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On Hub Location Models

Darko Skorin—Kapov and Jadranka Skorin—Kapov

W. A. Harriman School for Management and Policy, Stony Brook, USA

The study of hub location models involves designing
communication networks where some of the nodes serve
as focal points (i.e. hubs) and other nodes are connected
to those hubs. Possible applications include airline traffic
flow, telecommunications, and mail delivery networks.
In this paper we present an overview of recent results on
solvability of some hub location models. The overview
includes a heuristic approach based on tabu search,
lower bounds for cases where distances satisfy triangular
inequality, tight linear programming relaxations, and a
linkage between optimal and heuristic solutions. As a
result of those studies the range of optimally solvable in-
stances of NP-hard hub location problems was extended.
In particular, well known and heavily used bench-mark
data set of real world problems (Civil Aeronautics Board
(CAB) data set), that has resisted efficient solutions for
more than a decade, has been solved to optimality. The
paper concludes with the discussion of some avenues for
future research.

Keywords: Hub location; Linear programming; Integer
programming; Tabu search.

1. Introduction

Hub networks play an important role in model-
ing transportation and telecommunication sys-
tems. In this paper we address the p-hub loca-
tion problem (p-HLP) that can be informally de-
scribed as follows. For a given set of nodes (ori-
gins and/or destinations and potential hub 1o-
cations), and given flow requirements between
pairs of origin-destination nodes, the strategic
decision in hub models is to locate the pre-
scribed number of hub facilities and to allocate
non-hub nodes to hubs. The hubs are com-
pletely interconnected, while non-hub nodes are
connected to one or more hubs. The model in
which each node is allocated to exactly one hub
(resp., more than one hub) will be referred to
as the single (resp., multiple) allocation p-HLP.
Such connectivity protocol allows the use of rel-
atively small number of links and exploitation

of economies of scale by concentrating flows,
and thus resulting in efficient network invest-
ment. Although the p-HLP requires exogenous
internodal interaction as input data, the volume
of flow which takes place between the hubs de-
pends on the sites chosen for the hub facilities,
and the pattern of nodal allocations to the hubs.
This simultaneous interdependence of location
and flow distinguishes the p-HLP from the stan-
dard multifacility location problem.

Modeling of both single and multiple allocation
versions of the p-HLP leads to NP-hard com-
binatorial problems. Specifically, quadratic in-
teger programming formulation for the single
allocation case, and more recently linear inte-
ger programming formulations for both versions
of the p-HLP, received considerable attention
in the literature. Before referring to particular
studies we mention the well known Civil Aero-
nautics Board (CAB) benchmark data-set on
which most of the computational testing from
the literature was performed (for an extensive
survey see Campbell, 1994b). This data set
consists of airline passenger flow and distances
among 25 US cities (see list of node names in
Table 1). Subsets of these data are also gen-
erated so as to give 10x10, 15x15, 20x20 and
25x25 interaction systems.

The single allocation version of the p-HLP was
formulated by O’Kelly (1987) as a quadratic
integer programming problem, and a number of
heuristic algorithms to solve it have been pro-
posed, including: complete evaluation of all
locational patterns with respect to allocations
based on distances, such as nearest hub allo-
cation and allocation to one of the two nearest
hubs (O’Kelly, 1987); exchange and clustering
heuristics (Klincewicz, 1991); tabu search and
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1. Atlanta 6. Cleveland 11. Kansas City | 16. New Orleans | 21. St. Louis

2. Baltimore | 7. Dallas—Fort W. | 12. Los Angeles | 17. New York 22. San Francisco

3. Boston 8. Denver 13. Memphis 18. Philadelphia | 23. Seattle

4. Chicago 9. Detroit 14. Miami 19. Phoenix 24. Tampa

5. Cincinnati | 10. Houston 15. Minneapolis | 20. Pittsburgh 25. Washington D. C.

Table 1. List of cities in CAB data set

GRASP strategies with distance based alloca-
tions (Klincewicz, 1990); tabu search method
with allocations of non-hub nodes based jointly
on distances as well as on flows between the

nodes ( Skorin—Kapov and Skorin—Kapov, 1994).

For the CAB data set, the best known solutions
for the single allocation p-HLP were obtained
by the tabu search heuristic (TABUHUB) de-
veloped by Skorin—Kapov and Skorin—Kapov
(1994). The quality of the above mentioned
tabu search heuristic was further confirmed by
obtaining good lower bounds for cases when
distances satisfy the triangle inequality (O’Kelly
etal., 1995). The main contribution of that work
is the novel approach of using a known upper
bound to improve the lower bound.

Campbell (1994a) formulated the single and
multiple ‘allocation versions of the p-HLP as
mixed 0/1 linear programs. However, integral-
ity restrictions imposed on a subset of variables,
coupled with large size of formulations (for a
network of size n, the number of variables is
O(n*)) restrict the suitability of those formula-
tions to small instances. Since LP relaxations
of Campbell’s models resulted with highly frac-
tional solutions, tighter LP relaxations were
needed. Skorin—Kapov et al. (1995) have pro-
posed new mixed 0/1 linear formulations whose
linear programming relaxations often provide
integral solutions. For the above CAB data set,
the LP relaxations proposed in their study re-
sulted in almost all cases with integral solutions.
Where this was not the case, the LP objective
function value for the multiple (resp., single)
allocation case was less than 0.1% (resp., 1%)
bellow the optimal integer objective function
value.

Moreover, by exploiting the LP solution and
the best heuristic solution together with excel-
lent lower bounds from the LP relaxation, the
integrality was achieved by adding a partial set

of integrality constraints. Thus, by combining
the information from optimal LP solutions and
from heuristic solutions, the range of optimally
solvable instances of the p-HLP was extended.
Specifically, all considered instances of CAB
data set were solved to optimality. Note that
these problems are already large (the above LP
relaxations for the case with 25 nodes and 4 hubs
has 391,250 variables and 31,901 constraints),
and solving higher dimensional cases optimally
would require larger computer resources. How-
ever, the results of these studies suggest that
TABUHUB algorithm could be used with a rea-
sonable confidence on larger problems, since
for all considered cases of CAB data it achieved
optimal solutions.

The plan of the paper follows. In Section 2 we
discuss quadratic mixed integer programming
model for the single allocation version of the p-
HLP. Therein, we summarize the key elements
of the TABUHUB heuristic from Skorin—Kapov
and Skorin—Kapov (1994) and the idea for the
lower bound based on triangular inequality from
O’Kelly et al. (1995). Section 3 contains the
discussion on linear integer programming mod-
els for the multiple and single allocation version
of the p-HLP. In particular we describe Skorin—
Kapov et al. (1995) tight LP relaxations. Fi-
nally, in Section 4 we summarize these results,
and propose some lines for further investigation.

2. Quadratic approach for the single
allocation p-HLP

The single allocation p-HLP can be formulated
as a quadratic integer program (O’Kelly, 1987)
with a nonconvex objective function as follows.
Recall that there are n nodes that should inter-
act and p of those will be designated as hubs.
For nodes i and k let x;; be a 0-1 variable with
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the following interpretation: xz = 1 if a hub
facility is located at node k (and £ is assigned
to itself), and xy = O otherwise. For i # k,
xi = 1 if a node i is allocated to hub &, and
x;; = 0 otherwise. Note that there are no ex-
plicit variables to indicate hub linkages. The
number of units of flow between nodes i and j is
fij» and fi;; = 0 by assumption. The transporta-
tion cost of a unit of flow between nodes i and j
is d;; (distance is used as a surrogate for costs),
and o < 1 is the discount between hubs due to
heavy traffic. The single allocation p-HLP is
then:

QSA-p-HLP
n n 1
minZ= Z Zfij (Z dixi
el el kel
=+ Z d,imxjm+a Z Z dkmxikxjm)
m=1 k=1 m=1 (1°1)

n
s.t.(n—p+1)x;;— injZO, § = . 3
=il (1.2)

" :
ZJQJ'ZL i:1,._.,n, (13)
j=1

n

ijj:'p, (1.4)

=1

Xij € {0,1}, i=1,...,m j=1,...,n
(1.5)

The set of constraints (1.2) ensures that non-
hub nodes are only allocated to the hubs, the
set of constraints (1.3) enforces the allocation
of a non-hub node to one and only one hub,
and constraint (1.4) guarantees that the initially
prescribed number of hubs will be located.

2.1. Tabu search heuristic

Tabu search is an approach to overcome lo-
cal optimality entrapment in optimization prob-
lems with nonconvex objective function. Its
strategic principles were proposed by Glover
(1989,1990). Tabu search guides the search to
continue exploring the feasible region even after
a local optimum has been reached, and tries to
prevent falling back to the same local optimum.

In contrast to previous distance based alloca-
tions approaches for the QSA-p-HLP: “allo-

cate the non-hub node to its nearest hub” (e.g.
O’Kelly, 1987, Klincewicz, 1990,1991), Skorin—
Kapov and Skorin—Kapov (1994) developed a
tabu search heuristic (TABUHUB) in which
equal importance was given to the locational,
as well as to the allocational part of the prob-
lem. The method consists of a single exchange
heuristic for hub locations, which in the eval-
uation of an exchange uses a single exchange
heuristic for non-hub reallocations. Tabu search
strategy is superimposed on both levels to deal
with the local optimality problem. For com-
pleteness, we present the elements and an infor-
mal description of TABUHUB algorithm.

Locational neighborhood of x (a feasible solu-
tion to the QSA-p-HLP) consists of all feasible
solutions whose set of hub locations differs in
exactly one location from the set of hub loca-
tions defined by x, regardless of the allocation
of non-hub nodes. Since this neighborhood is
large (it consists of [(n — p)p]*P) possibili-
ties), a strategy is designed to examine it only
partially. Allocation neighborhood of a feasi-
ble solution x consists of all feasible solutions
which differ from x in the allocation of exactly
one non-hub node ((rn—p)(p— 1) possibilities).

A starting solution is constructed by choosing
p nodes with the largest amount of incoming
and outcoming flow as hubs, and by allocat-
ing each non-hub node to its nearest hub. One
master-iteration consists of evaluating all ‘sin-
gle hub location exchanges’ of the current hub
set. Every such evaluation starts with the "near-
est hub’ reallocations which serves as a start-
ing point for the ‘single non-hub allocation ex-
change’ heuristic performed to obtain a better
set of allocations for a given set of hubs. Af-
ter carrying on this reallocation process for a
number of iterations, the best obtained objec-
tive function value is used in the evaluation of
the current hub exchange.

For example, let z, be the objective function
value of the current solution. In evaluating the
replacement of the hub node r with the new
hub node g, first reallocate non-hub nodes ac-
cording to the nearest hub rule. Let this be the
starting solution for the ‘single non-hub alloca-
tion exchange’ heuristic as follows: having the
set of hubs fixed, in each iteration evaluate all
single reallocations of non-hub nodes and pet-
form the best one. After the prescribed number
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of iterations, denote the best achieved objec-
tive function value by z;,. The evaluation of
“replace the hub » with the new hub g” is then
performed on the basis of the difference z4 , —z..
This is done for every single exchange of hubs,
and the exchange with the smallest value of the
difference is actually performed and the current
solution is updated accordingly.

Tabu search strategy is superimposed on both lo-
cation and allocation levels with the same task
to guide the search beyond local optima. The
elements of the move from the current solution
to its selected neighbor are recorded in the fabu
list for the purpose of forbidding the reversal of
this replacement in a number (tabu list size) of
future iterations. (Without this assurance, the
search would cycle between the first encoun-
tered local minimum and its neighbor with the
smallest objective function value). The tabu list
is updated circularly. The tabu status is inactive
only if the move leads to a solution better than
the best found so far (this is the so-called aspi-
ration criterion). Due to the complexity of the
problem, separate tabu lists with respective pa-
rameters are maintained for the locational and
allocational part. For the locational part of the
problem, when the new hub node g replaces the
old hub node r, we record node r in the tabu
list and forbid its incliision in the set of hubs
during the tenure of its tabu status. Similarly,
in the allocational part of the problem, after the
reallocation of node ¢ from one hub to another,
further reallocation of ¢ is forbidden during its
tabu tenure.

The parameters of tabu search are, in general,
dependent on problem size. In TABUHUB al-
gorithm the tabu list sizes and maximal num-
ber of iterations for the locational, as well as
- the allocational part of the heuristic were se-
lected as follows. Preliminary testing suggested
that the appropriate tabu list should contain ap-
proximately 25%-33% of non-hub nodes. For
both parts of the search the tabu list sizes were
equal and, therefore, from the interval [n —
p/4,n — p/3]. The maximal number of itera-
tions was a function of the respective neighbor-
hood size. Recall that for the locational (resp.,
allocational) heuristic, the number of neighbors
considered for a given solution equals (n — p)p
(resp., (n — p)(p — 1)). For the allocational
heuristic, the maximal number of iterations was
set to be somewhere between 25%—-33%, i.e.

from the interval [((n—p)(p—1)/4, (n—p)(p—
1)/3]. For the locational heuristic, the maximal

number of iterations was set to be approximately
20% of the neighborhood size, or (n — p)p/5.
(Recall that an iteration of the locational heuris-
tic calls (n — p)p times the allocational heuristic
and is therefore computationally intensive.)

Additional experimentation has showed that the
method is robust with respect to those parameter
values, and that the best results do not change
with relatively small changes in parameter val-
ues. In particular, the best known solutions were
obtained early in the search process, therefore
the reductions in the maximal number of itera-
tions would not change the best obtained solu-
tions. The method was tested on the CAB data
sets ranging between 10 and 25 nodes, with 2,
3 and 4 hubs, and for the different values of
discount hub flow parameter . In all cases
the results matched or improved the best results
from the literature.

2.2. Lower bounds based on
triangle inequality

In order to measure the quality of heuristic
solutions to the QSA-p-HLP, in this section
we present the lower bounding approach from
O’Kelly et al. (1995). Their approach is appli-
cable to instances of the QSA-p-HLP in which
distances satisfy the triangle inequality. The
CAB data set falls into this category. The de-
velopment of their lower bounds is based on
the novel approach of utilizing the information
from existing heuristic solutions.

First, note that if the quadratic term in the objec-
tive function of the QSA-p-HLP is disregarded,
then the remaining problem is a p-median prob-
lem for which efficient solution procedures are
known, yielding a naive lower bound to the
QSA-p-HLP. Instead of ignoring the quadratic
term completely, one can develop a lower bound
by adding an underestimate of the costs of the in-
ter facility flows (Gavish, 1985; O’Kelly 1992).
The underestimate is chosen so that the ne-
glected quadratic terms are approximated by a
linear contribution to the objective. Consider
the situation shown in Figure 1.

Suppose that i and j interact and that their flows
are routed from i to k, from & to m, and then
from m to j. The flow between the hubs k and m
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Fig. 1. Base for the underestlmate of inter facility cost:
dix + dpn > dim

introduces a quadratic component to the objec-
tive. Specifically, the contribution of this flow
to the objective is axyXmf;jdim, which weights
the distance between hubs k and m with the vol-
ume of flow between nodes i and j, whenever x;;
and x;, are equal to one. From Figure 1, assum-
ing that the triangle inequality holds, note that
the following is true: d;, < di + dgy, implying
that dg,, > diyn — dig.

Upon substitution of d;,, —dj, for dg,, in the orig-
inal obj ective of the QSA—p-HLP, and making

can be shown that

Z > Z Z dkxxk
i=1 k=1
+ a (Z E Zfijdimxjm) .

i=1 j=1 m=1

i(1—a)+D;)

After some relabeling, the above substitution re-
sults in a linearization of the objective function
and yields a lower bound which is the optimal
value of the following p-median problem.

IP1

LBy = min(zn: zn:xik((dik(]“a)oi+Di)‘

i=1 k=1
n
+ o quiqu))
g=1

s.t. (1.2), (1.3), (1.4) and (1.5).

An effective way to solve the p-median prob-
lem is to develop a related Simple Plant Loca-
tion Problem (SPLP), where the constraint on
the number of facilities (1.4) is dualized, and
Lagrangian relaxation is used to solve for a pa-
rameter 0 which generates the correct number
of facilities. The constraint that requires p fa-
cilities to be opened is relaxed, and the problem
can be re-written as:

SPLP
min{z ink{dik[(l — )0; + Dy
i k
+ay fadg)+ 0 ijj}
g i

s.t. (1.2), (1.3) and (1.5).

By varying the values of 0, an arbitrary num-
ber of facilities p can be generated. Subtracting
Op (the artificial fixed cost) from the objective
cost yields the desired transportation cost. This
use of the SPLP to solve a p-median problem is
well known in the literature (see Mirchandani,
1990).

O’Kelly et al. (1995) improved the above lower
bound LB by incorporating the knowledge from
existing heuristic solutions. In computing LB
the part of the objective function associated with
the flow f; is underestimated by the amount:
Dyj = (dix + dim — dim)fijce. The lower bound
LB5, such that LBy, > LB, is Constructed as
follows.

The objective is to increase LB by “including
back™ part of the above underestimate of the
objective function. Namely, d;, in the objec-
tive function of IP; was replaced with ¢(i, m) =
di + dp, = min{d,-k +dynkEN, k# i,m}
(see Figure 1). In such case the underestimate
of the cost associated with the flow f;; would be
Dj; = Djj — (c(i,m) — dim)f . By the triangu-
lar inequality Dj; < D;; and by construction D,
is non- negatwe

The question remains how to implement the
above modification of IP; since the hub lo-
cations, as well as the allocations of non-hub
nodes, are not known in advance. Consequently,
the implementation of the above modification
in IPywould require quadratic term in the ob-
jective function. To preserve the linearity of
the objective function the above underestimate
of the cost is applied only for certain pairs of
nodes. Namely, some feasible solution to IPq
(to be referred to as the reference solution) is
taken, and then the above modification of the
objective function of IP1 is applied with respect
to that solution. In a sense, the modification
would “penalize” the choice of hubs and assign-
ment of non-hub nodes made by the reference
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solution. It is shown below that if the reference
solution or some “parts” of it endup in the opti-
mal solution to the modified problem, the lower
bound improves.

The choice of the reference solution was not ar-
bitrary. It is desirable to have a reference solu-
tion to IP1 which is likely to “survive” the above
penalization, and therefore the optimal solution
to IPy is a natural choice. Another good choice
for a reference solution is the best known heuris-
tic solution. Namely, the modification of 1Py
brings the integer linear program “closer” to the
original QSA-p-HLP. The conjecture is that the
best known heuristic solution is optimal or close
to optimal solution of the QSA-p-HLP, and so
it is likely that this solution would “survive” the
above modification. The computational results
confirmed the conjecture.

Below we summarize the development of im-
proved lower bound with respect to a reference
solution. Let N be the set of nodes and assume
that the reference solution to QSA-p-HLP is im-
plicitly given by a functiona : N — N, i.e. fora
node u, a(u) = v means that node u is allocated
to hub v.

The above modification of the objective func-
tion of IPy is applied for pairs of nodes i, for
which a(i) # a(j) and a(i) # i. Namely, in such
cases (c(i, a(j)) — d; 4(j) )f ijo is added to the cost
coefficient associated with the variable x; ;) in
the objective function of IPy, where c(i, a(j)) =
min{dit + diq * k € Nk # i,a(j)}. This
modification can be accomplished via the mixed
integer programming problem:

IP2 (a)

LBj3(a) = min (I

noon
£ Yo vilelial) - diag)ofy)
o)
s.t. (1.2), (1.3), (1.4), (1.5) and,
YijZXj a(j)—Xia(j)—%Xiiy i=1,...,mj=1,...,n
Y20, =1y 18 J = dyuus y;

where [ is the part of the objective function in-
herited from IPq, i.e.,

n

1= xa((da(1-a)0i+Di)+a Y fady),

=1 k=1 g=1

and indices a(j) are obtained from the reference
solution. Note that in the optimal solution to
the IP;(a), y; will clearly have the following
values:

ij={

O’Kelly et al. (1995) proved that LB,(a) >
LB1, and that LB; is a lower bound to the QSA-
p-HLP objective. Observe that in IP;(a) we lost
the structure of IP; that enabled us to apply the
Simple Plant Location Problem (SPLP) routine
to compute LB;.

1 if xj,a(j) — 1, x,-’a(j) = 0, Xii = 0,
0 otherwise.

However, next we will describe a compromise
model and another lower bound, LB3(a), for
which the SPL structure will be preserved, but
LB3(a) will not necessarily be a better lower
bound then LB1.To that end, consider the fol-
lowing integer linear programming problem:

IP3(a)

n I3

LB3((1) = mlH(I + Z Z(xj,a(j)

i=1  j=1

a(i)#a(j),i
— X; o) — Xii) (c(i, a(j)) — df,ao))afij)
s.t.(1.2), (1.3), (1.4) and (1.5). -

Clearly, LB3(a) < LBy(a). Hence, LB3(a) is
a lower bound. However, it is plausible that in
some situation LB3(a) < LBj. Indeed, since
IP3(a) does not exclude cases when x; ;) = 0,
and x; ,)=1 Or x; = 1, the negative amount
could be added to I. Nevertheless, the rationale
for considering LB3(a) is that if a reference so-
lution is robust, i.e. if it can survive the modifi-
cations in objective function coefficients, then it
is likely that LB3(a) > LBy. Moreover, EB3(a)
can be computed using the same SPLP routine.

Indeed, the computational results on the CAB
data confirmed the usefulness of LB3(a). The
lower bound (LB;) was obtained using the

approach from O’Kelly (1992) and the lower
bounds resulting from the above described ap-
proach were obtained for two distinct values of
reference solution: the optimal solution to LB
giving LB3(lby), and the best known heuris-
tic solution (obtained by TABUHUB) giving
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LB; (tS) 5
puted as LB3

The new lower bound LB3 is com-
= max(LB3(lb1),LB3(ts)).

The lower bound LB3; was tested on the CAB
data. In 83 out of 84 considered cases the best
previously known lower bound was improved.
As aresult of that research, the average optimal-
ity gap was reduced for smaller problems (all
instances with 10 and 15 nodes) to 3.3% and for
larger problems (20 and 25 nodes) to 5.9%. The
CPU time (on mainframe) needed to compute
tabu search solutions was ranging between few
seconds to a minute, while the computation of
LB and LBj required only few seconds.

3. Linear programming approach
for the p-HLP

In this section we present some recent results
for the p-HLP based on integer linear program-
ming formulations. First we consider a less
restricted problem, i.e. the multiple allocation
p-HLP. As in Campbell (1994a), we define the
following variables: x;j, = the fraction of flow
from location origin i to location (destination)
j, routed via hubs at locations k£ and m in that
order; y; = 1 if location k is a hub, and 0 other-
wise. The cost per unit of flow between origin
i and destination j, routed via hubs k£ and m in
that order, is given by djjm = dix + Qdm + dpmj.
We assume thatd;; = 0,i = 1,...,n, so the for-
mula for djj, remains valid when i and/or j is
a hub. Campbell 1994a formulated the multiple
allocation version of the p-HLP as:

LMA-p-HLP’
n n n n

min Z Z Z Z FodyimXaston (3.1)
i=1 j=1 k=1 m=1

5.1, ZJ’k = B (3.2)

sz‘f"‘m_l P =1 oy ] = L I,

k=1 m=1
Xijkm < Yk i= 1

N, J =
k=1 com ,mzl,...,n

Xijkm < Ymy L= 1,. nj=1,...,n,
s N E - N (3.5
yr € {0, 1}, k; Tsnns gl (3.6)
Xijgm 2 0, i=1,...,n, j=1,...,n,
b L poostly == Lisews B (3.7)

The objective is to minimize the overall trans-
portation cost subject to: having exactly p hubs
(constraint 3.2); the flow between every origin-
destination (o—d) pair (i,j) should be routed
via some hub pair (constraints 3.3) and flows
can be routed only via locations that are hubs
(constraints 3.4, 3.5). Variables y, serving as
hub indicators, are restricted to be (0 or 1, and
flow variables x are nonnegative. Due to con-
straints (3.3), it is clear that x variables cannot
have values bigger than 1. Problem LMA-p-
HLP is a very large mixed 0/1 linear problem
(with # + n* variables, and 1 4 n? + 2n* con-
straints). Campbell (1994a), pp. 390 states: “In
the absence of capacity constraints on the links,
an optimal solution will have all x;j,, equal to
zero or one since the total flow for each o—d
pair should be routed via the least costly pair.”
Yet, due to its size, the integrality of y vari-
ables makes the problem very difficult to solve.
Relaxing the integrality, however, results in a
highly fractional solution.

An intuitive explanation for obtaining fractional
solutions when relaxing the integrality of y vari-
ables is that the constraints (3.4) and (3.5) are
not ‘strong enough’ with respect to hub loca-
tions. Namely, since there are no fixed costs
for opening the hubs, relaxing integrality will
create lots of ‘partial’ hubs, depending on the
cheapest routes indicated via x;,, variables.

Skorin—Kapov et al. (1995) proposed a mod-
ification to Campbell’s LMA-p-HLP model as
follows. Replace constraints (3.4) and (3.5) by:

1]
E Xijkm S Yk i=1,...,n

m=1
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Their modified model (to be refered to as the
LMA-p-HLP) is equivalent to the original LMA-
p-HLP, since for a given i, j, and & (respectively.,
i,j, and m), only the cheapest route i—k—m—j
will ‘survive’. However, the linear relaxation
of the modified model LMA-p-HPL, is tighter
than the linear relaxation of the original LMA-
p-HLP.This follows because every nonnegative
solution satisfying (3.8) and (3.9) satisfies (3.4)
and (3.5), but not vice versa. Intuitively, we ex-
pect that y variables will have values closer to
integral values. The computational results per-
formed on the CAB data set confirmed it, and
in almost all cases (58 out of 60) the LP re-
laxation of the LMA-p-HLP provided integral
solutions. For the instances with non-integral
LP solutions, the LP relaxation resulted with
objective function value less than 0.1% below
the optimal objective function value. Moreover,
when compared to Campbell’s (1994) model,

the constraint set has been reduced by 27 (n—1)
constraints. The CPU time (on SUN Sparc 2 sta-
tion) needed to solve these relaxations for the
LMA-p-HLP ranged from a minute (10 node
cases) to 4 hours (25 node cases).

Solutions to the LP relaxation of LMA-p-HLP
exhibit multiple allocation property. Namely,
for a given o—d pair (i, ), it might be best to
use the link from i to the hub k, but for the
o—d pair (i,1), it might be best to use the link
from i to some hub other than k. However, in
numerous applications it is economically justi-
fied to restrict non-hub nodes to be connected
to exactly one hub. Such connectivity proto-
col greatly reduces the number of potentially
expensive links.

Campbell (1994a) also proposed a couple of
mixed linear programming formulations for the
single allocation version of the p-HLP. How-
ever, his linear programming relaxations are not
tight and lead to fractional solutions with objec-
tive function values significantly below the op-
timal objective function values (for details see
Skorin—Kapov et al. (1995))

Skorin—Kapov et al. (1995) proposed a new for-
mulation for the single allocation p-HLP ob-
tained by modifying the multiple allocation ver-
sion (LMA-p-HLP). The idea was to make the
allocation choice of an origin node i indepen-

dent of a destination node, and vice versa. To

that end, they introduce the ‘allocation’ vari-
ables z; where z;; = 1 if the origin is allocated

to hub £, and 0 otherwise. Note that since each
hub is allocated to itself, it must be zj, < zy
for all i and all k. The following mixed 0/1
formulation could then be used for the single
allocation p-HLP:

LSA-p-HLP

4 n R R
min Z Z Z Zf L

i=1 j=1 k=1 m=1 (3.10)
n
5% > 2 =D, (3.11)
k=1
14
szkzl, i=1,...,n, (3.12)
k=1
2k S o b= L i,
k=1,...,n, (3.13)
n
injkm = Zik, I = 15 ceg By
m=1
el k=1,....0
(3.14)

n
E Xijkm = Zjm, i1=1,...,n,
k=1

Py o cayitly mi= By vl
(3.15)
zxg€{0,1},i=1,...,n, k=1,...,n
(3.16)
Xgm 2 0, i=1,...0,j=1,...,4,
k=1,...,n,m=1,...,n,
(3.17)

Constraints (3.12) state that each node has to

be allocated to exactly one hub, constraints

(3.14) assure that for every destination j, the

Sum ) Xjjm (i.e. the total flow from origin i to
m

destination j routed via all paths using link i — k)
will be non zero only if location i is allocated
to hub k (independently of a destination). Sim-
ilarly, constraints (3.15) assure that for every
origin i and every hub £, a flow through the path
i—k—m~j is feasible only if j is allocated to hub
m (independently of an origin).

The LSA-p-HLP has n” binary variables, #n*
continuos variables, and 1 + 7+ 1% + 21° linear
constraints. For the CAB data set, the above
formulation resulted in LP relaxations rang-
ing from 10,010 to 391,250 variables and from
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2,101 to 31,901 constraints, which proved to be
difficult linear programs. The linear program-
ming relaxations of the LSA-p-HLP appear to
be tight: in almost all considered instances of
the CAB data (57 out of 60) the LP relaxations
have integral solutions. For the instances with
non-integral LP solutions, the respective LP ob-
jective function values were less than 1% below
the optimal objective function value. The CPU
time (on SUN Sparc 2) needed to solve these
LP relaxations was ranging from a few minutes
(10 node cases) to 15 hours (25 node cases).

The integrality for the instances with non-in-
tegral LP solutions was achieved as follows.
For the LMA-p-HLP there are n integrality con-
straints (i.e. 7 0/1 variables), but for each tested
data instance, adding only one of those con-
straints (as guided by the LP solution) was suffi-
cient to obtain an optimal integral solution. For
the LSA-p-HLP there are n* 0/1 variables, and
it is more difficult to decide which integrality
constraints should be added to obtain an optimal
integral solution. In this case the best known
heuristic solution for the given data instance ob-
tained via tabu search was also used as a guid-
ance in adding integrality constraints. Specif-
ically, the following heuristic rule was used to
determine the branching variable: branch on the
fractional hub variable z;; with the biggest sum
of differences between values of variables z;;,
i = 1,...,n of heuristic and LP solutions. As
a result, the optimality of all heuristic solutions
obtained for the CAB data with TABUHUB al-
gorithm was established.

4. Conclusions and directions for
future research

Most of research conceining p-hub location
problems so far was concerned with the sin-
gle and multiple versions presented in this pa-
per. More than 70 publications on the topic
were classified in Campbell’s (1994b) survey.
Therein he indicates that many of these studies
use the CAB data, thus enabling some compar-
.ison. In this paper we provided an overview of
some more recent results concerning heuristic,
~as well as optimal solvability of the hub loca-
tion problem. Integer linear programming with
tight linear relaxations combined with the good
heuristic solutions resulted in optimal solution

for CAB data set. These results also suggest that
the TABUHUB heuristic could be used with a
reasonable confidence for even larger problems.

Although p-hub location models considered in
this paper have lots of advantages, there are still
lots of opportunities for improvements. It would
be important to modify parameters in these
models so as to incorporate additional practi-
cal considerations. For example, transportation
costs might include some measurement for load-
ing and unloading, waiting time, fixed costs for
takeoff and landing, fixed costs of facilities, and
fixed costs to establish links. Another possibil-
ity for future research is the re-evaluation of
the way we model the level of discount for the
transportation between hubs. Closer inspection
of some of the above obtained optimal solutions
on the CAB data showed that the flow between
some pairs of hubs was not so large, suggesting
that for those cases economies of scale were not
properly utilized. We already started some ex-
periments with the new model in which the cost
of flow on a particular link is discounted only if
some level of traffic is reached, the requirement
on the prescribed number of hubs is removed,
and the direct traffic is allowed between non-
hub nodes. Note that, strictly speaking, this is
not a hub location model. However, prelim-
inary computation on small problems resulted
with hub like transportation networks. This sug-
gests that such implicit hub models might give
us transportation systems with better utilization
of economies of scale.
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