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A new structure of neural network based systems for
modeling and control of dynamic industrial processes is
developed. The structure is composed of three serially
connected subsystems: 1) ARMA — auto regression
moving averages to account for system dynamics; 2)
PCA — principal component analysis as statistical pre-
processor for noise reduction and pattern compression 3)
ANN — artificial neural network with static neurons and
feed forward pattern propagation for nonlinear mapping
of input/output interaction. Training of neural networks
is performed with Ribiéra—Polack—Powell conjugate gra-
dient method for minimization of the variance in output
patterns between a real and a model system. The
proposed modeling procedure is applied to data from a
fed batch operation of an industrial deep jet bioreactor.
Predictive power of the model is based on the analysis
of responses in pseudosteady and oscillatory mode of
operation with the trained and untrained patterns. The
aim of the work is to develop a general neural network
structure and analyze its applicability in the process
control in biotechnology.

Reywords: auto regression, principal component decom-
position, neural networks, process modeling, process
control, biotechnology.

1. Introduction

From a systems point of view, artificial neural
networks (ANN) are general models for map-
ping between high dimensional spaces of input
and output patterns. ANN is perceived as a vast
collection of simple processing units (neurons)
which are highly interconnected (Rumelhart
and McClelland, 1988; Zupan and Gasteiger,
1993). Data and rules are stored in ANN in the
form of neuron parameters (activity) and con-
necting relations, which are result of learning

(adaptation) process with selected training pat-
terns to match outputs of an ANN to a real sys-
tem. Their applicability in control engineering
provides very attractive advantages compared
to analytical methods ('Ydstie, 1990; Bath and
McAvoy, 1990; Chitra 1993).

This work proposes a new network structure
based on decomposition of patterns into prin-
cipal components applicable in the control of
complex dynamic systems, such as operations
with industrial bioreactors. Neural networks
have very high potential for use in biology and
industrial biotechnology. They can be applied
in a broad spectrum of important tasks such as:
computer modeling of specific structures and
biological activity of proteins, on-line estima-
tion of biological variables, adaptive control of
biological reactors without available analytical
models, integration of expert rules with on-line
process control algorithms, and many others by
which productivity and selectivity in produc-
tion based on information stored in microorgan-
ism genetic funds can be increased (Karim and
Riviera, 1991; Schubert et al, 1994; Kurtanjek,
1993, 1994).

2. System structure and algorithms

The work proposes a structure of network for
on-line estimation and adaptive control in pro-
cess engineering, especially for control of pro-
duction in bioreactors. The structure is com-
posed of three subsystems: ARMA, PCA and
ANN; shown as independent modules on Fig. 1.
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Fig. 1. General structure of neural network system composed of the submodels: 1) ARMA for approximation of
process dynamics; 2) PCA principal component analysis for noise reduction and pattern compression; 3) ANN layers
of neurons for nonlinear input/output mapping.

They are designed to perform pattern transfor-
mation for approximation of system dynamics,
statistical preprocessing for measurement noise
reduction and data compression to principal
components, and feedforward signal propaga-
tion through layers of static neurons to provide
nonlinear input-output mapping. Classical neu-
rons are static nonlinear processors and mea-
sured system responses have to be transformed
to patterns which can account for system dy-
namics. We have considered a general dynamic
system given in the state model representation:

d’-’ e s — —
a}y zf(y:xa t): .V(r = O) =Yo (1)

When system input X and output y are on-line
sampled, for a linear system approximation of
the model (1) based on set of discrete patterns
is given in the form of auto regression mov-
ing averages, ARMA (Ljung and Soderstrom,
1987): Bty

N M
Ver1= Y Aj Vij+ Y Bi Ty (2)
j=0 =0

where A; and B; are the autoregression coeffi-
cients; N and M are integers determined by the
duration of impuls response of a studied sys-
tem, i.e. a stable system with a finite memory is
considered. Since the system (1) is nonlinear,
instead of estimation of in the linear model (2),
nonlinearity is modeled by a neural network.

The discrete patterns are stored in the ARMA
subsytem buffers (Fig. 1.) and are shifted for-
ward with propagation of input/output sam-
pling. Output from an ARMA subsystem are
sets of input and output patterns (X,Y) which
contain information about system evolution:

X={(k), J(k—A), ..., ¥(k—7), £(k—A—7), .. .}
Y={k+4)},  A=n-t 3)

where £, is sampling time, T is a process de-
lay, n is an integer, and A is a time difference.
The ARMA approximation increases dimension
of input vector, and also due to large number
of on-line measured process variables and high
frequency of sampling produces very large data
logs. These data contain significant level of
random noise due to imperfect measurements,
systematic errors could be present because of
incorrectly calibrated instruments, and as a re-
sult of process characteristics there can also be
an appreciable collinearity between variables.
Such data, if directly used for ANN training,
would lead to very complex network with too
many neurons difficult to optimize, and adap-
tation to random information inevitably leads
to the loss of ANN predictive power. There-
fore, ARMA output is fed to a statistical pre-
processor for noise elimination and significant
pattern compression. This task can be effec-
tively conducted by PCA — principal composi-
tion analysis (Hutton, 1992; Geladi and Kowal-
ski; 1986). Compression is accomplished by
projections from high dimension input X and
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output spaces Y to corresponding low dimen-
sion target spaces Ty and Ty. The projections
are defined by the linear mappings:

X «Py= Ty, Y -Py=1y (4)

where Py and Py are constant matrixes com-
posed of the corresponding principal compo-
nent vectors (loadings) p, and py. These vec-
tors are determined from minimization of the
corresponding covariances:

Permin|Y" . X — (YT . x.p1) . BTl
Py :min||Y — (Y- p,) ﬁf”

(5)
The target space of input patterns Ty is tilted
toward output patterns, i.e. minimized is the
covariance of projection of X onto Y to pro-
vide maximum correlation between input and
output targets. The minimization problems (5)
are solved by the QR algorithm for eigenvec-
tor calculations. It is often sufficient to take
only first few, r, principal components asso-
ciated with the largest eigenvalues to account
for almost all variance presented in patterns.
Reduction of dimension can be very signifi-
cant, such as in a case of a typical industrial
application in biotechnology where measured
data usually have 1-5 % level of relative er-
ror. Rejected information is considered to be
measurement random noise and collinear data.
Besides significant reduction in dimension and
pattern compression, the PCA produces pattern
targets which are mutually orthonormal result-
ing in further simplification and reduction of
neural network structure. In the first stage, the
outputs from PCA are applied to training of neu-
ral network, and later input targets are applied to
network prediction. Original output variables Y
are restored from ANN predicted output targets
Ty by the simple inverse mapping:

Ty = NN(Tx) (6)
Y =Ty P}

Input patterns to NN are outputs from the PCA
module, i.e. targets which are mutually orthog-
onal. Due to orthogonality patterns are decou-
pled and the network model function NN has a
simple parallel structure with r pairs of corre-
sponding input and outputs:

NN = I_ZrNNi,

i=1

by = NNi(ta)  (7)

Each network subunit NN; is a single input —
single otput system (SISO) constructed by three
layers (input, single hidden, and output) with
static neurons defined by the sigmoid activation
function:

where W are weighing coefficients, 6; are sensi-
tivity thresholds, n, is the total number of neu-

rons in each subunit NNj;, and [5 is the vector
of all parameters in each subunit, which need
to be adapted in training. Decoupling of pat-
terns results in separated training, i.e. each i-th
subunit is trained separately by minimization
of the sum of squares (variance) of differences
between predicted and measured test patterns:

-

of (B) =z INNEa) = 5ill>  (9)

BN =

For the purpose of minimization Ribiére—Polack
conjugate gradient algorithm with Powell mod-
ification is applied. It is applied in a batch
type of data processing suitable for relatively
small scale problems which can be implemented
on a standard PC computer. The gradient is
evaluated by the back propagation & algorithm
(Rumelhart and McClelland, 1989). At each it-
eration neuron parameters are calculated by the
one dimensional search procedure:

B = mino®(f+g-d)  (10)

where d is the vector of search direction, and
g 1s the gain factor. The search direction is a
linear combination of the current gradient and
the direction from the previous iteration:

— 8 — —
d=~ —=0*(B) + v di (11)

op;
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x:Ha%Uz(@_ﬂH (12)



2 Kurtanjek: Structure of Principal Component. . .

100 O (%)

80
60 1

40 |

20

Fig. 2. Fractions of variance o in % accounted by the number r of principal components.

Critical step is the one dimensional minimiza-
tion in (10). Here the second order approxima-
tion algorithm is applied. Ateach iteration step
there are such consecutive values g1 < g2 < &3
that inequality 02(g1) > 0%(g2) < o*(g3) is
satisfied. The optimal value of the gain factor
is calculated from:

g1=—{(0(81)~0(82)) (&5 -3)

—(o(g1)—ol(g3))-(gi-83)}/
{(o(g1)—0o(g3))-(g1—82)

—(o(g1)—0o(g2))-(g1—83)}
(13)

Each training procedure is evaluated by determi-
nation of the predicted residual sum of squares
PRESS (Hutton, 1992) with untrained patterns,
or by cross-validation with full available set of
data. Selection of optimal structure is found
by reiteration of training procedure with vari-
able number of neurons on a hidden layer until
minimal PRESS is found.

3. Case study: Neural network model
of a bioreactor

Application of the proposed neural network
structure to modeling and control of an indus-
trial deep jet bioreactor for production of baker’s
yeast is studied in this work. The process is
monitored by on-line measurement of the fol-
lowing process input variables: feeding rates of
sources of chemical elements (q—C, ¢-N, q-P);

and the state variables: broth level (H), tem-
perature (T), pH, dissolved oxygen concentra-
tion (DO,) and partial pressure of ethanol (p—
EtOH). The biomass (x) is measured off-line.
During the fermentation, time span of 15 h and
on-line data were sampled and recorded each
minute. Each data file contained approximately
about 10000 data points. For each fermenta-
tion file principal component analysis was per-
formed. A typical result is presented on Fig. 2.
It shows that the complex fermentation profiles
can be very effectively compressed by projec-
tion to a low dimensional (r) space of princi-
pal directions. When fermentation data for 10
on-line measured variables are p rojected to a
onedimensional space (line, r = 1) it accounts
for 52 %, projection on two principal directions
(plain, r = 2) improves to 70 %, and projection
to the three dimensional space (r = 3) accounts
for 95 % of total variance present in the data
set. Presented result indicates that a compres-
sion factor of 2/3 can be achieved, i.e. three or-
thogonal target variables can replace original 10
process variables with an 5 % error of approx-
imation, which is the assumed level of random
measur ement error. The significant compres-
sion results from a strong collinearity between
process data, due to an almost pseudo steady
state operation. In the example of feeding rate
of carbon source (q—C , molasses) presented in
Fig. 3. the quality of approximation is demon-
strated by the principal components. With one
component (r = 1) a result which is close to the
original variable is obtained after the transient
period of from 3 to 5 h of fermentation. In the
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Fig. 3. Feeding profile q—C of carbon source (molasses) measured during fermentation (F), and reconstructed from
the first three principal components (r = 1, 2, 3). The curves are shifted for a constant value to enable better
comparison of dynamic features between experimental and model data.

4 PRINCIPAL COMPONENTS

Fig. 4. Time profiles of the first three principal components or targets: ¢ , t, and t3. All process data are scaled for
zero mean and unity variance.

almost stationary phase, from 5 to 13 h, approxi-
mation is very close. With the approximation of
3 principal components the whole feeding pro-
file is closely reproduced and the high frequency
noise is mostly suppressed. Time courses of the
individual first three target variables (¢, 2, 13)
are given in Fig. 4. The values are spread within
the range (—4,4) around 0, which corresponds
to +40 range of the standard normal distribu-
tion N(0, 1). The first target ¢ variable covers
the whole range, the second #, variable has ap-
preciable deviation only in the range of transient
state (3—5 h), while the third #; variable already
acts like a random function with small ampli-
tude around zero.

Feed forward parallel ANN systems are devel-
oped with separate modules for the control vari-
ables: pH, p—EtOH, and x. For training data sets
with several thousand points selected among
fermentations with different feeding profiles are
used. The first ordered ARMA approximation
of process dynamics (almost pseudo stationary
process) is applied. It is important to point out
that the training set included the fermentation
with the unstable oscillatory time course, shown
in Fig. 5. for the output variable p~EtOH. Each
ANN module has a single hidden layer with four
neurons and the first three target variables are
fed as inputs. The total number of neurons in
the network is relatively low, only 24, which is
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AVERAGE RELATIVE
ERROR%
RUN | TRAINED | BEHAVIOR ITERATIONS
155 1000
76 YES Oscillatory | 0.98 0.82
74 NO Oscillatory | 2.7 3.96
90 NO Stationary 3.3 N |

Table 1: ANN model accuracy for trained and untrained patterns.

the result of an effective pattern compression.
All neural networks were tested on fermenta-
tion data which were not used for training. A
typical summary of the results is given in the
Table 1. Predictions of the neural network for
the key contro | variable, ¢—EtOH, is presented
in Fig. 5. and in Fig. 6. High predictivity of the
developed neural network is demonstrated by
the abilty that trained in oscillatory regime, Fig.
5., it can also predict behavior during pseudo
stationary state presented in Fig. 6.

Average relative errors calculated for single fer-
mentations are in the range from 1-5 % (Table.
1). Efficacy of the used structure can be also
inferred from the fast convergence in adapta-
tion. Number of required iterations, given by
the equations (10-13), is also relatively low.
Required time for training of a single neural
module on a standard PC 486 is about 1 h. In-
crease of number of iterations could bring small
improvement, but it may also deteriorate pre-

w-EtOH

diction with untrained data, for example as Run
74. in Table 1.

Fig. 7. presents the result of neural network for
the inverse model. A network is trained for pre-
diction of forward prediction of feeding rate of
nitrogen q—N (ammonia) which supplies yeast
for synthesis of biomass and is used for regula-
tion of pH. An inverse model is developed for
the use of adaptive pH regulation.

Significant improvements of the proposed struc-
ture are illustrated by a detailed exposition of
an analytical example (Kurtanjek 1995). It is
proven that a model derived from orthogonal
decomposition and dimension reduction elimi-
nates variables with high noise to information
ratio and avoids biased parameter estimation.

time (h )

Fig. 5. Oscillatory profiles of ethanol pressure p-EtOH measured during fermentation F and predicted by the artificial
neural network ANN. Shown data are used for the network training set. The curves are shifted for a constant value to
enable better comparison of dynamic features between experimental and model data.
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Fig. 6. Pseudo steady state profiles of ethanol pressure p-EtOH measured during fermentation F and predicted by the
artificial neural network ANN. Shown data are not fpresent in the network training set. The curves are shifted for a

constant value to enable better comparison o

dynamic features between experimental and model data.

time (h)

Fig. 7. Feeding profiles of nitrogen source q-N measured during fermentation F and predicted by the artificial neural

network AN

- Shown data are not present in the network training set. The curves are shifted for a constant value to

enable better comparison of dynamic features between experimental and model data.

4. Conclusion

The work proposes a structure of neural network
system dedicated for modeling of dynamic sys-
tems applicable in process engineering, such as
monitoring and control of chemical and bio-
chemical reactors. It has a modular structure
composed of the following modules: ARMA
for approximation of process dynamics, PCA
for pattern compression and noise reduction,
and ANN for nonlinear mapping of input and
output patterns.

The model is tested on data obtained in indus-
tria] production of baker’s yeast in 40 m* deep
jet reactor. Due to almost pseudo stationary
character of the process, it is shown that a first
order ARMA approximation is sufficient to ap-
proximate dynamics, and that projection from
the space of dimension ten of process variables
to space of dimesion three of principal direc-
tions can account for 95 % of variance.

Due to pattern compression and modular struc-
ture, neural network has simple structure and
modules can be trained separately. Effecient
Ribiéra—Polack—Powell’s method of conjugate
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gradient technique is applied. As the noise has
been reduced in PCA module, objective func-
tion has better properties, i.e. local minimuma
are smoothed out, and network optimization can
be effectively performed on a standard PC 486
computer.

Developed neural network can have important
use in process engineering applications for on-
line monitoring of unmeasured variables, adap-
tive control, fault diagnosis and many others.
Such neural network modules can be included
in a complex software integrated with analyti-
cal algorithms, expert systems and fuzzy logic
algorithms for control of industrial processes.
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