Journal of Computing and Information Technology - CIT 3, 1995, 2, 83-98 83

Realizing a Software Design
Measurement Tool:
Concepts and Results

Christof Ebert!

Alcatel SEL, Communication Systems, Stuttgart, Germany

Measuring the aspects of software complexity during
the design phase strongly helps to improve the software
development by providing control and management in-
struments early in the life cycle. A method to integrate
software design metrics into commercial software devel-
opment environments is introduced. The main concepts
of the environment including the underlying model and
its flexibility are explained, its use and operation is
discussed, and some results of the implementation and its
application to industrial projects are given with examples.

Keywords: CASE, CASE tool, complexity, design met-
rics, metrics, system design support.

1. Introduction

A science is as mature as
its measurement tools.
Louis Pasteur

Current research in the area of software mea-
surement is directed towards using quantitative
techniques earlier in the life cycle [Evanco and
Lacovara, 1994; Card and Glass, 1990]. Espe-
cially the commercial users of software devel-
opment environments are highly interested in an
carly detection of change-prone and fault-prone
parts of the system because the costs of removal
increase exponentially [Stark et al, 1994]. Man-
agement of the design process requires a better
understanding of design decisions and their re-
lations to all phases of the process. For this
purpose we have developed a framework of de-
sign decisions and related design metrics that
are based on a formal design description. As a

matter of fact, our application of design metrics
to a real world environment (telecommunica-
tions) helped to improve the designs.

Although measurement theory recommends de-
fining ‘measures’ as the methods of combining
any input with a number with respect to or-
der, scale, and range, while ‘metrics’ are certain
methodologies of using, applying, or combin-
ing different measures, we will follow current
literature that emphasizes the use of ‘metrics’
for both contents. In the field of software met-
rics we distinguish between process metrics and
product metrics [Melton et al, 1990; Fenton,
1991]. Examples for process metrics are given
in [Stark et al, 1994], classic examples for prod-
uct metrics are described in [Selby and Basili,
1991; Zuse, 1991].

Software metrics that are used to create qual-
ity models can be derived from processes or
products generated during the life cycle (Fig.
1, horizontal arrows). Quality models, thus,
are generated by the combination and statisti-
cal analysis of product metrics (e.g. complexity
metrics) and product or process attributes (e.g.
quality characteristics, effort, etc.) [Stark et al,
1994; Fenton, 1991; Selby and Basili, 1991].
These models are evaluated by applying and
comparing exactly those invariant figures they
are intended to predict, for example distinct pro-
cess metrics (e.g. effort, fault rate, number of
changes since the project started, etc.). Iter-
ative repetition of this process can refine the
quality models hence allowing their use as pre-

! This research project has been done while the author was with the University of Stuttgart. He was supported by the German

National Science Foundation (DFG) under grant D5-La 297/16

84

Christof Ebert: Realizing a Software Design Measurement Tool

future feedback

ldasngn.’snu::m:atton changes, suggeshans)

Design
(decision
process

. . process metrics
S
~

i

Process

Integration
Maintenance

process metrics
Ouahty

current feedback (late, expensiva)

P . '
| "Design Y Design
qualty, & =i =os quality
‘. model ¢ attributes
) Seqe ‘dsuccessive
product metrics improvement
of the model

(design decisions)

'
:valiﬂation

Quality

model attributes

successive
improvement

prnduct metrics of ihe tnodsl

{cade + design changes, suggestions)

Fig. 1. Metric-based feedback cycles during the development process

dictors for similar environments and projects
(circles in Fig. 1). While currently applied
quality models for the software development
process are primarily focusing on product met-
rics of the source code [Stark et al, 1994; Selby
and Basili, 1991; Porter and Selby, 1990], future
control mechanisms should be based on design
metrics [Card and Glass, 1990; Al-Janabi and
Aspinwall, 1993; Ebert and Riegg, 1991]. The
obviously shorter feedback cycles (dotted line
in Fig. 1) permit a direct design improvement
without waiting for the source code.

Certainly, early complexity estimates are needed
as indicators for potentially troublesome com-
ponents. They could also form a basis for man-
agerial instruments, such as effort or cost esti-
mation and resource planning as soon as pos-
sible in a project. An instrument to impose
order and structure is classification. Thus, one
of the goals of this paper is to show that the
classification of all possible design decisions
prior to measuring some special attributes that
might be related to the design quality, or not, is
a more intuitive approach. For the purpose of
selecting appropriate metrics we used the clas-
sification scheme which ensured that different
factors or aspects of. complexity were equally
considered. One of the earliest studies of de-
sign complexity and its factors was presented
by David Card [Card and Glass, 1990]. He
distinguished design complexity in functional

complexity resulting from the original require-
ments (i.e. problem-dependent complexity that
usually cannot be controlled by the designer),
system complexity which includes structural and
data complexity (i.e. introduced and controlled
by the system designer), and procedural com-
plexity (i.e. introduced and controlled by the
unit designer).

Among the few frameworks for integrating de-
sign metrics is one that was developed at MITRE
in the USA [Evanco and Lacovara, 1994]. The
goal of that project was to provide early indi-
cators for software quality. Unfortunately, only
a design metrics model is described, yet the in-
tegration part does not provide any insight in
how to integrate these metrics. The ESPRIT-
backed REQUEST project deals with an au-
tomated quality management system that sup-
ports quality management during the complete
software life-cycle. Another ESPRIT project,
COSMOS, is focusing on metric sets and tool
workbenches for real-time systems. Due to the
lack of tool support during earlier phases, most
other projects that are concerned with analyz-
ing complexity factors and quality concentrate
merely on source code [Selby and Basili, 1991;
Porter and Selby, 1990]; few deal with detailed
design [Card and Glass, 1990; Al-Janabi and
Aspinwall, 1993]. In many projects results were
either too theoretic or they could not be gener-
alized due to the lack of adequate tool support

Christof Ebert: Realizing a Software Design Measurement Tool 85

or projects to be evaluated. Several reasons can
be identified:

e insufficient empirical data;

e isolated tool environments;

e no connection to the development process;
e mere mathematical approach.

Complexity, to our point of view, is a multidi-
mensional attribute such as quality and therefore
it consists of different factors. To put it simply,
it is insufficient to measure just length or cy-
clomatic complexity because software products
— of all phases of the life-cycle — incorporate
other factors of complexity, e.g. functional or
data complexity that need to be considered, too.
If progress is to be reported during the course
of the project, monitoring and tracing compa-
rable complexity metrics for different products
is advisable. Comparability of the complex-
ity metrics must be ensured, that is they should
measure the same factors of complexity.

Chapter 2 briefly introduces the underlying clas-
sification model. Integration of design metrics
in a specific CASE environment is described in
chapter 3. Chapter 4 provides experience with
the measurement tool system and the CASE en-
vironment in industrial projects. Finally, chap-
ter 5 summarizes the basic ideas and results of
this article.

2. Theory meets practice: Classifying
what might be measurable

Conventional wisdom says that you cannot mea-
sure things that are neither reproducible nor
stable. Therefore, it makes no sense defining
measurement programs on a process that is not
defined. An answer to the problem might be
to start a measurement program upon the new
software that is to be developed by the organi-
zation. On the other hand, new projects usu-
ally take several years to finish their complete
life cycle, so it would take the same time to
accumulate useful data. It is thus advisable to
start the measurement program with already fin-
ished projects and collect as much data as avail-
able. Some metrics that can be collected from
all products are size, complexity, cost, effort,
and defects. Data sets from several projects can
be ordered according to the distinct quality or

productivity aspects that are often well-known
among development and sales people. Such ex-
ternal metrics include the number of customer
requests, the number of faults reported, the cus-
tomer satisfaction with the product, or the main-
tainability in terms of maintenance staff reports.

By applying basic statistical techniques it is
possible to get a measurement baseline with
almost no effort. These preliminary data sets
can function as a benchmark for projects un-
der development, thus improving the data and
the measurement collecting process. The de-
scribed approach has yet another advantage:
it is inexpensive at the beginning. To tell the
truth, implementing a useful measurement pro-
gram that really controls the process, and hence
costs associated with the development, is ex-
pensive. David Card and others mentioned ad-
ditional costs in the range of 5% of total project
costs [Card and Glass, 1990].

Design schemes are as different as the design
approaches, starting with rapid prototyping (not
to mention hacking) up to the very formal meth-
ods of a recently graduated Master of Software
Engineering. Software design process is the
production of a description of an implementa-
tion, from which source code can be developed,
out of a functional specification and a set of
nonfunctional constraints. A design decision
is any decision concerning the design made by
the design staff while producing that description
[Rugaber et al, 1990]. The software design pro-
cess is the development of partial solutions for
the original problem stated in the requirements
specification [Guindon, 1990]. These partial
solutions are derived on different levels of ab-
straction. Each individual solution is a set of
design decisions. Different solutions, such as
centralized or embedded controllers in an au-
tomation project, need to be evaluated against
each other and against the requirements. Se-
lection of a distinct solution out of several pos-
sible and feasible solutions, for example, is a
design decision. Design metrics serve as tools
that quantify different design decisions in or-
der to support the design process by providing
design models. These design models are built
on former projects and experiences and combine
metrics of design decisions with a framework of
rules (e.g. limits for metrics, appropriate ranges,
statistical background etc.).

86

Christof Ebert: Realizing a Software Design Measurement Tool

To describe it more informally, during the de-
sign process distinct decisions are derived from
the complete set of different applicable designs
in order to fulfill certain requirements. The de-
cisions of what aspects to choose are highly de-
pendent on the concept of modeling the solution
(e.g. requirements analysis, systemn design, de-
sign methodology). Depending on these differ-
ent models for designing the system, several sets
of design decisions that form individual solu-
tions for the same problem are possible. Hence,
design metrics function as a decision support
tool when used and applied correctly, allow-
ing to determine, qualify, and even compare the
results of design decisions. For example, a spe-
cific design measurement tool that can analyze
the size of data structures can be used in this
sense by supporting the optimal separation of
data objects according to the desired functional-
ity, application, and programming environment
[Card and Glass, 1990]. Fig. 1 shows this form
of design decision support by using design met-
rics. While transforming functional specifica-
tions and nonfunctional constraints into a soft-
ware design, a set of distinct design decisions
is selected out of all potential design decisions
as provided by the supporting CASE-tool. This

set of selected design decisions is considered as
independent variables affecting design results
and, therefore, product quality (Fig. 1, upper
left box).

It seemed that the collection of all distinct de-
sign decisions and their classification in a cer-
tain framework that could even be project-de-
pendent, might be an adequate approach. The
result was a hierarchical classification model for
the system design development process [Ebert
and Riegg, 1991]. For improved understanding
of this hierarchy we put its different levels of ab-
straction on top of the conventional design steps
(Fig. 2). These design steps symbolize the pro-
cess of selecting distinct design decisions out
of the complete classified set of all possible as-
pects. The original requirements are refined
during the system design into external (non-
functional) constraints and goals on the one
hand and solution-inherent (functional) aspects
on the other. The software requirements anal-
ysis separates into system environment or de-
sign description, and system structure, internal
structure, system communication, or dynamic
structure, respectively. Finally the preliminary
design produces system behavioral issues that

System Organisational artifacts —=|
External environment < Technical effort —_—
{non-functional)
constraints Design < Programming language s
and goals description Comprehensability —| B
a
System < Hierarchy _ 2‘
structure i el &
Requirements Modularity 5
Internal < Coupling — 8
structure Information flow — | 2
E
Solutioninherent System < Data representation —_— @
{functicnal) communication Control flow S
agpects Dynamic < Timing and parallelism _
structure Synchronisation ——
selection selection salection selection salection
process l process l process process L process l
System
&f System Saftware Preliminary * Detailed
Requirements |s— = i «———| Requirements |+———» . e ;
. Design N Design Design
Analysis Analysis
Terminal
Design
Decislons

Fig. 2. Hierarchical model for the classification of possible design decisions

Christof Ebert: Realizing a Software Design Measurement Tool 87

we divided into 12 classes [Ebert and Riegg,
1991]:

1. Organizational Artifacts (type and degree
of organizational and personal constraints in-
fluencing the development);

2. Technical Items (system environment and
technical constraints). '

3. Programming Language (qualities, particu-
larities, or peculiarities of the language to be
chosen);

4. Comprehensibility (representation and de-
scription of the system);

5. Hierarchy (structure in which the specifica-
tion objects are ranked into levels of subordina-
tion); ‘

6. Modularity (degree to which the system is
composed of discrete objects);

7. Coupling (manner and degree of intercon-
nections between software modules);

8. Information Flow (use of data objects and
their flow);

9. Data Representation (representation of data
objects and the individual allocation);

10. Control Flow (the intended sequence in
which operations or actions are performed);

11. Timing and Parallelism (dynamic issues
of the system, e.g. time constraints, parallel or
distributed structures, real time issues);

12. Synchronization (influence on and control
of system dynamic issues).

All decisions that emerge out of system design
and preliminary design influence the detailed
design and vice versa. The 12 classes are sub-
sequently refined into 35 subclasses (e.g. the
hierarchy class into “system hierarchy”, “re-
finement hierarchy”, “calling hierarchy”) and
these subclasses are further divided into 140
groups (e.g. the system hierarchy subclass into
“extension”, “ree structure”, and “homogene-
ity”). The terminal design decisions are on
the last level of this classification tree. We
investigated around 300 different terminal de-
sign decisions which are basically independent
of the specific software development environ-
ment [Ebert and Riegg, 1991]. Application to a
specific CASE environment (EPOS; Engineer-
ing and Project-Management Oriented Support

System [EPOS, 1991]) is described in ch. 3. The
tailoring process of selecting appropriate and
reduced classification models that finally lead
to individual goal-dependent sets of metrics is
illustrated in Fig. 3. Transformation of all spec-
ified design decisions to the EPOS environment
showed that some environment independent de-
cisions simply could not be projected into this
environment because of distinct limits (e.g. no
support by the specific design specification lan-
guage). Other decisions resulted in multiple but
similar entries after the transformation process
that always looses some information, thus be-
ing mostly canceled. The effect of this process
was a reduction of the 300 original decisions to
slightly more than 100 design decisions useful
and applicable to the EPOS environment.

All these terminal design decisions are measur-
able if intended, hence providing a vast set of
potentially quantifiable design decisions! Since
we are focusing on design decisions that are
measurable early in the development process,
we won’t give any proposals for measuring pro-
cess related aspects (resources, software test-
ing) in this article. The advantage of a tool
independent classification is that the design de-
cisions can be applied to any environment and
later on applied to the specific tools. This is
highly necessary in heterogeneous CASE en-
vironments where different modular tools are
combined for a distinct project. In addition, the
investigation of design decisions can be (and
actually is) used for all different design method-
ologies.

A lot of single design decisions are derived dur-
ing the complete design process: Time con-
straints of processes, data coupling between dif-
ferent design objects, control of atomic tasks,
interaction of hardware components (e.g. inte-
grated circuits, sensors, etc.), or the program-
ming language and its specific. qualities and
support tools are just a few examples for these
complex interdependencies. The hierarchical
classification implies that certain design deci-
sions might influence different areas. The data
flow and its impacts, for example, affect cou-
pling, but also information flow, control flow,
and even modularity. However, the priorities
are distinct: in one case the length of the data
paths throughout the modules and procedures
are of interest, while in another case the data ob-
jects and their components is of interest. Some

38

Christof Ebert: Realizing a Software Design Measurement Tool

Complete
classification
model

reduced

medels

reduction process
(problems, solutions,
environment, organisation,
design methods)

classification

selection of
appropriate metrics

metrics
definition

automatic
generation
of metrics

|

analysis
(statistics,
visualization)

—

CASE -
environment
{syntax, ...

Project
database

O
B

CASE - tool -
specitic
analysis &
documentation

Fig. 3. The reduction process of tailoring a specific classification framework

of the refined design decisions are highly en-
vironment dependent and deeply influenced by
the project under development. For example,
mechanisms for deadlock detection and preven-
tion are important for the design of embedded
real-time systems, while they are of no interest
in an almost linear scientific program without
any parallel resource allocations.

Complexity factors are determined by several
different metrics that we combined to a single
vector. Thus, the multifactorial appearance of
complexity is considered. Again, it needs to
be mentioned that this measurement vector is
selected according to the domain area of prob-
lems to be analyzed, namely in industrial au-
tomation with lots of interfaces and real-time
aspects. Another approach in defining a mea-
surement vector for the size of data-centered
business systems is proposed in Evanco and
Lacovara, 1994. Discussions on recent CASE
workshops about the choice of metrics CASE
vendors should include in their products showed
disagreement among users about what metrics
they precisely wanted. In a preliminary analysis
our measurement vector consisted of thirty ele-
ments that were further reduced to sixteen single
elements according to the following criteria:

e Applicability to the techniques used in our ap-
proach of developing real-time automation sys-

tems. All complexity metrics need to be ap-
plicable to design specification languages, both
textual or graphical, and to structured real-time
languages (Ada, PEARL).

e Traceability of distinct complexity factors in-
dependent of the method and technique that is
applied during a development step. The candi-
date metrics should measure one distinct factor
for different design languages.

e Statistical evaluation by means of parametric
statistical techniques should be permitted. The
metrics hence should have a distinct distribution
and need to be at least on a ratio scale.

e Common properties for metrics should be ful-
filled. These properties include robustness to-
wards the underlying complexity factor, speci-
ficity of the contributing complexity factor, re-
producibility which results in automatic mea-
surement, comparability of different metrics, or
usefulness of their application in real projects.

To reduce the factor dimension of the complex-
ity measurement vector we applied concepts of
multivariate statistics (factor analysis and clus-
ter analysis) [Ebert, 1992]. They are primar-
ily used in the analysis of complicated sets of
data and a priori unknown relations. Such tech-
niques for analyzing complicated sets of data

Christof Ebert: Realizing a Software Design Measurement Tool 89

may be regarded as defining a set of new vari-
ables derived from the original variables. This
reduced set of variables is intended to focus on
certain aspects of the original data without los-
ing too much information from it [Munson and
Khoshgoftaar, 1990].

The resulting metric vector consists of the fol-
lowing sixteen elements (affiliated complexity
factors based on Fig. 2 are in italics and mea-
surement description; both in parentheses):

1. system depth (hierarchy; supremum of num-
ber of refined hierarchy levels of modules).

2. module size (modularity; number of func-
tions per modular unit).

3. functionality (modularity; number of cou-
pling references among functional units divided
by all functional units in a module).

4. network size (coupling; number of all cou-
pling references including data, time, functional
coupling etc.).

5. functional coupling (coupling; number of
coupling references among functional units).

6. global data flow (information flow; number
of all globally used data objects).

7. external interfaces (information flow; num-
ber of input / output elements).

8. operand count (data representation; number
of unique data elements).

9. cyclomatic complexity (control flow; number
of binary decisions in the control flow).

10. nesting degree (control flow; average num-
ber of nesting levels in complete control flow).

11. nesting depth (control flow; supremum of
nesting depth).

12. parallelism degree (timing and parallelism;
number of potentially parallel tasks).

13. synchronization degree (timing and paral-
lelism; number of synchronization elements).

14. overall volume (volume; number of textual
lines and / or independent, distinctive graphical
elements).

15. statement density (comprehensibility; size
of functional volume divided by size of non-
functional, descriptive volume).

16. denotational length (comprehensibility; av-
erage length of object names).

The rules for accounting the complexity mea-
surement vector are kept stable since an ini-
tial phase when they have been selected from a
broader collection of metrics. This is important
in order to achieve reliable and reproducible
metrics. Communication problems caused by
imprecise and changing definitions of metrics
may cause an entire measurement program to
fail. For example, if overall volume is reported
in lines of code, this metric is dependent on
whether comments or blank lines are counted.
The difference in the figures could be in the
order of two or three to one [Fenton, 1991].

As we were also interested in validating this
selection of complexity metrics, we classified
them according to the fulfillment of nine criteria
according to Weyuker, as discussed in [Zweben,
1990]:

1. Nonidentity: Not all software should be rated
equally.

2. Finiteness: The metric must give the same
value to finitely many programs.

3. Noninjective: At least two different pieces
of software are rated as equally complex.

4. Antiextensionality: Two pieces of software
with same functionality. are assigned different
complexity values.

5. Monotonicity: The software consisting of
several components is at least as complex as one
of its components ((VP)(VQ)(|P| < |P; Q] A
el <P Q)))-

6. Anticomposition: Adding the same software
to two components with equal complexity might
result in two pieces of software of different com-
plexity ((3P)(3Q)(FR) (1P| = |Q| A ((|P;R| #
Q3 R|) A (IR; Pl # |R; Q1))))-

7. Antipermutability: Changing the order of
contents in two components might result in dif-
ferent complexity.

8. Renaming: Components with identical con-
tents and different naming (e.g. variable names,
etc.) have the same complexity ((3P)(3Q)((P =

Q) A (1Pl = 121)))-
9. Integration: After combining two compo-

nents the resulting complexity might exceed the
sum of complexities of the components.

A formal description of some properties of each
complexity vector component is given in table

90 Christof Ebert: Realizing a Software Design Measurement Tool

complexity metric properties of complexity metrics | range of
according to Weyuker values
112(3(4|5|6]7(8| 9
system depth o o oo e o € Np
module size o e |[o e o]0 ° ® € Rox
functionality oo 0|00 ° € Roy
network size ® R) € Ny
functional coupling ° N o o € Np
global data flow o oo oo € Np
external interfaces ° o | e ° € Ny
operand count ° e | e ° ® € Np
cyclomatic complexity | e oo ® € Np
nesting degree o oo o o e € Rot
nesting depth ® NEREREERE € Ny
parallelism degree ® N ® € Np
synchronization degree | e e/ o |o]e ® € Np
overali volume oo |efeo|e o € Np
statement density ° o e € Ror
denotational length ® e | e € Ny

description: e criteria fulfilled

Tab. 1. The Complexity Vector and Some Properties of its Components

1. The first column names the 16 components
of the vector. Weyuker’s nine properties are
assigned to each component in the following
columns. The range of possible values (in terms
of being either integer or real) is presented in
the last column.

All suggested metrics are on a ratio scale level.
Statistical methods to investigate relationships
among data sets are defined for different scales
and can be correctly applied up to the scale
level they are defined for [Fenton, 1991; Zuse,
1991]. For example, parametric tests that re-
quire the calculation of distances (means, stan-
dard deviations, correlation coefficients) are de-
fined for the data given at least in one interval
level of their measurement scale. It is possi-
ble to lower the level of the scale, which results
in an information loss, however it is prohibited
to scale up. Parametric multivariate statistical
techniques usually require a ratio scale. s we
wanted a scale level allowing such parametric
statistical techniques, all metrics are on a ratio
scale level. For the purpose of comparability
all metrics had been defined in the way to in-
clude zero as the lowest value of complexity,
which seems a reasonable property from a mea-
surement theoretic point of view [Fenton, 1991;
Zuse, 1991].

Not all of Weyuker’s properties are fulfilled by
the metrics, because for example, they investi-
gate exactly what Weyuker excluded (e.g. cri-
terium no. 8 is not fulfilled by statement density
and denotational length that measure psycho-
logical or comprehensive complexity). Failure
in fulfilling the first five criteria is more critical
and in suchcases metrics should be subjected
to further analysis. Cyclomatic complexity or
global data flow are such candidate metrics.
Criterium no. 2 is not fulfilled by such met-
rics that are too coarse, while criterium no. 5 is
even more important due to the — intuitive —
requirement, that complexity can not be reduced
by adding complexity. In fact, our metric vector
only violates these criteria in cases where met-
rics are normalized or where comprehensibility
is measured.

We realized that, although such criteria are de-
scribed as necessary — and not sufficient —-
for “acceptable” metrics, they still need to be
improved. Besides considering structural com-
plexity such criteria should also treat aspects of
pure psychological complexity. For example,
the property suggesting that functional identi-
cal programs should result in identical metrics
needs to be expanded towards considering de-
scriptive parts of the programs under evaluation.

Christof Ebert: Realizing a Software Design Measurement Tool 91

Functional identity simply does not deal with
naming conventions or length of remarks. Es-
pecially the comprehensibility metrics treat this
suggestion (e.g. by classifying those programs
or designs as more complex, having fewer de-
scriptive parts, or that have non-spelling object
names), thus not fulfilling this original property.

Criteria for validating software metrics need
much more attention than just discussing the
few articles available, which deal with pure
structural complexity, over and over again. Val-
idating metrics, according to such formal cri-
teria, seems reasonable from a theoretic point
of view, while validation based on what is in-
tended to measure (i.e. based on quality goals)
is of practical importance. Effective validation
requires appropriate use of methods such as in-
spection, reviews, testing, or statistical compar-
isons based on quality models and quality goals
that provide a baseline for design and hence by
their outcome show the applicability of design
metrics as quality indicators.

3. The Integration of Design Metrics
in a CASE Environment

To obtain insight and real benefits of metrics,
it is necessary to build a tool that helps col-
lecting metrics automatically and then investi-
gate real-world projects. We implemented met-
rics for different groups of the given classifica-
tion model (e.g. for information flow, control
flow, hierarchy, modularity, comprehensibility,
etc.) in a commercially available CASE envi-
ronment. The metrics were selected according
to mutual independence and usefulness. They
represent the described sixteen element mea-
surement vector. In reporting measurement data
from diverse development projects, we included
the raw data (e.g. complexity metrics for dif-
ferent products of the life-cycle phases under
investigation) and additional qualitative results
(e.g. number of faults and changes both due to
incorrect or missing realization of requirements
and effort for each product to be developed). It
is important to report such qualitative factors in
order to improve interpretation of metrics.

The 16 metrics of the measurement vector were
selected according to mutual independence and
usefulness. They were integrated into EPOS
because this state of the art CASE environment

supports all development phases of a project
(from requirements formulation and analysis
through system development, coding and test-
ing, to system implementation and maintenance
including project management support for all
phases) for the entire software/hardware sys-
tem. Since this environment permits the use of
various design methods (e.g. event-, function-,
module-, data-flow-, data-structure-, or even
device-oriented procedures), it is possible to
trace the influences of different approaches or
the results with respect to design metrics.

The EPOS tool [EPOS, 1991] represents a CASE
environment, which is used in over 1200 indus-
trial installations all over the world, mainly in
Europe but also in the US. It is used in all kinds
of software projects and covers all phases of the
software development process. The EPOS en-
vironment provides three different specification
languages:

e A requirements specification language (called
EPOS-R).

e A system design specification language (called
EPOS-S) to represent the design at different lev-
els of abstraction. This language includes seven
design objects to hierarchically model tasks
or procedures, data items, conditions, events,
interfaces and hardware components (Fig. 4).
This is the EPOS language relevant for software
design and therefore design metrics.

e A specification language (called EPOS-P) to
describe project management information.

System design with the specification language
EPOS-S is highlighted in Fig. 4 which shows an
excerpt of the EPOS-S design model. Accord-
ing to a top-down approach, all design infor-
mation is transformed into the combination of
seven distinct design objects. The boxes in Fig.
4 represent these design objects, e.g. modules,
actions (for tasks, functions or procedures), data
objects, conditions, events, etc. Out of sev-
eral existing design methodologies supported
by EPOS, this example presents a function- and
module-oriented approach. The upper levels of
the design model are defined during preliminary
design, the lower levels are defined during de-
tailed design. The definition of specific design
objects takes place by invoking these objects,
placing references between them, and by qual-
ifying these objects with additional attributes

92 Christof Ebert: Realizing a Software Design Measurement Tool

design
level 1 7 Ty
/-*/— " ‘\x system
L e N . N ~ structure
design
" level 2
. . b \ .
- preliminary
N o)
% - design
design « .
el [T |
- 2 > ¢ ; = - ® ’
design detailed
level 4 degign
o
boxes for design objects:] ra”c"gg#e] date [_——_] condition (W) event [T| interface

Fig. 4. Hierarchical design model for a top-down approach used by EPOS-S

(e.g. timing constraints, synchronization, con-
trol flow).

After entering the specified design information
into the EPOS data base, it can be retrieved and
evaluated by a number of tool systems to sup-
port the designers. The design measurement
tool system has been implemented on the same
basis as all other analysis tools. Therefore it
can be used in a highly interactive fashion dur-
ing the complete design process. Problem areas
being discovered while designing the top levels
can easily be changed before they might cause
any damage on the lower levels. Application
of the tool to industrial projects supported the
idea of classifying design decisions in a hier-
archical model. Thorough analysis of relation-
ships among measured design decisions during
the preliminary design showed influence on the

characteristics of lower levels.

Concerning the technical integration of our mea-
surement tool system into the EPOS environ-
ment, we distinguish two interfaces (Fig. 5).
The first is given the retrieval functions of the
metrics to get the design information and the
second is given by output functions of the met-
rics. With the help of these interfaces we are
able to fulfill the following requirements:

e Use of a given retrieval layer as the input inter-
face. All other components of the CASE system
use the same retrieval layer, e.g. the analysis tool
system for the analysis of completeness, type
conflicts and isolated objects. Thus, less main-
tenance effort is necessary for the measurement
tool system in the data retrieval part. If there
are any changes in the database it is only the
retrieval layer that has to be adjusted but not the

Christof Ebert: Realizing a Software Design Measurement Tool

03

; o
CASE too!

nhan'ge_s due to
more simple

n?ut analysis and
ransformation
100! system

errors using the

formal language
EPOS-8 e

_ |error analysis
toal system

graphic output on:
screen,

lotter,

aser printer

tool system

JEPOS
CASE too)

design
------- ~| specification |- - - - - - -,
, using EPOS-! .

changes due to

parts of poor

design uncovered
y measures’ analysis

pre-checked ,
retrieval-
optimized
design
information

management
support tool
system

graphic output|
interface

|

Fig. 5. The EPOS environment and the integration of the design metrics tool system

complete tool system.

o Use of the pre-analyzed and retrieval-opti-
mized information of the EPOS database. 1t
is therefore possible to develop simpler mea-
surement programs because a lot of normally
necessary (syntax-) analyses can be omitted. In
addition, system performance is improved.

e Use of a given output layer to generate the
graphical display. Some other analysis com-
ponents in EPOS apply the same interface, e.g.
the project management support system for the
documentation of cost and capacity analyses.
Changes in the hardware environment can hence
easily be managed. If some additional devices
are to be used by all output functions, only the
output layer has to be changed.

Besides, the complete measurement tool sys-
tem is implemented in the same source code
language (Syslan) as all other functions of the
EPOS environment. The effort for developing
this measurement tool and for integrating it into
EPOS took around three person years. This
includes statistical and visual data deployment.

Based on the underlying idea of classifying
design decisions, selecting appropriate design
metrics, and implementing them according to a
modular approach — including the use of al-
ready existing database retrieval mechanisms

or graphical output systems — , it is feasible
to transfer such a tool to other environments.
If the whole EPOS environment including the
measurement tool system needs to be ported
to another platform, only the compiler for that
source code language has to be adapted to the
new processor and the new operating system.
Then the EPOS environment is to be compiled
and linked, and it will run in any other environ-
ment.

The open architecture approach of the design
classification and measurement environment per-
mits the combination with other CASE tools.
Using the measurement tool in another environ-
ment only requires a translator to convert design
representations into the standard form expected
by the EPOS database (e.g. with lex and yacc).
Then the measurement tool can be applied to
standard representation to compute various met-
rics. The EPOS-S design language is used as
the target language for such transformations be-
cause of its variety of constructs supporting dif-
ferent design methodologies and real-time sys-
tem design (including software and hardware
components and their interactions). Currently a
translator is available for the Software through
Pictures™ CASE tool.

After or while entering design information in

94 Christof Ebert: Realizing a Software Design Measurement Tool

@ ‘ EPOS 200{) graphlc ouiput
o {W’i

Ee 1)

uumﬁ@ﬁmwmmméa

v { ol

EPO5 2000 [~
£POS 2{300 Design

g Yext-Docu gxzramﬁe-%w

; input

T
'l Tooks

Roa EHE AR

A e e B oA A

BT B

fFunelion selaction

Analysis

Fig. 6. Typical screen of the metrics environment within EPOS

the project database, the user can activate the
measurement tool system by using some simple
menus. The results are obtained almost immedi-
ately (of course, the reaction time dependens on
the project and database size). A typical screen
while working with the design metrics tool is
presented in Fig. 6. For this application, we
chose a PC setting under MS windows, how-
ever due to the chosen graphical input/output
layer, the design metrics looked similar under
X-Windows on a workstation.

4. Experience With the Tool- Exemplary
Results

For better understanding, the results of appli-
cations in several industrial real-time projects
are briefly described. One application included
around 50 modules with altogether 100,000
LOC (lines of executable code) to be explained
later on. First of all, we investigated the dis-
tribution of raw data with the Kolmogoroft-
Smirnov and the chi-square tests. Despite of
(ordinary level scaled) defectiveness and main-
tainability, normal distribution can be assumed

for all described complexity metrics with o =
0.01 which is sufficient for exploring parametric
statistical analyses. Design metrics correlated
with each other according to different underly-
ing complexity factors (which in turn provides
some validation for the factorial design com-
plexity model). For example, total volume, sys-
tem depth, functionality, total coupling, func-
tional coupling, and unique operands correlated
with values higher than 0.8 (confidence level:
a < 0.01). Other complexity factors did not
correlate at all (e.g. parallelism, synchroniza-
tion, depth of nesting, or denotational length).
Statement density was even negative correlated
with most complexity metrics, thus showing
that complex designs need an overhead for doc-
umentation. Effort (in terms of days spent on
design) correlated high with most complexity
metrics. An example is given in Fig. 7 which
groups effort (vertical axis) over total volume
(horizontal axis) with additional classification
for functionality or total coupling, respectively.

The metrics proved a high dependence on the
design method actually applied, hence provid-
ing guidelines for a latter application of source

Christof Ebert: Realizing a Software Design Measurement Tool

95

time func-4
30'_'"""'T""“'"‘-"'"'""i‘"'"““.‘"'"““.’""'""‘.""""": % 0. 49
X X : !] :] <U. &8>
L I el e Rt S e B DU -
20-—’.- smemecfesemeseeed O €100, 148=
15 R R bbb b <150.,1805
RS e : i PO <200 249>
ORGSR YTy
et e e
0 1000 2000 3000 4000 5000 6000 7000
tvol-1
time tepl-5
30‘["“'""."“'""'i""“"":'""'"'"'“'“"':'“'“'“7'"'""'i
! B0l :] : : i X <0.498-
L e e A o BT e
204—---nnnn- : ; freemmeesd R et STTEES i O <1000..1499>
S _______ s _________ _________ o 4+~ <1500 .. 1998
. ! Ly ' |
L v i VA o R S I i S
S Sl W W
0 1000 2000 3000 4000 5000 OO0 7000
tval-1

Fig. 7. Design metrics from real-time projects: effort spent on each module versus total volume with indication of
functionality (top) and total coupling (below)

code metrics. Again, Fig. 7 shows that those de-
signs with many small procedures (or ‘modules’
in a Parnas-type definition) take less effort than
the big modules that contain too many functions
without further reduction. Design metrics also
indicated outlying or critical design objects (e.g.
some procedures and tasks with an extreme vol-
ume (more than 300 lines of PDL like code with-
out counting comments), too many relations to
other design objects (over 100 references), and
high cyclomatic complexity. Another design
had an extremely broad and flat hierarchy (less
than 10 modules used around 200 procedures
and tasks that were grouped in just 4 design lev-
els), hence indicating complicated calling and
refinement relationships.

After having compared several designs of real-
time systems [Ebert, 1994] we found out the
following relations between design complexity
and product quality:

¢ High cyclomatic complexity shows an explod-
ing number of combinations of control paths
and a large number of competing conditions in
amodule. Bothresult in reduced testability (e.g.
C1 coverage cannot be achieved) and maintain-

ability which of course increases the risk of not
detecting faults in the software. For the same
reasons nesting degree and nesting depth should
be reduced to a level that permits testing and
comprehension.

e High global data flow, coupling or operand
count show a processing overhead from a large
volume of data. Testability is reduced because
test environments are difficult to produce and
populate, test productivity is reduced for the
same reasons and maintainability is reduced be-
cause changes might cause effects in many other
modules.

Based on our investigations we extracted sev-
eral design suggestions in-erder to-achieve a
low complexity design:

¢ Apply modern design and programming prac-
tices during the design and do not wait “till
coding”. This includes such principles as top
down requirements analysis and design, struc-
tured design with modules, hierarchies, and lo-
cation of data items, functions, and events for
synchronizing parallel tasks. Structured design
with small modules result in reduced control
flow nesting and less decisions.

96 Christof Ebert; Realizing a Software Design Measurement Tool

much tewer 23.1% bettar 2.0
~.
1.5 .1;23......{2.3.
10 OB5
unchanged 15.4% 9‘7? : 0.69 262
05 a3 :
uynchanged 0 . : ;
> > s 0 Find ol o)
05 § % z2...&8..3 3 %
2 % 3§ § o3 ¢
£ @ : =
-0 W . a 2 % &
ot £ a
15 =

fewer B15%

warse 2.0

Fig. 8. Results from a survey: percentage of system failures due to design or specification faults after using the EPOS
CASE tool (left side); the improvement of overall system quality according to different criteria using the EPOS
CASE environment (right side)

e Minimize the module connections by reducing
their fanout to around three to five. Of course
design goals such as small modules and low
coupling are influencing each other and thus
require clear priorities on design goals.

e Reduce the control flow complexity by lim-
iting the nesting depth to less than four and
limiting the number of control flow decisions
or the cyclomatic complexity to ten for single
procedures or tasks.

e Try to achieve design objects’ refinement
and calling hierarchies that resemble a S-shape
curve when the cumulative number of sub-ob-
jects is printed against the number of the hierar-
chical level. At the lower end of this curve to-
wards the top objects, its growth should change
smoothly.

e Sustain a high comprehensibility level by pro-
viding a sufficient length of descriptive parts in
all design objects and object names with mean-
ings rather than enumeration, such as “module-
1”. The descriptions should include function-
ality, related objects, used data items, date, au-
thor, test cases to be performed, requirements
fulfilled, management activities and staff con-
nected with this object, and so on.

e Use modern design tools, especially CASE
environments, and apply design methods that
fit your problems [Rugaber et al, 1990]. This
seems to be clear for programming languages
but not for design methods. For example,
real-time automation projects need other de-
sign techniques and programming languages

than database management systems. There are
CASE tools around for method support. If they
don’t fit to your specific approach (e.g. method
support) use meta-CASE tools. Once you have
derived a detailed design, translate it automati-
cally to the appropriate programming language.
Thus, you are ensured that no information is
lost, the descriptive parts are the same, and
that there is no unnecessary workload to be per-
formed.

The measured values were analyzed with re-
spect to boundaries (minimum, maximum), in-
tervals, deviations from the average, and corre-
lations between them. The interpretation was
performed according to these criteria and used
as follows:

e During preliminary design, the metrics and
their statistical evaluation (regarding similar
projects) are taken to distinguish different de-
signs (e.g. alternative approaches, division into
subcomponents).

e During reviews at the end of each phase, the
metrics are taken as indicators for weak compo-
nents (e.g. inadequate calling hierarchy, unsat-
isfying system description) and as indicators for
process management (timely ordered hierarchy
or volume metrics).

e After applying such metrics to different, how-
ever similar projects, the obtained statistical re-
sults can be used to define intervals or limits for
metrics, in order to increase the quality.

A recent survey of 25 major projects (effort:
2...48 pers. years) at 23 large European com-

Christof Ebert: Realizing a Software Design Measurement Tool 97

panies that were developed with the EPOS envi-
ronment reported improvements in quality (Fig.
8; results not yet published in English). Most
important was the high ranking of early fault
detection and removal during system and pre-
liminary design, which contributed indirectly to
an increasing overall project productivity. This
survey also proved that system quality assur-
ance is actually provided during the design in
the early phases of the life cycle instead of late
evaluative techniques, thus indicating the im-
portance of design quality assurance and design
quality control. Problems combined with the
measurement tool system that have been ob-
served up to now were usually related to the
lack of knowledge about design practices and
improvements. We have seen projects that are
still integrated in an unstructered Cobol style
just because the project manager has always
done it this way. The result of this observa-
tion is the development of courses for software
quality assurance with complexity metrics.

5. Conclusion

Complexity is a not-so-warm feeling
in the tummy.
Bill Curtis (1979)

Most complexity metrics have been designed
without regard to the problem domain and the
programming environment. There are many
forms of complexity and there are a lot of de-
sign decisions influencing the complexity of the
product. More important, metrics must be ap-
plied early in the development life cycle to pro-
vide trade-off. Once code is written or a detailed
design of a system has been achieved, much ef-
fort and time has been invested into what might
be an architectural unsound system. It is hence
at the top level design stages, when functionality
in the system is being partitioned and the com-
ponent interfaces are being defined, that soft-
ware quality prediction is most useful to the
designer. '

In order to obtain real benefits of design met-
rics, we developed a hierarchical classification
model of different groups of design decisions in
12 classes that cover over 300 single terminal
design decisions. With the model it is fairly easy
to extract a reduced model of design decisions
that covers all design decisions of a specific

project. These measurable design decisions are
fundamentals for the application of design met-
rics. The advantage of this approach is the sim-
plicity of selecting project-oriented design met-
rics out of a set of given design decisions for
all fields related to product complexity. Since
design involves making choices among alterna-
tives and too often the underlying rationale for
such decisions is lost, the model also allows to
trace design decisions through the development
process.

This paper presents an approach to integrate
software metrics techniques into a commer-
cially available CASE environment. The pro-
posed design decisions model is a useful way
to avoid the lacks of pure statistical analysis
and interpretation of software metrics and to
decide which metrics to implement. Since to-
day’s software engineering is dealing with the
system’s software and hardware development,
a CASE tool supporting both interacting com-
ponents was selected for the integration of the
measurement tool. The implementation in the
EPOS environment showed typical ways of cop-
ing with already existing databases and inter-
faces for the complete system life cycle. Our
method to integrate a measurement tool sys-
tem into CASE environments illustrates a way
to minimize the efforts for implementation and
maintenance of such a tool system and show
how to be able to deal with changes in future
requirements for such tools and their individual
interfaces. By transforming the design informa-
tion into a distinct target language as mentioned
in this paper, it is possible to integrate such mea-
surement techniques into other environments as
well.

With an early analysis of software products we
are able to give system engineers helpful hints
to improve their designs early in the life cycle.
Advantages using the proposed design metrics
tool together with the supporting CASE envi-
ronment include:

e reduction of costs by predicting critical areas
in a particular design;

e carly detection of abnormalities based on av-
erage during design and by showing complexity
trends as early as top level design;

e ability to compare different designs and thus
provide decision support during design.

98 Christof Ebert: Realizing a Software Design Measurement Tool

By following the given suggestions we could
improve designs and achieve a better design
and product quality in terms of such quality
items as understandability, reliability and main-
tainability. Of course, much more research is
necessary in order to provide complete guide-
lines for achieving high quality designs. The
basic step, however, still is the measurement
and evaluation of software complexity as early
as possible: during the software design phase
when the most expensive faults are induced. By
making software engineers aware that there are
suitable techniques and tools for analyzing their
designs this could be yet another small step to
overcome the omnipresent software crisis.

Acknowledgments

I am indebted to Andreas Riegg for his prelim-
inary work in developing fundamental parts of
the tool. Tool integration and support for re-
alizing the design metrics environment within
EPOS has been provided by GPP, Munich. The
DFG (German National Science Foundation) is
gratefully acknowledged for the financial sup-
port of this research project.

References

AL-JANABIL, A. and E. ASPINWALL, (1993): An Eval-
uation of Software Design Using the DEMETER
Tool. Software Eng. Journal, Vol. 8, No. 6, pp. 319-
324.

CARD, D. L. and R. L. GLASS, (1990): Measuring Soft-
ware Design Quality. Prentice Hall, Englewood
Cliffs. NJ, USA.

EBERT, C., (1992): Visualization Techniques for Ana-
lyzing and Evaluating Software Measures. [EEE
Trans. Software Engineering, Vol. 18, No. 11,
pp. 1029-1034.

EBERT, C.; (1994): Assessing the Impact of Structured
Real-Time Design Methods. Journ. of Microcom-
puter Applications, Vol. 17, pp. 287-297.

EBERT, C. and A. RIEGG, (1991): A Framework for
Selecting System Design Metrics. Proc. of the
Int. Symp. on Software Reliability Engineering.
IEEE Comp. Soc. Press, Los Alamitos, CA, USA,
pp- 12-19.

EPOS OVERVIEW, (1991). Distributed by: SPS Soft-
ware Products and Services, Inc., 14 E. 38th St.,
New York, NY 10016, USA.

EvANCO, W. M. and R. LACOVARA, (1994): A Model-
Based Framework for the Integration of Software
Metrics. Journal Systems and Software, Vol. 26,
No. 1, pp. 77-86.

FENTON, N. E., (1991): Software Metrics: A Rigorous
Approach. Chapman & Hall, London, UK.

GUINDON, R., (1990): Designing the Design Process:
Exploiting Opportunistic Thoughts. Human-
Computer Interaction, Vol. 5, pp. 302-344.

MELTON, A., D. A. GUSTAFSON, J. B. BIEMAN and A. L.
BAKER, (1990): A Mathematical Perspective for
Software Measures Research. Software Engineer-
ing Journal, Vol. 5, No. 5, pp. 246--254.

MUNSON, J. C. and T. M. KHOSHGOFTAAR, (1990): Re-
gression Modelling of Software Quality: Empirical
Investigation. Information and Software Technol-
ogy, Vol. 32, No. 2, pp. 106-114.

PORTER, A. A. and ‘R. W. SELBY, (1990): Empiri-
cally Guided Software Development Using Metric-
Based Classification Trees. [EEE Software. Vol.
7, No. 3, pp. 46-54.

RUGABER, S., S. B. ORNBURN and R. J. LEBLANC, JR,,
(1990): Recognizing Design Decisions in Pro-
grams. IEEE Software, Vol. 7, No. 1, pp. 46-54.

SELBY, R. W. and V. R. BasiLi, (1991): Analyzing
Error-Prone System Structure. [EEE Transac-
tions on Software Engineering, Vol. 17, No. 2,
pp. 141-152.

STARK, G., R. C. DURST and C. W. VOWELL, (1994):
Using Metrics in Management Decision Making.
IEEE Computer, Vol. 27, No. 9, pp. 42-48.

ZUSE, H., (1991): Software Complexity: Measures and
Methods. De Gruyter. Berlin.

ZWEBEN, S. H., (1990): Evaluating the Quality of Soft-
ware Quality Indicators.Proc. 22nd Symp. on the
Interface, Statistics of Many Parameters. pp. 266—
275, Springer, Berlin.

Received: February, 1995
Accepted: July, 1995

Contact address:

Christof Ebert

Alcatel SEL AG

Communication Systems

Lorenz str. 10

D-70435 Stuttgart

phone; 449-711-821-43955
e-mail: cebert@stgl.sel.alcatel.de

CHRISTOF EBERT holds a Ph.D. with honors from the University of
Stuttgart. He is with the quality strategies department of Alcatel SEL
in Stuttgart. He has published over thirty refereed papers in the area of
software metrics, real-time software development and CASE support
for such activities. His current research topics include software pro-
cess analysis and improvement, software resuability and productivity
analysis.

