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This paper gives an overview of the principles of a system
for phoneme based, large vocabulary, continuous speech
recognition. In particular, the issue of acoustic-phonetic
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1. Introduction

As a problem in the field of artificial intelli-
gence, continuous speech recognition (CSR)
may be approached in different ways. One
can attempt to simulate human perceptual be-
haviour to the extent that we understand how
human receive, process, and interpret speech
with their ears and brain. Using this knowledge,
we can design a cognitive based-CSR system
for interpretation of speech signals. This ap-
proach, popular in the mid-1970s, has fallen
into disfavour since the arrival of statistically-
based technology in the early 1980s. Then,
template-matching was popular using the dy-
namic time warping (DTW) method, where an
input utterance, converted into a “test template”,
was compared against several “reference tem-
plates” to locate the best match. While some
commercial systems still use this approach, the
stochastic approach based on Hidden Markov
Models (HMMs) has gradually displaced the
DTW method during the 1980s and 1990s.

Today, the research community, and increas-
ingly commercial applications also, appears to
have settled on one basic approach for CSR: the
Hidden Markov Model, employing cepstral co-
efficients on a periodic basis (e.g., every 10 ms)
for (speech) signal modelling and a language
model (e.g., bigramm or trigramm) to exploit
the linguistic redundancies of language.

Current research systems for CSR are capable
of accuracy of almost 100 % for certain tasks
(e.g., recognising strings of digits). However,
we are far from having a general- purpose rec-
ognizer which can perform anywhere near the
level of humans [13].

The organisation of the paper is as follows. Af-
ter reviewing the stochastic approach to CSR
in 2. section and signal modelling in 3. sec-
tion, we cover the details of acoustic—phonetic
modelling based on HMMs in the 4. section of
the paper. In 5. section the basics of language
modelling based on conditional bigramms are
given. In 6. section, we describe the details
of the search strategy used in the CSR system.
The recognition of the uttered word sequence
is performed using a beam search procedure,
which attempts to find the word sequence which
best explains the input speech signal in terms of
given knowledge sources. Finally, in 7. sec-
tion the results of Slovenian CSR system is
presented. The Appendix covers the issue of
mapping acoustic vectors to discrete symbols —
the necessary pre-processing step when d1screte
or semi—continuos HMM:s are used.



194

N. Pavesi¢: Continuous Speech Recognition by a Network of Hidden Markov Models

Language Model t;

Plw,, ... ,wy)

Speech

——— Acoustic
vectors

Signal
modelling

Wi Wy

Uttered
_ words

max {PQxp, . Xp | Wi, ) - Plwy, . AUnY ‘

& Recognised
i word sequence

Recognition of
Uttered Words

Phoneme
Inventory

Pronunciation
Dictionary

Fig. 1. Block diagram of a CSR system based on stochastic approach.

2. Stochastic approach to CSR

Human speech communication have to deals
with many sources of variability: different speak-
ers, speaking conditions, topics of conversa-.
tion, choice of vocabulary, etc. Approaches
to CSR which have sought deterministic al-
gorithms, e.g., expert systems with acoustic-
phonetic if-then rules have not succeeded well,
due in large part to the difficulty of characteris-
ing the acoustics-to-text mapping deterministi-
cally. '

As a consequence the stochastic approach to
CSR is adopted, which rely on minimisation
of the probability of recognition error which
is done through the maximisation of the poste-
rior probability P(wy, ..., wy|x1,...,X7), i.e.,
through determination of the sequence of words
wi,...,wy of unknown length N which has
most probably caused the observed sequence
of acoustic vectors xq,...,Xy over the time
t=1,...,T derived from the speech signal.

By applying Bayes theorem on conditional prob-
abilities, the maximisation problem can be writ-
ten as:

maxy, . wy{P(X1,..
-P(Wl, Gl

'JXlel)"')wN).

W)} (1)

Therefore, to realise a system for continuos
speech recognition based on stochastic approach
(see Fig. 1), the following tasks have to be ad-
dressed:

1. Speech signal modelling: i.e. mapping of
speech waveform into a sequence of acous-
tic vectors X;.

2. Acoustic-phonetic modelling: i.e. esti-
mation of the conditional probabilities of
observing the acoustic vectors x1, ..., X7
when the speaker utters the words w, . . .,
wy. These probabilities are estimated dur-
ing the training phase of the recognition
process. For a large vocabulary system,
we use typically a-recognition unit smaller

- than a whole word, (e.g., phonemes). The
word models are then obtained by con-
catenating the phonemes according to the
phonetic transcription of the words in a
pronunciation dictionary.

3. Language modelling: i.e. computation
of the prior probabilities P(w1, ..., wy).
The language model incorporates restric-
tions on how to concatenate words of the
vocabulary to form whole sentences and
thus capture syntactic and semantic restric-
tions.

4. Recognition of the uttered words: i.e. se-
lection from all possible word sequences
that sentence (wq,...,wy)* which max-
imise (1). The optimisation procedure is
usually referred to as search in a state
space defined by the knowledge sources,
such as: the acoustic-phonetic models of,
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e.g., phonemes, the language model, and
the pronunciation dictionary.

It should be stressed that by (1) it is left open
the choice of suitable:

e structure for signal, acoustic-phonetic, and
language modelling,

e training (estimation of model parameters)
criteria, and

e strategy for recognition of uttered sequence
of words.

3. Speech Signal Modelling

It is well known that the waveform of a speech
signal, as it comes from the microphone, does
not correspond well to the human acoustic per-
ception of speech sounds. But it is neverthe-
less clear that there is a very strong correlation
between speech perception and its power spec-
trum which is changing with the time according
to the sounds contained in it. Experiments have
shown that speech spectrum can be taken as sta-
tionary (non changing over the time), if it is
observed over the short time intervals of order
of 10 to 20 ms, called frames. Therefore it is ad-
vantageous to divide the speech signal into the
(usually overlapping) intervals of equal lengths
(e.g., of 10 ms), and to compute a number of
parameters x; based on spectrum estimated re-
peatedly over the successive frames. This gives,
from a time sequence of speech frames, a time
sequence of acoustic vectors X1, ..., Xg, ..., XT
(see Fig. 2).

The most common components of acoustic vec-
tors are 8—14 mei-based cepstral coefficients

10ms

enriched by the same number of temporal co-
efficients, computed mostly as the slopes of 7
frames regression lines of the cepstral coeffi-
cients [15].

4. Acoustic—Phonetic Modelling

As already pointed out, the stochastic approach
requires the conditional probability

P(xq,...,Xr|wi,...,wy) of observing an a-
coustic vector sequence Xi,...,Xr, given the
word sequence wy, . . ., wy. These probabilities

are obtained by concatenating the correspond-
ing word models, which again are obtained by
concatenating phoneme models according to the
pronunciation lexicon. The phonemes are mod-
elled using the HMMs, i.e., by stochastic finite-
state automates which consist of a Markov chain
of states, modelling the temporal structure of
speech, and a probabilistic function for each of
the states, modelling the emission and observa-
tion of acoustic vectors.

4.1. ’Hidden Markov Models

HMM is a finite automation [11, 12|, having a
finite number of states, described by two inter-
related processes: a Markov chain of states con-
nected with transition probabilities and output
probability density functions, each associated
with one state. At every time instance the au-
tomation is in one of the states and at the same
time an output symbol is generated according
to the output probability density function cor-
responding to the current state. The Markov
chain then changes the state according to the
transition probabilities, produces a new output

X
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Fig. 2. The process of speech signal modelling.
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\haez\
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Fig. 3. A left-to-right HMM of a phoneme. (b) HMM of the (uttered) word has.

symbol and continues until the whole sequence
is generated.

An HMM for discrete symbol observations is
characterised by:

e [, the number of states in the model. We
label the individual states as {s1,...,s1},
and denote the state at time ¢ as g;. Al-
though the states are hidden, there is often
some physical significance attached to the
set of states.

e R, the number of distinct observation sym-
bols per state. We denote the individual
symbols as {v1,...,vg}. The observation
symbols correspond to the physical output
of the system being modelled.

e The state-transition probability distribu-
tion matrix A= [a;], where

aij=P|q:+1=5j|q: = 5i]>0, 1<i,j<L

for the special case of discrete-time, first
order Markov chain independent of time.

e The observation symbol probability distri-

bution matrix B= [b;(k)], where
bi(k) = Plx; = vi|g: = 5], 1 <kER

defines the symbol distribution in state s;;
j=1,...,L.

o The initial state distribution vector Z =
[zi], where
zi = Plgi = =i, 1=<i<L.
We see, that a complete specification of an
HMM requires the specification of the three
matrices of probability measures A, B, and Z.
For convenience, we use the compact notation

A = (Z,A,B) to indicate the complete parame-
ter set of an HMM.

4.1.1. Types of HMMs

HMMs can be classified by the structure of the
transition matrix A of the Markov chain as:

e ergodic or fully connected HMM,

if a; >0, 1<ij<L
e left-to-right HMM,
if aiJ-:O, jEi and =0, i#£1

The left-to-right HMM can readily model sig-
nals whose properties change over time in a
successive manner, therefore it is used to model
speech signals. Fig. 3.a) shows a left-to-right
HMM of a phoneme, and Fig. 3.b) the HMM of
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the word has, which is obtained by concatena-
tion of the HMMs of phonemes /h/, /&/, and
/z/ (in accordance with the system pronuncia-
tion dictionary).

4.1.2. Continuous Observation Densities in

HMMs

HMM can have continuous observation densi-
ties too. The most general representation the
continuous observation density is a finite mix-
ture of the form:

R
bi(x) = ch-r./\f(x, s i)

r=1

1<j<L

where X is the acoustic vector being modelled,
¢jr is nonnegative mixture weight for the r-th

mixture in state j satisfying Zr 16 = 1 fot
1 <j <L, and NV is any unimodal density
function. Without loss of generality, it can be
assumed that A is Gaussian with mean vector
W, and covariance matrix C;, for the r-th mix-
ture component in state j.

The probability density function b;(x) can be
used to approximate arbitrarily closely any fi-
nite continuous density function. As the obser-
vations are often continuous signals or time se-
quences of (acoustic) vectors, it is advantageous

to use HMMs with continuous observation den-
sities to model continuous signal directly. Fig. 4
stress the differences between discrete and con-
tinuous observation densities.

4.2. A Pattern Recognition System Based
on HMMs

If we assume to have a problem domain with
M classes of recognition objects and a training
set with N; patterns (observation sequences) per
class, then we have to:

1. model each class in the problem domain
by an HMM, that is, to determine A; =
(A;,B;,Z;) for i = 1,...,M from the
given training set of patterns,

2.a. determine the probability that A; gave rise
to to observation sequence X, that is, to
calculate likelihoods

P(x|A;) e R
for each pattern to be recognised and

2.b. name the unknown pattern with the sym-
bol (name) of the class whose model like-
lihood is highest, that is, with the name of
class

= A
= atg tnag {P(E[A)}

Discrete observation densities

I
"l

e
e
T

&

m
&
b

Continuous observatmn densities

Fig. 4. An HMM with discrete and continuous observation densities.
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We denote step 1. as training phase and step
2. as recognition phase of the recognition pro-
cess.

4.2.1. Training

To train the recognizer, we have to construct
a set of HMMs for all the recognition object
classes in the problem domain. That is, for each
class we must determine the model parameter
set (A, B, Z) from the observation sequences
found in the training set. There is no known an-
alytical method to determine model parameter
set that maximises the probability of the obser-
vation sequence in a closed form. However we
can find A such that its likelihood P(x|A) is
locally maximised by an iterative procedure [2].

The Baum-Welch Algorithm

Input: sequence of symbols X = x1x; .. .x7

Output: estimated model A4 = (A,B,Z)

Consider the quantity o,(s;) defined as

o (si) = P(x1, ..., Xe, @ = si|A)

that is, the probability of the partial sequence of
symbols x1, . . ., X, (until time ¢), and state s; at
time ¢, given the model A.

Consider also the quantity f,(s;) defined as

Bf(‘gi) = P(xl‘+13 sy X1y g = Sl'r)")

that is, the probability of the partial sequence
from ¢+ 1 to the end, given state s; at time ¢ and
the model A.

Algorithm

1. step: Firstestimate of the model A=(A,B,Z)
determine arbitrary, as well as a small
constant . Compute o4(s;) and B(s;);
fem L, ooy Al 3 = 1,2,000 L and

L
P(x|A) = 3 i ar(si)-
2. step: Compute the new estimate of the model
A = (A, B,Z) from the previous estimate

of the model A, from the sequence of sym-
bols x, and from o(s;) and f(s;) using the

equations:
= @) g o
GT(S!')
i=1
T—1
> aulsiaibj(xei1) By (s))
=~ _t=1
&= . 71 ;
> cu(si)Blsi)
=1
boge= 12, ool apyd
T
> als)Bils)
=1
e for x;=v =
bi(vk)= Or} : ) }kzli’,zz’,'.'.',,lﬁ
> auls)Bilsy)

T

(Note that the summation in the nominator
of the above equation takes into consider-
ation only those products ay(s;)B;(s;), for
which x; = vy.

3. step: Compute a;(s;) fort =1,2,...,T and
i =12,...,L, as well as P(x | A) =
Jo o
Zi:] aT(Si)'
4. step: If P(x|A) — P(x|A) < ¢, end the algo-

—~

rithm./\ A is estimated HMM. Else, com-
pute Bi(s;) for t = 1,2,...,T and i =
1,2,...,L, repeat the above reestimation

calculation using in place of A, and jump
to step 2.

End

4.2.2. Recognition

The probabilities P(x|A;), for given x=x1, . .., x7
and A; = (A;,B;,Z;);i = 1,...,M, can be es-
timated in two ways. We can consider all the
state sequences (paths) of length 7, and com-
pute the probability that any of these paths could
have generated the observation sequence; or we
can consider only the most likely path and find
its probability. We will take into considera-
tion only the second method, namely, the al-
gorithm based on dynamic programming called
the Viterbi algorithm [3].
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The Viterbi Algorithm

Input: the model A = (A, B, Z), and the input

sequence of symbols X = x1,...,x7.

Output: the most likely state sequence (path)
Qopt = q1, - - -, qr and its probability
P: = P(x|A).

opt
Consider the quantity &(s;) defined as
6,(s,~):quna); {P(ar, . = si %1, x| A) }

that is, &(s;) is the highest probability along a
single path at time ¢ which accounts for the first
t observations and ends in state s;. By induction
we can write:

5I+1(Sj) = rnlax {(St(Sj)ﬂjj} bj(x,+1).

The state which maximises this equation is the
last state on the optimal path up to time ¢, and
we memorise it in the array Y,1(s;).

Algorithm

1. step: Initialisation

d1(s1) = bi(x)
Silg) = 0, #=%u:5kL
pi(s;)) = 0, i=1,2,...,L.

2. step: Recursion
&(sj) = i:ﬂilaxi{ar—l(si)aaj}bj(xf)

Ye(sj) = arg i_TIllaX L{az—l (si)aij},

t=23,...,T, j=1,2,..,L.
3. step: Termination
Py, = max {Or(si)}
gr = arg max {8r(si)}.

4. step: Path backtracking
gt = Yey1(qer1) t=T-1,T-2,...,1.

End

5. Language Modelling

It is the task of language modelling to provide
reliable estimates for the a priori probabilities
P(w) of all word sequences that can be formed
using words of the recognition vocabulary V.
The probability P(w) can be expressed as a
product

P(w) = P(wq,...,wN)

N
= P(w1) - [[Pwn | w1, ..., Wn-1)
n=2

of conditional n-gramm probabilities. In prin-
ciple, maximum-likelihood estimates for con-
ditional n-gramm probabilities can be obtained
by counting the frequencies #(-) of n-gramms
and (n — 1)-gramms in a corpus of training data
and letting

P #wq,. ... w
P(wn | w1, ..., Wp-1) = #(v(mb = n)l).
ey Whe

Even if a huge text corpus is available for
counting, a big subset of possible n-gramms

"will never be observed in the data. As a con-

sequence, most of the estimates P(w,|wy, .. .,
wy—1) Will be close or equal to zero, which has
an embarrassing impact on the recognition pro-
cess. '

One well-established solution to this problem is
to drop all but the (n — 1) most recent words
from the history wy, ..., w,_1, amounting to an
approximation of P(w, | wq,...,w,_1) using
the conditional bigramms P(w, | w,_1) or con-
ditional trigramms P(w,, | Wy—2, wp—1) [5]. If,
for example, we use bigramms, the probability
P(w) of a word sequence of length N, is com-
puted from:

N
P(w) = Pw1) - [[ P(wn | Wa-1)
n=2
where
D # Wn—1,Wn
P(wy | Wa1) = (Wn—1,n)
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Since also many of the bigramm probabilities
do not occur in the text corpus it is necessary to
resolve the problem of missing word pairs.

One of the possible approaches is to compute
the conditional probabilities by interpolation as
follows:

P(wy | Wa-1) = p1 - P(wn)
=I5 'P(Wn. | Wn—])>
where coefficients py and p;, p1 + p2 = 1, can
be computed using the Baum-Welch algorithm.
Another approach to the problem of missing
word pairs is the use of Q@ < V word classes

Cy, where fol Cy = V, instead of words itself.
If we assume that each word is assigned to one
of the word classes and that the membership of
a word w,, is independent of the classes of the
preceding words, the language can be modelled,
using the bigramms, as:

N
P(w) = P(wi) - [ [ P(wn | C(wn))-
n=2
- P(C(wn) | C(wn))

where

and
C(wn—1), C(wn))
#(C(wn))

BC#a)|C W)=

Here C(w,) denotes the class where word wy, is
classified, and #(C(w,,)) the absolute frequency
of words belonging to the class C(wy,).

The adequacy of alanguage model is usually as-
sessed by its perplexity [1]. Perplexity provides
a way of comparing language models indepen-
dently of other components of the recognition
system. It is given by:
(p(w) = P(w)_I/Na

where N is the number of words in w.

A sequence of words with perplexity ¢ with re-
spect to some model has the same entropy as a
language having @ equally likely choices in all

contexts. The lower the perplexity, the better
the model.

6. Recognition of the Uttered Words —
Viterbi Decoding Technique

The recognition of the uttered words is taken in
the search procedure which attempts to deter-
mine the word sequence which best explains the
input speech signal in terms of the given knowl-
edge sources. The search space reflects both
the acoustic model and the language model. It
is a finite-state network, which consists of nodes
representing states of word HMMs and of addi-
tional nodes representing states in the language
model (nodes B/ where word transition begins,
and nodes E/ where word transition ends; nodes
B and E’ are not able to absorb acoustic vec-
tors). As can be seen on Fig. 5, two types of arcs
in the network can be distinguished. The first
type stands for acoustic word transitions, and
the second type of arcs represents the language
model probabilities.

By approximating the “most likely word se-
quence” by the “most likely state sequence” in
the search space on Fig. 5. a dynamic program-
ming search procedure allows us to compute the
probabilities in Eq. (1) in a strictly left-to-right
fashion and to carry out the optimisation over
the unknown word sequence at the same time
[4]-

The implemetation of the algorithm requires
four loops, one over uttered words, one over
the input frames (acoustic vectors X; or corre-
sponding symbols x; = v ), one over the HMMs
of words in the vocabulary, and one for states of
each HMM. After the final input frame has been
processed, the recognised word sequence is re-

covered by chaining down the traceback arrays
[9], [10].

The Viterbi Decoding Technique

Input: the acoustic—phonetic model {A; : j =
1,2,...,V}, the language model:
{P(wilwg) : Lk=1,2,...,V}, and {P(w) :
j = 1,2,...,V}, and the sequence of
acoustic vectors x, (or corresponding sym-
bolsx = it =12, .00, 1.

Output: the most likely word sequence wy, wy,
<. WHL
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Algorithm
For n =1 do:

1. step: Initialisation

2. step: Recursion

For acoustic vectors: Xp,...,X;,... and each
state sj; k = 2,...,L(j) of each word
model A;;j=1,...,Vdo:

8y(s}) = max {8-1( s} )l }bi(x)

k=2

3. step: Termination

P(w)) (s,

‘P(”a t’j) L(j))’

¢(n,1,j) = 0.

4. step: Traceback

Pn1) = max {y(m])} _
¢(n,1) = 9n; b ang. s gy b))
X(nt) = ag X {w(n1,))}.

For n=2,3,...d0£
5. step: Initialisation
81(s)=0,j=1,...,V
8,(s})=max{H(n—1,1-1), a;8,-1(s}) 1} (x1),
: t—1,  ifP(n—1,t=1)>d &_1(s
Wl):{ if (n—1,-1)>a); 8- (s)

}’t—l(éjﬂ, otherwise.
6. step: Recursion

For acousticvectors Xy, ..., Xy, ..., Xr,and each
state sj; k = 2,...,L(j) of each word
model Aj;j=1,...,V do:

SE(SD L(J){‘St 1( k)“ii}bj(xt)s
‘yr(s]) = Ye-1 (Sl):

r = arg man:l,...,L(j){‘St—l(Si)ﬂiz}-

= man_

where

7. step: Termination
Y(ntj) =
(p(nﬂ t’ j) =

PR {P(wjlw)o4(s) L(j))}

Ye( L(;))

8. step: Traceback

Do = max (yins)))
b(n,1) = ¢(n,t,arg (max {y(n,1,))})
X(n,t) = arg. eR {u, %, J)}-

End

The sequence of words wy,wo,...,wy, with
probability 9/(N, T), is obtained by backtrack-
ing using the backpointer array ¢(n,t). The
best sequence is then given as the maximum
of ¢/(N, T) over all possible N.

Since all hypotheses cover the same portion of
the input, their scores can be directly compared.
This enable us to focus the search on those hy-
potheses which are most likely to result in the
best state sequence. Every frame period (e.g.
10 ms), the values &; in a column of the network
on Fig. 5. are determined. Then, only the nodes
with a & greater than 877 — A will be kept on the
list of active nodes, the other nodes are pruned.
The value A, called the beam width, can be fixed
or variable during the program execution.

The experimental tests indicate that with this
type of search, called beam search, only be-
tween 1% and 10% of the potential state hy-
potheses have to be processed every frame pe-
riod without detrimentally affecting the error of
the recognition process [9].

The word vocabulary can be arranged as a lin-
ear or as a tree data structure. In the first case
each word in the vocabulary is represented as
a linear sequence of phonemes, independently
of other words (see Fig. 5). In the second case
we take into consideration that a large num-
ber of words in the vocabulary share the same
initial sequence of phonemes and therefore we
arrange the pronunciation dictionary as a tree,
where each arc of the tree stands for a phoneme
such that an arc sequence from the tree root to
a tree leaf represents a word of the vocabulary
(see Fig. 6).
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] ( HMM of word w,

1

% } HMM of word w,

1

D _@—HMMof .V::"Ol'd w, . -é/i ,

L(3)

. HMM of word w,
L) 1 L(v)
. Language .
Acoustic Model ‘ Model Acoustic Model

Fig. 5. The search space for CSR. Each word in the vocabulay is represented as a linear sequence of phoneme HMMs,
while the language is modelled using the conditional bigramm probabilities.

Fig. 6. Word vocabulary organised as a tree of phonemes.

The type of the vocabulary representation has a
direct impact on the organisation of the search
space. Experimental results of using a tree rep-
resentation of the word vocabulary, as well as
the use of the trigramm language model can be
found in. [8]. '

7. CSR for Slovenian Language

The application domain of the Slovene CSR sys-

tem covers word sequences used in flight infor-
mation retrieval dialogues. The sentences were
selected from recordings made at the booking
centre of the Adria Airways Company in Ljubl-
jana. The selected sentences were grouped in
four categories: introductory and concluding
parts of the dialogue, central part of the dia-
logue concerning the selected information do-
main, questions that would be redirected to an-
other address and utterances consisting of words
determining time and date. The database con-
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| WA [SR [WC T[S |D I |
training set=test set;
no language model 90.06 | 54.55 | 90.06 | 5.26 | 4.69 | 0.00
training set=test set;
bigramm language model 9332 | 63.64 | 9432|426 |1.42|0.99
test set; no language model 68.41 | 41.44 | 75.36 | 19.71 | 4.93 | 6.96
test set; bigramm lang. model | 79.71 | 27.78 | 84.46 | 13.09 | 2.45 | 4.75

Table 1. Word accuracies and error rates achieved in the speaker dependent CSR system for Slovenian language with
and without the language model.

sists of approximately 300 sentences with about
600 different words. The sentences were spo-
ken by 10 speakers (5 female and 5 male), and
were recorded on a HP Workstation with 16
kHz sampling rate. The recording conditions
are described in more detail in [7].

7.1. Acoustic—Phonetic Modelling

To perform word modelling using HMMs we
have used the ISADORA system, developed at
the University Erlangen—Nuremberg [14]. It
consists of modules for speech signal mod-
elling, vector quantization (see Appendix), train-
ing, and recognition.

7.2. Language Modelling

The probabilities of word sequences were com-
puted using word bigramms. For estimation of
bigramms, the words from the vocabulary were
classified into 127 word classes according to
grammatical and semantical characteristics of
Slovenian language.

7.3. Recognition Results

The recognition performance figures obtained
from the Slovene speaker dependent data-base,
evaluated in a 600—word continuous speech task
without any grammatical constraints are con-
tained in the Table 1. The results are given for
sentences used for training and recognition, and
for recognition of sentences, which were not
used for training. We have used nearly 200 sen-
tences for training and 100 sentences for testing.
The word accuracies were computed from the
equation: WA = 100 — (S+ D +1)%.

Appendix — Vector Quantization

Vector quantization (VQ) is a mapping:
VO :x — xp,

where:

X; is acoustic vector of #-th frame of speech sig-
nal and

X; 1s a discrete symbol from the set of symbols

{V1,V2, ¥ & .,VR}.

The VQ is realised in two phases. In the first
phase, the:

e partition the acoustic vectors space into R
cells and the

e representation of each cell by a centroid
vector

is usually realised by the Linde—Buzo—Gray al-
gorithm [6].

The Linde-Buzo—Gray Algorithm

Input: training set of acoustic vectors Sy
{Xl, — ,XN}.

Output: R cluster centroid vectors m;.

Algoﬁtkm

1. step Set the iteration index & to one (k = 1)
and compute the centroid of the training
set of NV acoustic vectors Sy:

m1:%2x.

XESN
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Training set of b
acoustic vectors | [ inde-Buzo-Gray |
Algorithm

Input acoustic vectors

Codebook of
R=2" Cluster
Centroid Vectors

{ Quantizer Discrete symbols

%

l X € {V ve V3

Fig. 7. Two phases of the process of VQ.

2. step Choose the values of the following pa-
rameters:

R number of clusters,

& threshold of the relative error between
two successive iterations, and

x = (e1,€2,...,8,)7 perturbation vector.

Let be: R = 2, where r is a positive inte-
ger, 0 and ¢, &, ..., & arbitrary chosen
small values.

3. step Divide k centroids into 2k reference
vectors y such, that each centroid gener-
ates a pair of reference vectors:

(mj+x)and (m;j —%); j=1,2,...,k
Set kb = 2k.
4. step Cluster the acoustic vectors into k clus-
ters:
x€ S, if [x—yll <|x-yil

Vo= 12 ool L 22
S. step Compute the centroids of new clusters:
m = — X
J N; Z ’
XGSj

* where N; is the number of acoustic vectors
in the cluster S;.

6. step Compute the error function:

1 .
D=3 min {[fx — mj][}.

XESN
7. step If
Dic1 = Di
Dy,
go to 4. step, else go to 8. step.

> 0,

8. step If £ = R, the algorithm is ended, else
continue with 3. step.

End

In the second phase, an arbitrary acoustic vector
is mapped to the symbol vy, if it is most similar
to the centroid vector of &-th cell. To measure
the similarity, an Euclidian distance measure
D(-,-) can be used.

The process of partitioning the acoustic vector
space, and afterwards of quantizing acoustics
vectors is illustrated on Fig. 7.
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