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Dynamic Neural Network for
Prediction and Identification
of Nonlinear Dynamic Systems
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An attempt has been made to establish a nonlinear
dynamic discrete-time neuron model, the so called
Dynamic Elementary Processor (DEP). This dynamic
neuron disposes of local memory, in that it has dynamic
states. Based on the DEP neuron, a Dynamic Multi
Layer Perceptron Neural Network is proposed to predict
a time series of nonlinear chaotic system. As an another
application of the proposed Dynamic Neural Network
(DNN), the identification of a dynamic discrete-time
nonlinear system whose measurement data are spoiled
with noise 1s performed. To accelerate the convergence
of proposed extended dynamic error back propagation
learning algorithm, the momentum method is applied.
The learning results are presented in terms that are
insensitive to the learning data range and allow easy
comparison with other learning algorithms, independent
of machine architecture or simulator implementation.
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1. Introduction

Since artificial neural networks can effectively
represent complex nonlinear functions, they
proved to be a very useful tool in prediction and
identifying of highly nonlinear systems. The
neuron models most commonly applied are the
Feed Forward Perceptron used in multi layer
networks, and the Radial Basis Function neu-
ron (RBF). Both networks have proved to be
universal approximator of any static nonlinear
mapping [Ni90]. They are capable of iden-
tifying any nonlinear unique state function to
arbitrary desired accuracy. Recently, interests
have been increasing towards the usage of neu-
ral networks for modeling and identification of

dynamic systems. These networks, naturally,
involve dynamics in the form of feedback con-
nections and are known as Recurrent Neural
Networks. Several learning methods for re-
current networks have been proposed in liter-
ature. Most of these methods rely on the gra-
dient methodology and involve the computation
of partial derivatives, or sensitivity functions. In
this sense, they are extension of the well known
error-back propagation algorithm for feedfor-
ward neural networks [Zu92].

Examples of such learning algorithms [Na90),
[Ko92] include the error-back propagation
through-time algorithms, the real-time recurrent
learning algorithm, the recurrent backpropaga-
tion, and dynamic backpropagation.

Theoretical works by several researchers, in-
cluding Cybenko [Cy89] and Funahashi [Fu89],
have proven that, even with one hidden layer, ar-
tificial neural networks can uniformly approxi-
mate any continuous function over a compact
domain, provided the network has sufficient
number of units, or neurons.

Thus the network proposed in this study and
plotted in Fig. 2 has three layers. Each i-th
neuron in the first, input layer has single input
which represents the external input to the neu-
ral network. The second layer, which has no

~ direct connections to the external world, is usu-

ally referred to as a hidden layer consisting of
dynamic neurons which are presented by Fig. 1.
Each j-th dynamic neuron in hidden layer has
an input from every neuron in the first layer,
and one additional input with a fixed value of
unity usually named as Bias. Each k-th neuron
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in the third, output layer has an input from every
neuron in the second layer and, like the second
layer, one additional input with fixed value of
unity (Bias). The output of the third layer is the
external output of the neural network.

For proposed neural network with dynamic neu-
rons in hidden layer, the extended error-back
propagation supervised learning algorithm is
developed and neurons weights and coefficients
of dynamic neurons are learned simultaneously.
In this work the learning and generalization
capability of developed learning algorithm are
tested in two examples. The first example is pre-
diction of nonlinear chaotic system presented by
Glass—Mackey equation. The second example
of possible usage of proposed neural network
structure is the identification of a dynamic non-
linear system.

2. Dynamic Neuron Model

The basic idea of the dynamic neuron concept
is to introduce some dynamics to the neuron
transfer function, such that the neuron activity
depends on the internal neuron states. In this
study an ARMA (Auto Regressive Moving Av-
erage) filter is integrated within the well known
static neuron model. Such a filter allows the
neuron to act like an infinite impulse response
filter, and the neuron processes past values of
its own activity an input signals. The structure
of a proposed dynamic neuron model, the so
called Dynamic Elementary Processor (DEP),
is plotted in Fig. 1.

The filter input and output at time instant (n)

Fig. 1. Dynamic neuron model

are given in (1) and (2) respectively:

Pl
net(n) = ijuj (1)
j=1

¥(n) = bonet(n)+bq net(n—1)+b; net(n—2)
—aiy(n—1)—ay(n-2)  (2)

The input of the neuron activation function is
given in (3), and nonlinear continuous bipolar
activation function is described in (4):

y(n) = y(n) + wyu; (3)

where u; = 1 represents a threshold unit, also
called Bias.

y() = 15 ()) = —2

T 1t e

(4)

3. Learning Algorithm for
Optimal Parameters

The goal of the learning algorithm is to adjust
the neural network parameters (both the weights
and filter coefficients) based on a given set of
input and desired output pairs (supervised learn-
ing) and to determine the optimal parameter set
that minimizes a performance index E as fol-
lows:

1 N

E=33(0um - 0m)?  (5)

n=1

where N is the training set size, and the error
is the signal defined as difference between the
desired response Oy4(n) and the actual neuron
response O(n). This error, which is calculated
at the output layer (Fig. 2), is propagated back
to the input layer through the dynamic filters
of dynamic neurons in hidden layer. The result
is an extended, dynamic error-back propagation
learning algorithm. The adjustment of weights
and filter coefficients occurs for each input-
output data pair (pattern or stochastic learning
procedure).

The linear activation function given in (6) is a
chosen transfer (activation) function for static
neurons in the output layer.

Ok(n) = yi(net(n)) = nete(n)  (6)
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Fig. 2. Dynamic neural network (DNN)

where £ = 1,2,...,K is the number of neural
network outputs.

To determine the optimal network parameters
that minimize the index performance E, a gra-
dient method can be applied. Iteratively, the
optimal parameters (both the weights and filter
coefficients) are approximated by moving in the
direction of the steepest descent [Zu92]:

ﬁnew = Upig + AG (7)

A% = —-nVE = —n% (8)

where 7 is a user-selected positive learning con-
stant (learning rate). The choice of the learning
constant depends strongly on the class of the

learning problem and on the network architec-
ture. The learning rate values ranging from
1073 to 10 have been reported throughout the
technical literature as successful for many com-
putational back-propagation experiments. For
large constants, the learning speed can be dras-
tically increased ; however, the learning may
not be exact, with tendencies to overshoot, or it
may never be stabilized at any minimum.

To accelerate the convergence of the error-back
propagation learning algorithm given in (7), the
momentum method can be applied. The method
[Zu92] is given in (9) and involves supplement-
ing the current learning parameter adjustment
(8) with a fraction of the most recent parameter
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adjustment. This is usually done according to
the formula

A% (n) = —mEVE(n) + aA®(n— 1)
7 OELn)

= M50 T A1) )

where the arguments n» and n — 1 are used to
indicate the current and the most recent training
step (instant time), respectively, and a is a user-
selected positive momentum constant. Typi-
cally, o is chosen between 0.1 and 0.8. The
second term in (9) indicating a scaled most re-
cent adjustment of parameter ?}, is called the
momentum term.

To simplify the derivation of the learning al-
gorithm, a linear time shifting operator can be

defined by equation (10).
)] = et
z ' [net(n)] = net(n — i) (10)
A(2)(2)] = ¥(n) + ary(n — 1) + azy(n - 2)

B(z)[net(n)] = bonet(n) + by net(n — 1)
+ by net(n — 2)

According to the Fig. 1 it is obvious that:

dy(n) _ 0y(n) y(n) Oy(n)
a%(n) ~ 95(n) B5(n) 89 (n)
_ 10¥(n) 0y(n)
= %5(n) 69(n) (1)

Therefore, the used activation function has to
be differentiable.

Using the time shifting operator defined in (10),
four cases can be distinguished:

1) ¥ is a filter coefficient of the numerator B(z):
) -~
2] a(m)] = 2

o=bi Az

) ? is a filter coefficient of the denominator
A(2):

oh(n)] r
A% lo=a

= [Do(n)] =

3) ¥ is a neuron input weight:

BN _ oy = 52

M[Hj(n)] (14)

ﬁ_wf

) [net(n)] (12)

4) ¢ is a neuron threshold:

dy(n) _ oy
89 Io=w, Ow,

(15)

Dg(n) is a current parameter state within the
dynamic filters described on the right side of
equations (12), (13), and (14).

Thus, to determine the change of the dynamic
neuron activity depending on a filter and weight
parameters, the gradient has to be calculated
through time by the memory of the used filter.

The weight adjustment in the output layer
(Fig. 2) can be obtained by expansion (17).

OE (n) _OE(n) 80k(n) 8nety(n) (16)
00 (n)lo=v; 0O0(n) dnetr(n) OV (n)
gf;((?)‘ﬁ_% ~ (di(m) = Ox(m))yj(m) ~ (17)

Finally, a measure of performance must be spec-
ified. All error measures will be reported using
non-dimensional error index NRMS, Normal-
ized Root Mean Square error. "Normalized"
means that the root mean square is divided by
the standard deviation of the target data [La87].
Thus the resulting error index, or index of accu-
racy, is insensitive to the dynamic range of the
learning data, and allows easy comparison with
other learning algorithms, independent of ma-
chine architecture or simulator implementation.

The computer programs for proposed dynamic
neural network were written in C+-+ Program-
ming language and run on the Intel 1860 RISC
processor (33Mhz).

4. Prediction the Glass—Mackey
Time Series

P

Many conventional signal processing tests, such
as correlation function analysis, cannot dis-
tinguish deterministic chaotic behaviour from
stochastic noise. Particularly difficult systems
to predict are those that are nonlinear and chaotic.
It is known that chaos has a technical definition
based on nonlinear, dynamic systems theory
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Fig. 3. The Glass—Mackey Time Series with a = 0.1,
b=02,1t=30

[La87]. Examples of chaotic systems in nature
include chemical reactions, plasma physics, tur-
bulence in fluids, lasers, to name a few. When
parameters are varied, chaotic systems also dis-
play the full range of nonlinear behaviour (limit
cycles, fixed points, etc.). Therefore chaotic
systems provide a good testbed in which to
investigate techniques of nonlinear signal pro-
cessing, such as neural networks.

Lapedes and Farber [La87] suggested the Glass—
Mackey time series as a good benchmark for
learning algorithms, because it has a simple def-
inition, yet its elements are hard to predict (the
series is chaotic).

Glass—Mackey equation given in (18) is a non-
linear differential delay equation with an initial
condition specified by an initial function de-
fined over a strip with .

ax(t — 1)

R m — bx(1)

(18)

Choosing the initial function to be constant
function, witha = 0.2, b = 0.1 and v = 17
yields a time series x(¢) obtained by equation
(18), that is chaotic with a fractal attractor
of dimension 2.1. Increasing T to 30 yields
more complicated evolution and fractal dimen-
sion (d4) of 3.5. The time series for 1000 time
steps for T = 30 (time in units of ) is plotted
in Fig. 3.

The goal of the task is to use known values of
the time series up to the point x(t), to predict
the value x(z 4 P) at some point P in the future.
The standard method for this type of prediction

is to create a mapping f () as follows:

*(H+P) = £ (x(1), x(t-A),
X(t=2A), . . ., x(t—mA))
(19)

where P is a prediction time into the future, A
is a time delay , and m is an integer.

According to the equation (19) an attractor can
be reconstructed from a time series by using
a set of time delayed samples of a series. By
choosing P = A [La87] it is possible to predict
the value of time series at any multiple of A
time steps in the future, by feeding the output
back into the input and iterating the solution. In
this study we choose to use P = A = 6, since
results can be compared with previous exper-
iments where P = 6. Takens theorem [Ta81]
states the range for dimension of the attractor
(dA):

dy <m+1<2d4+1 (20)

For T we choose m = 4.

It is obvious that for P = A = 6 and m = 4 the
expansion (19) has the following form:

x(t+6) = f(x(t),x(t — 6),x(t — 12),
x(t — 18),x(t — 24)) (21)

Takens theorem unfortunately gives no infor-
mation on the form of the f() in Eqn. (21).
Therefore, it is necessary to point out that the
neural networks provide a robust approximating
procedure for continuos f ().

The network which will be used to predict the
chaotic system (21) is given in Fig. 2. Accord-
ing to the equation (21) the input layer consists
of 5 neurons (input buffer), and the output layer
consists of one static neuron with linear activa-
tion function. For hidden layer we suggested 10
dynamic neurons. Lapedes and Farber [La 87|
for the same task used 20 hidden static neurons
arranged in two hidden layer architecture. For
training the neural network described above, we
used first 500 values plotted in Fig. 3. Train-
ing started with random weights values between
—1 and +1, while the filter coefficients a1 and
ap were initialized to zeros to support a stable
learning procedure. The network was trained
with n = 0.01 and o = 0.8 until the error
index NRMS dropped to 0.03.

The trained network was used to predict new
sets of values x(¢) in the future. In all test re-
sults the NRMS was less than 0.04.
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Fig. 4. Network evolution for test 1.
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Fig. 5. Network evolution for test 2.
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Fig. 6. Network evolution for test 3.

The result of the first test for 500 new values
(values from 500 to 1000, Fig. 3) is plotted in
Fig. 4. In Fig. 5 and Fig. 6 we present predic-
tion results for a new test (among the others),
whose initial condition was different from the
one in the previous test. It is significant that
test results are very similar for any other ini-
tial condition over a strip T = 30. Test results
(Fig. 4-6) show that the proposed dynamic neu-

ral network can be successfully used in signal
processing for prediction time series such as is
nonlinear chaotic Glass—Mackey equation. It
is interesting to note that the prediction of the
chaotic time series done in this paper required
the neural network of smaller size (less hid-
den layers and number of parameters) than in
the benchmark paper from Lapedes and Farber
[La87].

5. ldentification of Nonlinear Dynamic
System

As an even more interesting application of the
proposed neural network algorithm based on dy-
namic elementary processor, the identification
of the dynamic discrete-time nonlinear system
isperformed. The system behaviour is governed
by the 1st order difference equation

x(n+1) = (0.9 — 0.003x(n))x(n) + 0.2u(n)
(22

with sampling time Tp = 1 s and a state-
dependent time constant of about T’ ~ 10 s.

Such system is difficult to identify by classi-
cal methods when the mathematical structure of
nonlinearity is unknown, because nonlinearity
cannot be separated from the linear dynamics
like e.g. a Hammerstein model. In order to ob-
tain a good model of a nonlinear process, it is
important that the learning data cover the whole
relevant state space and contain a rich spectrum
of frequencies. Thus, the process is excited with
a pseudo-random binary noise (PRBS) signal
with amplitude modulation. Measurement data
are spoiled with pink noise of variance 0.05xmx.
The set of 621 data samples is plotted in Fig. 7.

Fig. 7. The set of 621 data samples
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The identification of above described system is
performed with neural network configuration as
follows:

— input layer — 1 neuron (u(n)),
— hidden layer — 5 dynamic neurons,
— output layer — 1 static neuron (x(n + 1)).

For training procedure the first 350 values of
single input-output data set plotted in Fig. 7
are used. The network was trained with n =
0.005 and o = 0.8 until the error index NRMS
dropped to 0.05. Training started with random
weights values between —1 and +1, while the
filter coefficients a; and a, were initialized to
zeros to support a stable learning procedure. In
the recall or testing procedure the whole set of
621 data samples was used. Test results are plot-
ted in Fig. 8. It is important to note that a given
task was successfully performed with only one
input neuron (ie., x(n + 1)). This means, that
one does not have to estimate the order of the
identificied system in advance. In this way it is
possible to avoid the modeling error due to the
badly estimated system order.

6. Conclusion

Within this approach a Multi Layer Percep-
tron with distributed dynamics based on the
DEP neuron model was proposed to predict a
time series of nonlinear chaotic system, and for
identification of a dynamic discrete-time non-
linear systems. An attempt was made within
this approach to establish a basic dynamic neu-
ron model, which processes multi inputs and
does not require past values of the process mea-
surements or prior information about its activity

functions. The main advantage of proposed dy-
namic neuron model is that it reduces the net-
work input space, and offers a great potential
in solving many problems that occur in system
modelling, with a special emphasis on the sys-
tems with characteristics such as nonlinearity,
time delays, saturation or time-varying param-
eters. Therefore, in future work some efforts
in this direction will be made, and the author
hopes that then will be presented in some fur-
ther paper.
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