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A Method for the Generation
of Correlated Random Processes

Maurizio Andronico, Salvatore Casale and Aurelio La Corte

Istituto di Informatica e Telecomunicazioni, University of Catania, Italy

In this paper the authors propose a method which will
allow the generation of random discrete variables with
a given probability distribution and autocorrelation se-
quence. The method is applicable in cases where,
once experimental measurements have established the
statistical characteristics of a stationary random process,
an algorithm is to be implemented to generate random
discrete variables with the same statistical properties in
terms of amplitude distribution and correlation among
the values. The method proposed allows a correlated
random process to be generated by combining two
ergodic independent statistical uncorrelated random pro-
cesses. A case study is given to apply the method
proposed to modelling of variable bit rate video sources
by simulation.
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1. Introduction

The construction of general random processes is
a problem to be dealt with in several fields such
as detection, classification and control systems
[Johnson, 1994] [Middleton, 1966] [Van Trees,
1968] and traffic source modelling [Frost and
Melamed, 1994] [Habib and Saadawi, 1992].
While it is not difficult to generate uncorre-
lated discrete random variables with a given
distribution function, if this is a continuous, re-
versible function [Van Trees, 1968][Frost and
Melamed, 1994/, or particular correlated ran-
dom processes [Johnson, 1994], it is sometimes
quite hard to generate variables correlated ac-
cording to a given law. In this paper the au-
thors propose a method which allows the gener-
ation of discrete random variables, fixing their

probability distribution and autocorrelation se-
quence independently. The method can be ap-
plied in cases where, once the statistical charac-
teristics (in terms of probability distribution and
autocorrelation sequence) of a discrete random
process are known from experimental measure-
ments, one wants to implement a simple algo-
rithm allowing the generation of discrete ran-
dom variables with the same statistical proper-
ties. A case in point is the simulation modelling
of a variable bit rate (VBR) traffic source.

Section 2 below gives a description of the method
proposed by the authors, demonstrating statis-
tical properties of the random process obtained
by suitably combining two uncorrelated, statis-
tically independent random processes. Section
3 makes some brief remarks on the results ob-
tained in simulations performed to validate the
proposed method. In Section 4 the authors de-
scribe how to apply the proposed method to
model a VBR traffic source by simulation. Sec-
tion 5 gives the authors’ conclusions and some
final remarks.

2. Generation of correlated random
processes

This section shows how to construct sets of ran-
dom numbers with particular amplitude distri-
butions and correlation among values.

The authors’ basic idea is to generate a set
of correlated discrete random variables starting
from two sets of statistically independent dis-
crete random variables [Andronico et al., 1994].
By fixing the probability function of each of
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Fig. 1. Generation of the compound process {C} from processes {A} and {H}.

these two sets, one obtains a set of discrete ran-
dom variables with a given probability func-
tion and autocorrelation sequence. The prob-
lem of generating a correlated random process
thus boils down to the simpler one of generating
two ergodic independent statistical uncorrelated
random processes.

In the following the generation of a correlated
random process is illustrated and its statistical
properties in relation to the two component pro-
cesses are outlined.

Let us consider two discrete random processes,
that is, two ordered sets of quantized time-
discrete random variables {a,} and {A,}. The
values assumed by the variables a, belong to a
finite, numerable set {A} = {A1,A42,...,4Au},
which is called the set of amplitude values.
Likewise, the values assumed by the variables
h, belong to a finite, numerable set {H} =
{Hy,Hy, ...,Hy}, called the set of holding times.
The two random processes {a,} and {h,} are
both wide-sense stationary, ergodic and statis-
tically independent. It is also assumed that
both the variables a,, and A, are identically dis-
tributed, and that the variables a, are uncor-
related. Henceforward we will use the terms
process {A} and process {H} to indicate the
random process of quantized variables {a, } and
{hn} respectively.

The two sets {A} and {H} are characterized
by the corresponding probability functions of
the discrete random variables, respectively in-
dicated as p,, (x) and py, (x), where p,, (x) is the

probability that a, is equal to “x” and py, (x) is
the probability that h, is equal to “x”.

Starting from these two sets, which are also
called “the component processes”, the “com-
pound” process {C} is built, considering repe-
tition of the generic variables a, a number of
times equal to the variable 4,. In other words,
each element a, which assumes a value belong-
ing to the set {A}, representing the amplitude
of the compound process, is associated with a
duration given by the value assumed by the vari-
able h, belonging to the set {H} (see Fig. 1).
That is, the compound process is formed by the
ordered sequence:

{cn}z{al, v 51,42, ... 02,
hy times hy times

ey By s ,an,...}
hy times

The values assumed by the random variable c,
are the same as those assumed by the random
variable a,, so {C} = {A1,Az2,...,Au}. As
for the processes {A} and {H}, henceforward
the term process {C} will be used to indicate
the random process of quantized time-discrete
random variables {c, }.

The statistical parameters of process {C} are
obtained from those of processes {A} and {H}.
The following properties in fact hold:
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Property 1

The probability function of process {C} is equal
to that of process {A}, i.e.

Pen(X) = Pan(%) (2.1)

where p.,(x) is the probability that c, is equal

[l

o %x

Proof. Consider “k” extractions from process
{A} and process {H} and the corresponding
compound process {C}. We also define the
probabilities calculated on the finite-length se-
quences obtained from the above extractions as
experimental probabilities, indicating

P (x)

PE,? (x) = probability that A, = x,

PO =

As the set of values process {C} can assume
coincides with the set of values process {A} can
assume, for the experimental probabilities of
process {C} we have [Oppenheim and Schafer,
1974]:

= probability that a,, = x,

probability that ¢, = x.

e ha,

pg‘n)( x) = kA
S
=1

where hy, is the number of samples of process
{C} with an amplitude of A, during an observa-
tion of the process corresponding to “k” events
of processes {A} and {H}.

Assuming that process {C} is wide-sense sta-
tionary and ergodic, like the two component
processes {A} and {H}, we have:

PCn( x) = k

= lim J=1
k—oo N e M e
(A2 ) - L el
= i=

(2.1) is thus demonstrated. Hence, the mean,
mean quadratic value and variance are equal,
i

mC:Zc Pagle Za Pay(a) = my,
G (2.
Elc}) = Y per(c) = Z a*-pa,(a) = Ela

C (
ot = o (

Property 2

The autocorrelation sequence of the compound
process {C'} is linked to the variance of process
{A} and the probability distribution of process
{H} by the following relation.:

Dyq(0)=02 4 m2, m=0
q)cc m)=— . 2 m-1
= 0(0)- 2.5 1=y, ()], >0
My =0
(2.5)

where my, is the mean

Py, (i)

of process {H} and

= probability [h, < i) = 3" pn,(j).
Jj=1

Proof. The autocorrelation sequence for pro-
cess {C} is by definition given by [Oppenheim
and Schafer, 1974]:

Z le xJ‘ Pen sCntm (xl!xj)

(2.6)

Dec(n,n+m)

The stationarity of the moments of the first order
of process {C}, used to obtain relations (2.1)—
(2.4), derives from the stationarity of process
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{A}. Admitting that when # > hnyiy (the first
hmin samples of the process {C} are certainly
equal to c1) is

(2.7)

Peyp i Cmik (xiﬂ xj) = Penyem (xi: xj)
we have:

Dcc(n,n+ m) = Oy (m) (2.8)

Consider the autocorrelation sequence ®..(m).

Obviously

D (0) = E[ci] = E[az]

n

= o2 4+ m? = lim @E?(O)

k—o0

th-a%

= fim = — (29)
> h
=1

(¢)

where @ (.) indicates the experimental auto-
correlation sequence of process {C}, i.e. the
autocorrelation sequence values obtained by ob-
serving a finite number of process {C} events.
The first part of (2.5) is thus demonstrated.
Likewise, as regards ®..(1), we have:

Pee(1) = lim (1)

k k—1
(hi—1)-af 4+ Y ai- a1
_ L = i=1
k— o0 K
> h
=1
k k
> hi-a? > af
e i=l e i1
a kl—lﬁnc;lo k kllrgo k
> h > h
=1 i=1
k—1
Z aj - aip
+ lim =2 (2.10)
k—oo

The second and third term in the second member
of expression (2.10) represent the contribution
of the “border effect”, that is, the product of
two samples belonging to two adjacent holding
times. Of course the higher the value of my, the
less accentuated this contribution is.

(2.10) can be written as:

2 2 k 2
. h; - a: Z a; ’
Pe(1) = lim EL— — 1im =L .~
k—o0 k k—oo k k
z h’t Z hi
i=1 =1
k
ai * a1
= k—1
+ lim ‘*1k — i
e - Sk (2.11)
=1
k
2.k
and, as klim l:;c = my,, we have:
—00

Dee(1)=De(0) — ‘1%:;;(10) 2 cpj;;(ln
:(I)CC(O)_ [cbaa(O)—CDaa(l)] |
e (2.12)

As process {A} is by assumption uncorrelated,
we have @,,(0) — Pgq(1) = o2 and so

a2

Pee(1) = Pec(0) — - (2.13)

As a particular case of relation (2.13), it can
be observed that if h; = 1, Vi integer and
greater than zero, which means that processes
{C} and {A} coincide, Dcc(1) = Dya(l) =
®,4,(0) — 02 = m2, as it should be since pro-
cess {A} is uncorrelated.

Just as (2.13) was obtained, the expression of
®..(2) can be obtained in the case in which
h; > 2, Vi integer and greater than zero. We
have, in fact:

Pee(2)= lim o (2)
k—1
(hi—2)-af +2- 3 a1

© 1 =
= lim =
k—oo k

on

L

Il
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- i S i
Dok > h
i=1 i=1

k—1
a; - a;
.3 . .::221 i +1 F—1
kig)]o k-1 k
> hi
i=1
2
o
=P..(0) -2 .2
0 -2

This reasoning can be repeated to calculate
D, (m) for all the values of m such that h; >
m — 1, Vi integer and greater than zero, thus
obtaining:

2
(I)cc(m) = (DCC(O) —m- ‘Oi, m < hmin (214)
my
or:
0.2
(I)cc(m) = (I)cc(m - 1) - i; m < hmin
My

(2.14°)

where A, indicates the minimum value as-
sumed by the stochastic variable A, (this value
exists according to the definition of process
{H}).
Let us now consider the case in which at least
one value of “/” is such that i; < m — 1. If
hmax indicates the maximum value assumed by
the stochastic variable h, (a value which ex-
ists according to the definition of process {H}),
if m > hpyax considering how process {C} is
constructed, and process {4} being made up of
uncorrelated variables, the variables which are
considered in calculation of the autocorrelation
sequence are uncorrelated; so:

Pcn,cn+m (xi)xj) :pCrz (x-i) .pcn+m (xf) (215)

and thus from (2.6)

Doo(m) = m? = m2 (2.16)

As (2.16) is verified for Vm > hppay, then

Dec(m+ 1) = Bge(m), M oo (E1T)

On the basis of the considerations made above
it can be stated that if Ayin < m < hmax (the
intermediate case between those pointed out in
(2.14”) and (2.17)), we have:

o2

Dee(m) = Oee(m — 1) — 22 p(hy > m — 1)

my,
Rnin < m < hmax (2-18)

Corresponding to h; : h < m — 1, in fact, on
account of (2.17) the contribution made to the
difference ®.(m) — ®..(m — 1) is null; on the
other hand, corresponding to h; : h; > m — 1
on account of (2.13) the contribution made to
the difference ®¢.(m — 1) — @ (m) is equal to
O’a?‘ / my.

In conclusion, from (2.18) we can obtain the

expression of the autocorrelation sequence of
processs {C}, which is:

7 m—1
g, .
D (m) = D (0) — m—‘; E pll, =1y m2El
=0

(2.19)
As p(h; > i) = 1 — Py (i) it is possible to
express (2.19) in the equivalent form:

02 m—1
Dc(m) = (PCC(O)_HT; Z[lﬁPhn(i)} m2>1
=0

(2.19°)

Let us finally verify the congruence of (2.19)
with the properties which, by definition, must
characterize the autocorrelation sequence @ (m):

a) certainly |®@c.(m)| < ®.-(0) ¥m integer and
greater than zero. The second term of the sec-

ond member of (2.19’) is, in fact, certainly a
non-negative quantity.

b) when m = 0 we have ®.(0) = E[cZ] =

Elal];
&) lim Pec(m) = (Elca])? = m? = m.

Let us demonstrate that relation c) is also ver-
ified. Considering that ®..(0) = E[c2] =
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E[d2] = o2+ m2, verifying relation c) is equiva-
m—1

lent to verifying that lim b/l % Plis 23) =

o0
o2, thatis 3 p(h, > i) = my,.
i=

Let us note that, as /&, can only assume integer
values greater than zero, we have:

zp(hn > i) = Zp(hn > i)
i=0 i=0
=3 pta=7) =) plha=1)
i=1 j=i = M
= j-plta=])=m,
J=1

Thus, as relation ¢) is also verified, (2.5) is
demonstrated.

The method presented for the generation of dis-
crete random variables has comparatively gen-
eral characteristics, but at the same time it has
two inherent limits. From (2.5), in fact, we
obtain the following two relations:

o2

1) @pc(m) — Pee(m—1) = ——“m—‘; (1= Pp,(m—
)] <0,m>1

ii) [Pec(m) — (I)ccz(m —1)] = [®ee(m — 1) —
ec(m=2)] = =[Py, (m—2) Py, (m—1)] 2
0,m> 2. ¢

The autocorrelation sequence ®.(m) is always
not-increasing, that is, it is not possible to rep-
resent random-processes with fluctuations in
the autocorrelation sequence, for instance the
non-stationary process of a video sequence.
The assumption of the stationary nature of pro-
cesses {A} and {H} and the compound process
{C} underlies the whole proposal being made.
Moreover, the second derivate of the autocor-
relation sequence is always non-negative, that
is, the autocorrelation sequence graph is rep-
resented by a broken line which always has a
downward convexity.

3. Tests on the proposed method

On the basis of the method described in the
previous section, we have written a simulation
model which allows us to compare the analyt-
ical results with those obtained by means of
simulation.

In writing this simulation model the problem
was how to generate the variables relating to
the two processes {A} and {H}, and, in par-
ticular, what probability functions to consider
in order to compare the theoretical results ex-
pressed by equations (2.1)—(2.5) in the previous
section to those obtained through simulation.
The approach followed was to consider proba-
bility functions as samples from a probability
density function, multiplying these samples by
a scale factor in such a way that the sum of the
probabilities is equal to 1. The use of sampled
values involves an approximation of the prob-
ability functions of the component process, to
which a further approximation is added, because
the tails of the probability density functions are
truncated. This approximation is necessary be-
cause the computer operates with finite blocks
of data so as to limit the set of values of the
variables of the two component sets.

In the simulation study we generated samples
from the following probability density func-
tions: Uniform, Gaussian and Exponential. We
varied the sampling interval and truncation of
the probability density functions. The simula-
tion results were obtained in steady-state con-
ditions with a 95% confidence interval of the
true value. All the results obtained from simu-
lations and the corresponding comparisons with
the theoretical values obtained from (2.1)—(2.5)
confirmed the properties demonstrated in the
previous section.

4. An example of application of the
proposed method

The problem of modelling a VBR traffic source
by simulation consists of generating correlated
discrete random variables which represent the
number of packets offered to the network, or
the burst interarrival times, or again the burst
duration times, according to the statistical char-
acteristics of the source to be modelled [Catania
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et al., 1994] . In this section we will illus-
trate how the proposed method can be applied
to model a source.

Let us suppose that we have experimental mea-
surements of the statistics of a source, more
specifically the histogram of the experimental

probabilities p‘(fj) (x), for all the values “x” the
output of the source can assume, and the exper-

imental autocorrelation sequence @ (m) for
m = 0,...,myax. Let us see how to deter-
mine the statistics of the processes {4} and {H}
in such a way that for the compound process

Pen(%) = P (x) and ®cc(m) = @ (m).
From Property 1 in Section 2 the probability
function of process {A} has to be equal to the
experimental one for the source. That is:

Pa,(x) = P2 (x)

If pl©) (x) can be approximated to a sequence of
samples of a probability density function whose
corresponding probability distribution function
is a continuous reversible function, it is possi-
ble to generate random uncorrelated numbers
which represent the values assumed by the vari-
able a, through the generation of uniformly dis-
tributed numbers [Therrien, 1992]. If that is not
possible, it is necessary to use an ad hoc al-
gorithm for the generation of these variables
[Johnson, 1994|[Therrien, 1992).

Now let us determine the statistics of process
{H}. From (2.5) when m = 1 and Ay, > 1,
we obtain:

2

Og

D..(0) —

my =
D.c(1)

Substituting in (2.5) we have:
Dy (m) = D(0)

m—1
- {(DCC(O) - q)ccu)] ’ Z[l - Phn(i)]
i=0

1<m S MMAX (41)

As the variables are discrete we have:

Pha(i) = Py, (i) — Pp, (i — 1)
L Dpei+ 1) = 2 Dee(i) + Peeli — 1)
N D (0) — P (1)

1 <i<mpax —1

(4.2)

By imposing
Dee(i) = D9 (0)
we obtain the probabilities of process {H}

L 0+ 1) -2 0D + (i - 1)

p n(l) -
' o (0) — ol (1)

1 <i<myax — 1 (4.3)

It can be verified that the condition of congru-
ence of the probabilities

hmax

>, pl)=1

i=hmin

where hpin > 1 and hpay < mvax — 1 s
demonstrated similarly to the relation (c) in Sec-
tion 2.

As pp, (i) > 0 has to be true, from (4.3) we
obtain

o2 +1) -2 o) +0Q(-1)
o(0) — @l (1) -

— 0 (i+1)-2.0 () + 0l (i-1) > 0

Vi>1 (4.4)

This condition is satisfied if the autocorrelation
sequence graph is represented by a broken line
which always has a downward convexity, that
is, if the second derivate of the autocorrelation
sequence is non-negative.

It should be pointed out that generation of the
variables h,, once the corresponding probabil-
ity function is known, is easy to achieve as it is
not necessary for them to be uncorrelated. As
the set {H} is made up of a finite number of ele-
ments, a set can be built containing the possible
values h, can assume, each of them being re-
peated a number of times that is proportional to
the corresponding probability py, (i); generation
of the variables of the process {H} is achieved
by taking values from this set at random.

In order to facilitate understanding of applica-
tion of the proposed method, we consider the
following example: the source to be modelled
is a video source which generates 30 frames
per second, with a conditional replenishment
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Fig. 2. Probability function of process {C} obtained by means of simulation. The probability function of process {A}
derives from the sampling of a Gaussian probability density function with mean u = 370 and standard deviation
o = 164 in the interval [57, 1002] and the probability function of process {H} derives from the sampling of an
exponential probability density function with mean p = 7.2 in the interval [1,49]. The quantization interval of the
variables is equal to 1.

interframe coding scheme. From experimen-
tal measurements [Maglaris et al., 1988 — La
Corte et al., 1991 — Nomura et al., 1989 —
Gruenfelder et al., 1991 —— Karlsson and Vet-
terli, 1988], calling the bit rate of the source
during the n-th frame c(n), it was observed that,
approximately:

e the steady-state distribution of c(n) is Gaus-
sian with mean mﬁf) = 130000 bit/frame and
standard deviation 01 = 57500 bit/frame;

e the maximum and minimum values of ¢(n)
are respectively cmax = 352500 bit/frame and
Cmin = 20000 bit/frame;

e the autocovariance of ¢(n) is exponential ac-
cording to the law:

2 §
c¥@) = ol . 0B 1=0,1,2,...,50

Assuming that the flow of output data from the
video coder is organized in packets of 44 octets
[La Corte et al., 1991], we have:

m'®) = 370 packets/frame
o = 164 packets/frame
Cmax = 1002 packets/frame
Cmin = 57 packets/frame

The set {A} is thus made up of the set of inte-
gers between ¢y, and cpmayx, Whose probabilities

are the sampled values of a Gaussian probabil-
ity density function with a mean equal to 370
and a standard deviation equal to 164.

The probabilities of the variables of process {H }
are obtained from (4.3) and are:

cO>+1)—2.¢90) + - 1)

L) =
P ci(0) - k(1)
i (60.13 _ 1) . e—U.]?}-i = 01388 1 e*(}.‘l:ﬁ-i
i=1,2,...,49
Phn(i) =0 i>49

Process {H } has the probability function which
can be approximated with the samples of an ex-
ponential distribution function with a mean of
1/0.13=7.2, which assumes values in the inter-
val of integers between 1 and 49.

Some simulations were performed during which
the variables of processes {A} and {H} were
generated in agreement with the statistical prop-
erties calculated above. Fig. 2 shows the trend
of the probability function of the variables for
the compound process {C}, while Fig. 3 gives
the normalized autocorrelation sequence of the
compound process {C} and the experimental
autocorrelation sequence of the source being
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Fig. 3. Normalized autocorrelation sequence of the source being modelled and normalized autocorrelation sequence
of the compound process {C} obtained by means of simulation. Process {A} has a probability function deriving from
the sampling of a Gaussian probability density function with mean g = 370 and standard deviation o = 164 in the
interval [57, 1002] and the probability function of the process {H} derives from the sampling of an exponential
probability density function with mean w = 7.2 in the interval [1,49]. The quantization interval of the variables is
equal to 1.

modelled. Here again, the results of the sim-
ulation show the effectiveness of the method
proposed in modelling the source.

5. Conclusion

In this paper the authors have presented a method
which allows the generation of discrete random
variables with a given probability function and
autocorrelation sequence. The method can be
applied to all cases where the statistical char-
acteristics of a random process are known, in
terms of the probability histogram and autocor-
relation sequences, and the latter is decreasing
with downward convexity. The method can eas-
ily be used to simulate traffic sources which
meet its validity conditions in statistical terms.

The authors are currently working on modifying
the method so as to represent sources which are
cyclostationary or pseudo-stationary and they
are studying techniques for the generation of the
variables of the two component processes when
a finite number of points in the experimental
autocorrelation sequence does not satisfy the
conditions for the validity of the method.
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