object
s from T that is earlier than ¢. If such a TIME
object s exists in 7, it must be in the set .S, which
is built in Step 1. The readiness level k asso-
ciated with the TIME object s determines the
answer according to the temporal density prin-
ciple. If the set S is empty, there is no TIME
object recorded for entity o and attribute A that
is earlier than or equal to ¢ and, therefore, we
cannot find an answer for the query. We use the
following example to illustrate Algorithm 5.1.

Example 5.1: (Query for attribute value at time
point) We use a real number to describe a time
point and a pair of real numbers enclosed by

[ and ) to represent a time interval. Suppose an
aircraft o in a database, which has recorded only
the readiness levels 1 and 3 for the entity. The

vectors

v = {[0.5,0.9),1.2,[1.5,1.9)},
vs = {0.4,[1.0;1.1), 2},
ve=0 for k#1,3.

Note that the list T', which includes all the TIME
objects recorded for object o, is

7={0.4,]0.5,0.9),[1.0,1.1),1.2,[1.5,1.9),2}.

Assume we are given time point ¢ = 0.3. Since
no TIME object earlier than ¢ has ever been
recorded in the database for the attribute readi-
ness level, we cannot decide an attribute value
for the time ¢. Accordingly, the second case in
Step 1 of Algorithm 5.1 returns an empty set S.

For a given time point f = 1.7, the interval
[1.5,1.9) contains t. We can decide the attribute
value 1 for the time ¢. Accordingly, the first case
in Step 1 of Algorithm 5.1 returns the readiness
level 1 as the answer.

For the time point ¢ = 1.3, there is no TIME ob-
jectin T thatis equal to or includes ¢. Therefore,
we have to apply the temporal density principle.
The second case of Step 1 will collect the TIME
objects 1.2 and [1.0,1.1) from the vectors v
and v3 into the set S. In Step 2, the latest TIME
object in S is 5(1,¢) = 1.2, and the readiness
level k = 1 is returned as the answer. O

Notice that we assume both time points and in-
tervals may appear in a vector v¢. An algorithm
similar to Algorithm 5.1 is still necessary when
only time points or only time intervals are al-
lowed to appear in vectors vg. As a matter of
fact, we still need the temporal density prin-
ciple to answer some queries for the temporal
database.

5.2. Query for Attribute Values during
Time Interval

We now study how to answer a user’s query
for the attribute values during a time interval i.
A difference of the query from the query pro-
cessed by Algorithm 5.1 for a time point is that
the time interval i may be long enough so that
the attribute has changed its value during ihe
time interval. Multiple values of the attribute
may be returned as the answer to the query.



Liwu Li: An Object-Oriented Approach for Temporal Data

179

Let us assume again the linear list ', which in-
cludes the TIME objects in the vectors vy for
all the attribute values k. We now use the list
T to describe an algorithm for answering the
query. We denote the interval with i = [p, g)
with real numbers p and g. The algorithm de-
cides whether there is a TIME object in T that
includes g or whether there is a TIME object
in T that is earlier than g. If there is no such
object in 7, there is no recorded attribute value
for any time point that is included in or earlier
than i, we cannot answer the query and the al-
gorithm terminates. Otherwise, for the ending
time point g of interval i, we determine a TIME
object sp from the linear list 7 such that one of
the following two conditions is true:

e 5p is an interval that includes q if there is such
an interval in 7'; otherwise

e sp is the TIME object earlier than g and it is
the latest among all the TIME objects in T
that are earlier than g.

The attribute value associated with the TIME
object s¢ is included in the answer set. Note
that the reasons for selecting the attribute value
as an answer to the query are different for the
two cases. In the first case, an attribute value has
been recorded for the time point that is imme-
diately before g; in the second case, we have to
apply the temporal density principle to imply an
attribute value for the time point that is immedi-
ately before g. For the first case, the algorithm
will use the starting point of the interval sq to
replace g. For the second case, we need to dis-
tinguish two situations: the TIME object s¢ is a
point or it is an interval. If s is a time point, the
algorithm will use s as the new value of g; if sg
is an interval, the algorithm will use the starting
point of sg as the new value of g. After we reset
q to its new value, we have to check whether g
is later than p. If g is later than p, we repeat
the above process; otherwise, all the possible
attribute values during the interval i have been
found and the algorithm terminates. Thus, the
algorithm accumulates a list of attribute values,
which is the answer to the given query.

Since the algorithm is more complex than Al-
gorithm 5.1, we use an example to illustrate the
basic idea encoded in the algorithm before we
present the algorithm.

Example 5.2: (Query for attribute values dur-
ing time interval) Like in Example 5.1, we

suppose an aircraft o in a database, which has
recorded only the readiness levels 1 and 3 for
the entity, and the vectors

v; = {[0.5,0.9),1.2,[1.5,1.9)},
vy = {0, [1.0, LA, 2%,
ve=0 for k#1,3.

The list T, which includes all the TIME objects,
is

T={0.4,[0.5,0.9),[1.0,1.1),1.2,[1.5,1.9),2}.

Assume we are given a time interval i = [1.05,
2.3).

First, we have ¢ = 2.3. From each of the vec-
tors vy and vs, we need to select a TIME object
that includes g or is earlier than g. Thus, we
establish a set § = {[1.5,1.9),2}. None of the
elements in S includes g. The latest object in S
is 2, which is from the vector v3. Therefore, we
insert the readiness level 3 in the answer set and
reset g with 2.

For g = 2, the latest TIME objects that either in-
clude q or are earlier than g in the vectors v and
v3 are [1.5,1.9) and [1.0,1.1). Since the time
interval [1.5, 1.9) from v is later than [1.0, 1.1),
we have a readiness level 1 for the aircraft dur-
ing the given time interval i. In this case, we
also need to reset the time point variable g with

value 1.5.

For g = 1.5, the latest TIME objects that either
include g or are earlier than g in the vectors vq
and v3 are 1.2 and [1.0,1.1). Thus, we have
a readiness level 1 again for the aircraft during
the given time interval i and we reset the time
point variable g with value 1.2.

For g = 1.2, the latest TIME objects that either
include g or are earlier than g in the vectors v,
and v3 are [0.5,0.9) and [1.0,1.1). Thus, we
have a readiness level 3 for the aircraft during
the given time interval i and we reset the time
point variable g with value 1.0.

Since the new value of g is less than p = 1.05,
the algorithm outputs the ordered list {2, 1, 1,2}
as the desired answer and terminates. O

Algorithm 5.2: Query for Attribute Values dur-
ing Time Interval

Input: Entity object o, time interval i, and tem-

poral attribute A.
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Output: A list of values k in the domain of
attribute A such that the predicate
HOLDS(o, k, i) holds for the given data-
base.

Step 0 (Initialization) Assume two variables p
and g, which are initialized with the val-
ues S_positon and e_position encap-
sulated in i respectively; i.e., we have
i = [p,q). LetSrepresent aset of TIME
objects and R be a stack with elements
from the domain of A. Initialize S and
R with empty set and empty stack, re-

spectively.

Step 1 For each value k of attribute A, select a
TIME object, denoted by s(k, g), from

the vector v, such that

e s(k,q) is an interval and contains g
if such a TIME object exists in v;
otherwise,

e determine a TIME object s(k, ) from
the vector vy such that s(k, g) is ear-
lier than g and it is later than all other
objects in v that are earlier than q.
Add the object s(k, g) to the set S.

If a TIME interval s(k, g) can be found
in the first case for a value k, push the
value k into stack R, set g with the
starting point of s(k, g), and go to Step
2. If the set S is empty, go to Step
3. Otherwise, determine the latest ob-
ject s(k, q) from S, insert value k into
stack R. If s(k,q) is a time point, set
q = s(k,q); otherwise, set g with the
s_position value of s(k, g).

Step 2 If p is earlier than g, reset S into an
empty set and go to Step 1; otherwise,

go to Step 3.

Step 3 Pop the values from stack R as output

and terminate the algorithm. O

If we denote the number of vectors v, that are
recorded in the database with m and the max-
imum size of the vectors with n, the above al-
gorithm has a time complexity O(m? x n?). In
fact, the factor O(m x n) represents the time re-
quired by Step 1. It also represents the number
of times that Step 2 is repeated. If binary search
is applied to each vector v to find the latest
TIME object that is earlier than g in Step 1, the
time required by Step 1 will be O(m x logn).
If we denote the total number of TIME objects

in all the vectors as N, the time required by
Step 2 will be in the order O(N). Therefore,
another expression for the time complexity of
Algorithm 5.2 is O(N x m x logn).

5.3. Query for TIME Objects

If there is no logical relationship between the
domain values of attribute A, the query
HOLDS(o, k, t), where o is an instance of entity
class F, k is a value in the domain of attribute A,
and ¢ is a variable of type TIME, can be easily
handled. The answer to the query is the set of
TIME objects contained in the vector v;. The
vector is returned by query MEMBER (k) for
the attribute A. (Note that the attribute value is
a dictionary.)

Sometimes, relationships exist among the at-
tribute values. For example, we can assume
that if an aircraft o is at readiness level i, it is
also at any readiness level j with j > i. This
type of implication can be recorded in the in-
tentional component of a deductive database. It
may be directly reflected in a query so that for
a given readiness level j, it requires all the time
objects associated with readiness levels i with
i < j. Under the assumed implication relation-
ship between the readiness levels, to process the
query HOLDS(o,j, t) for an aircraft o and the
readiness level j, we have to return the union of
the vectors v; for all i < j.

6. Concluding Remarks

Here, we present an object-oriented temporal
data model, named OOTDM, for information
and database systems to store and process tem-
poral information. The model features with
elaborated classes for modeling time and a con-
ceptual framework for integrating time objects
with entities and \attributes. In a time object,
we encapsulate not only the values for identi-
fying the spatial position of the time but also
powerful and flexible functions for calculating
the length, relative positions, and set operations -
of time objects. Both the conceptual model
and the internal view of OOTDM follow the
pervasive metaphor of time. The class of time
objects can be easily integrated into any object-
oriented software system. The model OOTDM
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can be used to design object-oriented database
systems.

Object-orientation helps the model OOTDM de-
fine data and declare operations. We demon-
strate how to apply the object-oriented concepts
encapsulation, inheritance, polymorphism, and
other fundamental notions of object-oriented
paradigm to define time objects and to inte-
grate the time objects with entity objects and
attributes. The temporal data model is also suit-
able to object-oriented query processing. The
temporal model OOTDM makes it possible for
an object-oriented database system to be ex-
tended with temporal attributes. The object-
oriented approach uses inheritance to generalize
ordinary attributes into temporal ones. Thus, an
existing object-oriented database can be easily
adapted to include temporal attributes. The data
model makes it possible to take all the benefits
of object-oriented software engineering, which
include reducing development time and enhanc-
ing reliability (Meyer 1992).

We conclude that the object-oriented paradigm
makes it possible for us to develop the data
model OOTDM to support powerful and flexi-
ble database systems that store temporal infor-
mation. The data model is extensible. It is not
based on other data models. In fact, it can coex-
ist or be integrated with other object-oriented
data models in object-oriented database sys-
tems.
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