Journal of Computing and Information Technology - CIT 3, 1995, 1, 21-34 21

Using Hypertext in Developing
the Human Computer Interface
to Gaming-Simulation Environments

that Incorporate

Intelligent Tutoring Support

Marios C. Angelides and Ka Yan Tong

Information Systems Department, London School of Economics and Poiitical Science, U.K.

A Gaming-Simulation Environment for teaching and
learning that incorporates Intelligent Tutoring Support
also serves as a supporting tool for the Human Computer
Interface. The Human Computer Interface to this envi-
ronment will affect how players interact with the domain
that is both being tutored upon and is being the object of
game play. The development of this interface is subject to
a variety of constraints. This paper suggests a Hypertext
Approach to developing this Integrated Environment and
thus the Interface that promises to oust or minimise these
constraints.

Keywords: Human Computer Interface, Gaming-Simu-
lation, Intelligent Tutoring Systems.

1. Introduction

The adaptation of an Intelligent Tutoring Sys-
tem (ITS) in a man-machine Gaming-Simu-
lation Environment to enhance the pedagogi-
cal effectiveness of such an environment as a
teaching and learning tool will provide such an
Integrated Environment with Intelligent Tutor-
ing Support, which is a decisive factor for the
successful implementation and operation of the
environment [Angelides, 1994]. The HCI to this
environment should be responsible for specify-
ing or supporting not only the activities that the
player carries out, but also the methods avail-
able to the player to perform those activities.
Therefore the HCI defines the kind of problems
the player is to solve as well as the tools avail-
able for solving them. The HCI in many ways

defines the way the player looks at the subject
matter.

The HCI to this environment affects two aspects
of such an integration. First, it determines how
players interact with the Environment. Sec-
ond, it determines how players interact with the
domain that is both being tutored upon and is
being the object of game play. This is done ei-
ther through the simulation of the domain dur-
ing game play or the indirect connection to the
domain itself during tutoring. This interaction
is tied closely to the tutorial component of the
system so that actions during game play are an-
alyzed and acted upon.

A hypertext-based HCI may be used to address
both of the aspects mentioned above. These
aspects are seen to be crucial to the successful
operation of such an Environment [Bielawski
and Lewand, 1991]. With a Hypertext-based
HCI the player can have a feeling of working
directly with the domain: such HCIs are de-
signed so that the actions and objects relevant
to the task and domain map directly to actions
and objects in the HCI. A Hypertext-based HCI
allows a player to carry out desired computa-
tions by manipulating objects. The underlying
mechanism behind such HCIs are almost always
icons. If the inherent functionality is not self-
evident to the inexperienced player, Hypertext-
based HClIs allow the player to interact with the
domain by giving commands to a computerised

22 M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . .

intermediary, which then carries out the desired
actions.

This paper proposes a hypertext approach to the
development of the HCI to a specific Business
Gaming-Simulation Environment which incor-
porates Intelligent Tutoring. The short-term
aim of this paper is to show how the HCI issues
that arise from such an integration can be ad-
dressed effectively using hypertext. The long-
term aim is to highlight the promises of a hy-
pertext based HCI to such an environment. The
paper first gives an overview of intelligent tutor-
ing systems (ITSs). It then discusses the HCI
to the Integrated Environment, in particular the
constraints that will affect the human-computer
interaction, followed by a presentation of the
‘metal box’ business game. The paper then
proceeds to suggest a hypertext approach to,
and proposes the architecture of, an Integrated
Environment for the ‘metal box’ business game.
Future prospects for a hypertext based HCI are
discussed in the concluding section.

2. Intelligent Tutoring Systems (ITSs)

For a Tutoring System to be classified as In-
telligent, it must pass three tests of intelligence
[Angelides, 1992]. First, the system must know
the subject matter well enough to be able to
draw inferences or solve problems in the do-
main of application. Second, it must be able
to deduce a user-learner’s approximation of the
domain knowledge. Third, the tutorial strategy
must allow the system to implement strategies
that reduce the difference between the expert
and the student performance. Therefore, at the
foundation of an ITS one expects to find three
special kinds of knowledge: domain, student,
and tutoring knowledge.

The first key place for intelligence in an ITS
is in the knowledge that the system has of its
subject domain [Anderson, 1988]. There are
three approaches to encoding knowledge into
the domain model which gives rise to the three
different types of domain models. The first ap-
proach, which gives rise to a black box model
of the domain knowledge, involves finding a
method of reasoning about the domain that does
not actually require codification of the knowl-
edge. A black box model generates the correct
input-output behaviour over a range of tasks

and so can be used as a judge of correctness.
However, the internal computations by which it
provides this behaviour are either not available
or are of no use in delivering instruction. Such
a domain model can be used in a reactive tutor
that tells the students whether they are right or
wrong and possibly what the right move would
be. This is known as surface-level tutoring. The
second approach, which givesrise to a glass box
model of the domain knowledge, involves rea-
soning about the domain by applying codified
knowledge. A glass box model is the standard
knowledge based systems approach to reason-
ing with knowledge. Because of its nature, the
emerging system should be more amenable to
tutoring than a black box model because a major
component of this expert system is an articulate
representation of the domain knowledge. The
third approach, which gives rise to a cognitive
mode] of the domain knowledge, involves mak-
ing the domain model a computer simulation of
human problem solving in the domain of appli-
cation.

Both generations of Expert Systems are cur-
rently in use in the development of Domain
Models for ITSs. First generation Expert Sys-
tems can be developed following the criterion-
based approach: any system that achieves high
quality performance could be classifed as an
Expert System. Therefore, any system capable
of undertaking a complex task proficiently is
regarded as an Expert System by the criterion-
based approach. Such are the black box models
of domain knowledge. However, first genera-
tion Expert Systems are mainly developed us-
ing the Knowledge Engineering methodology
which involves deploying humanlike knowl-
edge that is codified using one or more of knowl-
edge representation schemes, mainly produc-
tion rules, usually stored separately in a knowl-
edge base. Expert performance is achieved
through reasoning with the contents of such a
knowledge base. Such are the glass box and
cognitive models of domain knowledge.

Second generation Expert Systems which prom-
ise a more fundamental understanding of their
domain of discourse and are not so narrow or
brittle as their predecessors, are currently un-
der test and development. They have not yet
achieved the same levels of performance as the
first generation of Expert Systems but they are
regarded as the hope for the future. Expert Sys-
tems of this kind are developed as Qualitative

M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . . 23

Process models which are concerned with the
knowledge that underlies our ability to men-
tally simulate and reason about dynamic pro-
cesses. This involves reasoning through the
causal structure of a system. This is inferred by
examination of the local interactions between
system components and not of their function.
As a result, the principle on which they work is
called ‘no function in structure’ principle. Such
are the cognitive models of domain knowledge.

A classic case of a glass box model of domain
knowledge is that of GUIDON [Clancey, 1987]
which uses the MYCIN expert system [Short-
liffe, 1976]. MYCIN consists of 450 if-then
rules which encode the probabilistic reasoning
that underlies medical diagnosis. Tutorial inter-
action is driven by t-rules which are an extension
of issue-based tutoring. However, t-rules refer
to the internal structure of the domain model,
such as rules and goals, and not on surface be-
haviour. T-rules are compiled to be the combi-
nation of the difference between what would be
the expert behaviour and the student behaviour
and expert reasoning process.

A classic case of a cognitive model of domain
knowledge is that of WHY [Stevens, Collins
and Goldin, 1982] which uses a schema repre-
sentation for evaporating knowledge. There are
slots for the actors of evaporation, for the factors
that influence the amount of evaporation, for the
function relationships among these factors, and
the result of evaporation. Bugs are created by
erroneous entries in the slots. WHY uses a set
of tutoring rules for implementing the Socratic
method of discourse. These rules have a resem-
blance to the issue-based recognition rules that
are normally used for black and glass box mod-
els. However, here the conditions for such rules
refer to the underlying knowledge rather than to
any surface behaviour and incorporate a mixture
of knowledge assessment and instruction.

The second key place for intelligence in an ITS
is in the knowledge that the system infers of its
student [VanLehn, 1988]. An ITS diagnoses a
student’s current knowledge of the subject mat-
ter and uses this to individualise instruction ac-
cording to the student’s needs. The ITS compo-
nent that holds the student’s current knowledge
is the student model. The input for diagno-
sis is garnered through the interaction with the
student. The output of diagnosis depends on
the use of the student model. Nevertheless, it

should reflect the student’s current knowledge
state. Common uses for the student model in-
clude advancing the user to the next curricu-
lum topic, offering unsolicited advice when the
student needs it, generating new problems, and
adapting explanations by using concepts that the
student understands. A student model usually
consists of three kinds of information: band-
width (i.e. quality and amount of student input),
the type of domain knowledge (i.e. declarative,
procedural or causal) and differences between
the student and domain models in terms of miss-
ing conceptions (i.e. as an overlay model) and
misconceptions (i.e. as a list of bugs).

The third key place for intelligence in an ITS is
in the principles by which it tutors students and
in the methods by which its applies these princi-
ples [Halff, 1988]. Tutor models may incorpo-
rate many different instructional techniques. A
tutor model must exhibit three characteristics:
(a) It must exercise some control over curricu-
lum, that is, the selection and sequencing of ma-
terial to be presented to the student, and some
control over instruction, that is the process of the
actual presentation of that material to the stu-
dent, (b) it must be able to respond to student’s
questions about the subject matter, and (c) it
must be able to determine when students need
help in the course of practising a skill and what
sortof help is needed. Some tutors are primarily
concerned with teaching factual knowledge and
inferential skills. These are the expository tu-
tors. Some tutors are primarily concerned with
teaching skills and procedures that manipulate
factual knowledge. These are the procedural tu-
tors. Curricula can be broken down into, formu-
lating a representation of the material in the do-
main model and selecting and sequencing con-
cepts from that representation. A tutor model
must also incorporate some form of propaedeu-
tics, that is knowledge which is needed for en-
abling learning but not for achieving proficient
performance. The underlying assumption is
that skilled performance will be achieved only
with practice. As a result, propaedeutics serve,
firstly, to relate theory to practice, secondly, to
justify, explain, and test possible problem solu-
tions, thirdly, as a stepping-stone to more effi-
cient problem-solving strategies and, fourthly,
as strategies for management of the working
memory during intermediate stages of learning.
Curricula serve several functions: (a) they di-
vide the material to be learned into manageable

24 M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . .

units which should address at most a small num-
ber of instructional goals and should present ma-
terial that will allow students to master them, (b)
they sequence the material in a way that conveys
its structure to students, (c) they ensure that the
instructional goals presented in each unit are
achievable, and (d) they enable the tutor model
to evaluate the student reaction to instruction on
a moment-to-moment basis and for reformulat-
ing the curriculum.

3. The HCI to the Integrated
Environment

Two assumptions are made about the users
(wouid-be players) involved. The first one is
that they come to the HCI with knowledge that
will guide their use of that interface [Burton,
1988]: knowledge about their past use of the en-
vironment, about the kinds of real-world objects
that might be manipulated by the environment,
and about the kinds of real-world objects that
might be portrayed and manipulated as part of
the interface. This knowledge plays an impor-
tant role in human-computer interaction. Peo-
ple combine this knowledge along with their
observation of the structure and behaviour of
the interface to construct a conceptual model of
the environment. This model can then guide
the user’s interaction with the environment. ‘A
user will make reasonable guesses, about likely
ways to handle novel problems, about proba-
ble reasons for errors, and about good ways to
recover from errors.

The second assumption is that users come to
the environment with a set of task-level goals
that they want to achieve. Nevertheless, there
is often a considerable distance between this
goal statement and the actions that most in-
terfaces make available to users. Spanning
this gap (i.e. solving the external-internal task-
mapping problem) poses a major problem for
interface design and a major interaction prob-
lem for users. The greater the gap, the more
difficult the interface will be to use. This gap
can be minimised by designing the interface so
that the actions supported by the interface map
directly to corresponding actions in the domain.
In principle, if users understand the domain,
the use of the interface will be trivial. While
the task-mapping problem cannot be ignored,

the increasing availability of graphical user in-
terfaces for interface design may help to reduce
the effort needed to implement these specialised
interfaces.

The interaction between students and the Inte-
grated Environment is inherently complex be-
cause the users of this environment are, by def-
inition, working with concepts they do not un-
derstand well. Consequently, a well-designed
interface can add considerably to the way in
which the student will conceptualise the game
as such and as a problem domain, as well as over
the vocabulary the student will use to talk about
it. Human interface techniques will address two
aspects of such an Environment. First, they
determine how students interact with the Envi-
ronment. A well-designed human interface al-
lows the Environment to present instruction and
feedback to students in a clear and direct way.
Similarly, it can provide students with a set of
expressive techniques for stating problems and
hypotheses to the Environment. Second, they
determine how students interact with the game
or the domain that is being tutored, through ei-
ther the simulation or direct connection to the
domain itself. Both interactions are tied closely
to the tutorial component of the Environment
so that actions in the domain are analyzed and
acted upon.

The quality of the HCI, i.e. its power, ease of
use, and ease of learning, does not lie with
its outward appearance but with the underly-
ing structure of the interface and the Intelligent
Tutoring Support behind it. What is important
1s not how the interface looks but how allows the
user to understand the capabilities of the Envi-
ronment. Since these capabilities are inherently
constrained by the game and domain of dis-
course, it is important to have an interface that
conveys the important properties and semantic
constraints of the domain of the game. There-
fore, the interface to this environment has to
enable users to both become direct participants
in the domain (first-person mode) and to con-
trol the domain by instructing an intermediary to
carry out actions in the domain (second-person
mode).

In first-person interface mode or direct manip-
ulation interface mode, the user has a feeling of
working directly with the game domain [Miller,
1988]. This mode allows a user to carry out
desired actions by manipulating objects. This

M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . . 25

interface mode is designed in such a way so
that the actions and objects relevant to the task
and game domain map directly to actions and
objects in the interface. The underlying mecha-
nism behind such an interface mode are almost
always icons. Icons are small pictures on the
screen which trigger some action when selected
by the user. Icons represent data structures
and procedures, and links between these objects
specify how the procedures are to be applied on
the data. Although first-person interface mode
appears to offer significant advantages to users,
some aspects of the Environment’s functional-
ity may not be self-evident to the inexperienced
user. In such cases, the Environment will have
to explain the different capabilities of the En-
vironment to the user through its ITS support.
Furthermore, the link between the semantics of
the game domain and the semantics of the in-
terface may be fuzzy. The problem here is how
much of the underlying application is conveyed
through this interface mode for the users to un-
derstand and which parts of the Environment
they can directly manipulate.

With second-person interface mode the user in-
teracts with the domain of the game by giv-
ing commands to a computerised intermedi-
ary, which then carries out the desired actions
Miller, 1988]. Command Languages, typical
second-person interface mode, are keyword-
oriented interface modes in which a command
consists of a string of words and sometimes spe-
cial characters that, when processed by the En-
vironment’s command interpreter, specify the
action the user wants to carry out. With Menus,
a list of options is shown to the user, who
then selects the desired option by striking a
key. Menu-based interface modes stand be-
tween first-person and second-person interface
modes: being presented with information and
selecting some of this information is a character-
istic of second-person interface mode whereas
the direct way in which the user can specify
the information is characteristic of first-person
interface mode. With a natural language in-
terface mode, the most popular user interface
mode to such an Environment, users communi-
cate in a language they already know with an
agent that can interpret their requests for action
to be triggered. Human computer interaction in
natural language is normally restricted to some
form of stylised English. Full coverage is dif-
ficult because natural language interface modes

are second-person interface modes in which the
style of interaction is that of speaking to an
intermediary who will carry out the requested
actions.

3.1. HCI Constraints

Some of the constraints that may affect the hu-
man computer interaction in the interface to
the Integrated Environment are discussed below
[Angelides, 1992].

Task constraints. This pertains to breaking up
a semantically rich game into meaningful com-
ponents that are related to each other and em-
bodying them in the HCI in order to reflect the
semantic constraints of the domain of the game
and at the same time help users control, under-
stand and manipulate them.

User constraints. and cognitive limitations This
involves compensating in the HCI for weak-
nesses in the users’ cognitive abilities. Rather
than requiring users to infer or guess the effects
of their actions, these effects can be made an
explicit and visible part of the interface. This is
particularly useful where the user does not have
a sound understanding of the information being
worked with.

Instructional constraints. The domain of the
game being tutored and the instructional role
played by the Environment through the inte-
grated ITS drive the form of the HCI. For ex-
ample, instruction may entail continuous dia-
logue between the student and the environment,
coaching that monitors user actions and offers
advice about more efficient use of the environ-
ment would not, etc. The interface will be ca-
pable of conveying the information that is rele-
vant to the instructional task and the pedagogy
that takes place. Consequently, a second in-
structional issue is how the HCI presents this
information to the student-user in a way that
emphasises their most important properties.

Physical constraints. For a tutorial task that
deals with a real world device or environment a
highly realistic physical depiction along with a
separate cognitive description of the behaviour
of the device or environment and equally realis-
tic techniques for interacting with this interface
may be required for the student to understand
and learn the domain. Students must under-
stand the concepts involved but these should be
presented in relatively abstract ways.

26 M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . .

Tutorial constraints. This involves the extent
to which the interface can ease the diagnosis
and remedial tasks of the integrated I'TS. First-
person interface modes will present students
with a realistic picture of the application mod-
elled that provides a meaningful context for ex-
plaining and discussing the domain of the game
and a student’s possible problems with it. First-
person interface modes rely on the manipulation
of semantically rich objects and thus giving rise
to student high level actions that are semanti-
cally rich. The interface may also include buggy
objects to help remedy misconceptions. The in-
tegrated ITS can influence the capabilities of
the interface in order to ensure that the user
is carrying out semantically acceptable actions.
Consequently, major classes of user errors could
be eliminated by preventing the user from mak-
ing them. Alternatively, the integrated I'TS can
identify misconceptions and help a student cor-
rect them.

Implementation constraints. The Integrated En-
vironment is three things: an educational instru-
ment, an interface to an application, and a simu-
lation game. The issues related to the latter two
aspects focus on how this environment may be
implemented. Efforts into interface implemen-
tation takes a twofold approach. First, we must
separate the interface of the Environment from
the more direct computational part thus making
the interface responsible for translating a user’s
interface actions into whatever form is required
by the Environment. Second, we must expand
the communication path between the interface
and the environment and allow some commu-
nication between the Environment and its inter-
face.

Knowledge: What is being learned? Another
dimension along which HCI differs is the ques-
tion of what is being taught and consequently
what the student is learning. The knowledge
a person has about a domain consists of facts
about the domain, skills or knowledge of pro-
cedures in the domain, concepts that organise
the facts and procedures in the domain. In ad-
dition, the person has meta-skills that aid in the
learning of new skills. Different HCIs focus on
supporting the teaching of different aspects of
the knowledge a person should have about the
domain, by changing the activities and tools in
the environment.

Level of abstraction. The level of abstraction
at which the knowledge is presented i.e. what
features of the real world to represent and why
is crucial.

Fidelity. Another dimension is the Fidelity of
the HCI, i.e. the concept of how closely the sim-
ulated environment in the HCI matches the real
world. A high fidelity simulation is one that
is nearly indistinguishable from the real thing.
Researchers have identified four different kinds
of fidelity: physical fidelity (feels the same),
display fidelity (looks the same), mechanistic
fidelity (behaves in the same way), conceptual
fidelity (is thought of as the same) and expert
fidelity (how the methods used by the student
and the domain expert to solve a problem cor-
respond). By studying the difference between
expert and novices in different domains, cogni-
tive psychologists have discovered that students
go through different conceptual stages in learn-
ing a subject. Related work has shown that
students have the ability to learn advanced the-
ories well enough to pass tests but still act in
the real world in ways that contradict theories.
As a result, learning is not pouring knowledge
in an empty vessel but a process of reconcep-
tualisation, of getting students to construct the
appropriate knowledge out of the knowledge
that they already have. It is important to take
students through a progression and not merely
to teach them the expert’s notion, because it is
through this progression that new knowledge
connects to student’s experiences of the real
world. Combining the idea of semantic dis-
tance, i.e. the distance between the concepts
that the HCI uses and the ones that the user has,
with the movement of conceptual structures that
takes place in the development from novice to
expert leads to a conclusion that the HCI that is
cognitively accurate for the novice will not be
for the expert and vice versa. The conception
of the domain in the HCI may need to change to
create intermediate stages to move the student
to a final state.

Sequences. This dimension views the student
as being exposed to a sequence of increasingly
complex micro-worlds that provide intermedi-
ate experiences such that within each micro-
world the student can see a challenging but at-
tainable goal. An important aspect of the in-
struction is the instructor’s choice of the micro-
world.

M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . . 27

Help provided. Another dimension is the Help
provided by the HCI to further the instructional
process. There are different ways in which the
environment may provide help to the student.
The first is traditional help: the environment
has help available upon request or during er-
rors. The second is assistance: the environment
does part of the task, sometimes the whole task.
The third is empowering tools: with them the
environment performs bookkeeping tasks that
aid learning. The fourth is reactive: the envi-
ronment reacts to student’s ideas. The fifth is
modelling: the environment performs that task
while the student watches. The sixth is coach-
ing: the environment breaks in and makes sug-
gestions and the seventh is pure tutoring: the
environment maintains control over interaction.

Structure provided. The final dimension of HCI
is the amount of structure they impose on the
activities they engage the student in. In one
case it may be very unstructured. The HCI is
carefully designed to embody a set of ideas and
concepts, and students are allowed to explore it.
Unstructured HCI are based on the belief that by
providing a rich HCI worthwhile learning will
emerge if students are encouraged to explore
whatever interests them. In this case the HCI
could help the student see and appreciate the
ideas and concepts the integrated environment
had to offer. Unfortunately, the Environment’s
ability to recognise interesting situations occur-
ring in the student’s activity is limited by how
well it can understand what the student is doing.
A structured HCI may provide an incomplete
characterisation of the knowledge learned from
it. Then the environment may work against the
students’ learning those issues that have been
left out, and the students may fail to learn ev-
erything they need. Having a domain expert
that performs a task does not guarantee that all
of the requisite knowledge has been identified.

4. The Metal Box Business Simulation
Game

The Metal Box Business Simulation Game
[CRAC, 1978] was developed to give students
an insight into the work of business managers
and thereby acquire an understanding of busi-
ness management. The Metal Box Company is
a manufacturer and supplier of central heating

boilers and radiators. The company has iden-
tified a widespread demand within the EC for
a large, well-made domestic boiler and has de-
signed the 90/120 ‘BTU Vulcan Continental’ de
luxe. These are sold to wholesalers in batches
of eight boilers per batch.

The player (or group of players) starts business
as one of the managers of the Metal Box Com-
pany having to solve financial, production or
marketing problems. The business must be run
efficiently to be able to pay for salaries, mate-
rials and services and to cover the costs of the
development of new production resources, such
as an expansion of the size of the factory. Ad-
ditionally, the business has to yield a surplus
to make a reasonable profit. The company has
up to four players who appoint themselves to
one of four roles. The Production Director has
to make decisions on the amount of boilers to
produce and has to determine the selling price.
The Sales Director makes decisions on any mar-
ket research or research and development to be
undertaken, the number of sales persons to be
recruited and which customers the sales staff
should call on. The Financial Director has to
master all calculations and is responsible for
completing the Company’s accounts. The Man-
aging Director is in overall charge and he is the
final arbiter on all operating decisions.

There are other companies which are proposing
to make and sell similar equipment and there-
fore are competing in the market. Each com-
pany is assumed to have a starting capital to
spend on producing and marketing the equip-
ment. Further capital is available on loan from
the bank. To enable the players to plan, make
decisions and control operations, each company
uses two documents: the Company Decision
Sheet (CDS) and the Company Operating State-
ments (COS).

The Company Decision Sheet (CDS) records
quarter by quarter all decisions made and in-
dicates the situation at any time. The Produc-
tion Director notes the decisions made as fol-
lows: simple decisions (e.g. size of the factory
to be built, selling price), state of operations
resulting from his decisions (e.g. notional re-
duction of the selling price), progressive oper-
ations (i.e. the process of the construction of
a new factory, materials from ordering through
work-in-progress to selling). Additionally, the
CDS records the decisions made by the Sales

28 M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . .

Director, such as the recording of progress of
sales staff from recruitment through training
to selling. The CDS therefore instantly gives
information about when a factory is ready for
production, when a product is ready for sale or
when a salesperson is ready to go out and sell.

The Company Operating Statements (COS) con-
tains the three main control accounting state-
ments. They represent the state of a company’s
finances as follows: the Revenue and Expendi-
ture Statement gives continuous monitoring of
profitability quarter by quarter; the Cash State-
ment shows whether a company has enough
cash to carry on in the next quarter and whether
it needs to borrow from the bank; and a Sum-
mary Statement of Assets and Liabilities (ac-
cording to the Balance sheet). The Financial
Director is responsible for compiling this infor-
mation, working out the position at the end of
each quarter’s operations. Most entries into the
COS are derived from the CDS.

5. The Hypertext Development Approach

The proposed integrated environment will be
specified using Hypertext, with some terminol-
ogy borrowed from HYPERCARD II. Hyper-
text can be described as the creation and repre-
sentation of links between pieces of data which
can be text, graphics, audio, video, and or ani-
mation [Nielsen, 1990a]. Conceptually, the no-
tion of hypertext is closely related to that of se-
mantic networks, with data being represented in
nodes. Thus hypertext is the organisation of in-
formation into information nodes and links [Ha-
lasz, 1988]. Information nodes are linked via
information links either sequentially, hierarch-
ically or mixed. The development procedure
often follows an underlying object-oriented for-
malism. The framework usually designates the
way in which information is to be held in a hy-
pertext environment [Nielsen, 1990b] [Smeaton,
1991].

Generally, the main component of a hypertext
environment is the stack [Angelides and Gibson,
1993] [Angelides and Tong, 1994]. Stacks can
exist independently or be interwoven using links
to form an environment. They are composed
of a number of cards (by analogy to the more
familiar index cards) which represent the infor-
mation nodes. The stack is basically a collection

of related nodes of information united because
they are seen to logically belong together. Hy-
pertext environments are usually developed in
three distinct stages. Firstly, the information to
be utilised in the environment has to be decom-
posed and organised into semantically meaning-
ful cards and appropriate stacks. Secondly the
links between the cards, cards and stacks, and
between stacks must be installed. Thirdly, the
stacks are linked together to form the hypertext
environment. The link is the core of all hy-
pertext environments. The link provides a path
from one part of the hypertext environment to
another.

With a hypertext framework for specifying the
Environment, the domain, tutoring and student
knowledge must first be organised into stacks of
cards [Angelides and Gibson, 1993] [Angelides
and Tong, 1994]. Secondly, links will be in-
stalled to integrate the stored knowledge, not
only within individual, but also between mod-
els. For example, the contents of the student
model should point to the “best” for the stu-
dent teaching strategy in the tutoring knowledge
model and to those goals that have been attained
by the student and those that are yet to be at-
tained. The student model should also point to
those domain knowledge parts that have been
mastered by the student, perhaps including a
measure of the level of mastery, for example
through an overlay model. The student model
should also point to those domain knowledge
parts that are the source of misconceptions for
the student. In the contents of the model of
the tutoring knowledge, goals which the envi-
ronment will try to attain should point to that
part of the domain knowledge that contains do-
main knowledge relevant to the goal, along with
a pool of appropriate teaching strategies that
would enable this. Once cards and stacks have
been linked together the environment is ready
for use.

All the knowledge of the environment will be
incorporated in semi-structured hypertext infor-
mation nodes (i.e. cards) which are in turn in-
corporated in stacks. The semi-structured kind
of node is chosen because of its ability to al-
low labelled fields (i.e. attribute slots) and their
values to be stored inside the node [Angelides,
1992]. A semi-structured information node has
attribute slots which either have default values,
or may be instantiated with specific occurrence

M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . . 29

values. They may also have procedural attach-
ments which are executed whenever a value is
needed or changed.

A card may be linked to other cards with which it
is related by a class-instance relationship. This
establishes a semantic network of cards which
are organised hierarchically so that properties
can be inherited from generic cards (i.e. cards
higher in the hierarchy) to cards lower in the
hierarchy. Thus, a card which represents a con-
cept can be decomposed in its hierarchical con-
stituents, and allow these to inherit all its prop-
erties. Related cards may be stored in a stack.
There will be links from the slot values to other
cards with which a given card is hierarchically
related in this hierarchical network. These links
will be set up as “organisational” hypertext in-
formation links to connect a parent card with its
children and thus establish a hierarchical tree in
this hypertext network.

Cards are also linked to other cards with which
they are not hierarchically related via “referen-
tial” hypertext information links and thus estab-
lish a non-hierarchical structure in this network
[Angelides and Gibson, 1993] [Angelides and
Tong, 1994]. Any information related to a card
which cannot be included in the card structure,
will be “annotated” to the card as a “typed”
hypertext information node, if it is text, or as
a “graphical” hypertext information node, if it
is an image, or via an “annotation” link. This
will establish a part-to-whole relationship with a
given card. Within this annotation, there may be
further referential, keyword or annotation links
to cards which the annotation may relate to. Fi-
nally, a card may be linked to another card by
a “keyword” link, if two cards have the same
value for a given attribute slot. The link names
will carry a name which will depict semantic
information.

6. Developing a Gaming-Simulation
Environment for the “Metal Box” Game
that Incorporates Intelligent Tutoring
Support ‘

We will proceed with our proposal for an archi-
tecture by embedding an ITS within a gaming-
simulating environment [Angelides and Paul,
1993a]. In this case, the ITS will completely
take over the role of the game tutor, i.e. it will

take over all four standard operations that will
have to be performed in the game, and it will
include all the knowledge that is necessary to
enable the ITS both to run the game and to pro-
vide tutoring about the game. Consequently,
the I'TS will be responsible to see that the rules
and roles are understood and observed, to draw
attention to, and explain, any difficult points, to
progress the playing of the game, to compare
decisions by competing companies, to draw out
lessons about business planning and control, to
check the calculations on the operating state-
ments, to allocate orders according to the rules,
to provide market research information, if re-
quested, to fix the market size and to allocate
customers’ order potential.

The main components in the Environment’s ar-
chitecture are a domain model, a tutor model
and a student model [Angelides and Paul, 1993b)].
The domain knowledge mode] includes all the
knowledge about the game and, therefore, will
be used both for running the game and for pro-
viding the context of any tutorial intervention.
The tutoring knowledge model includes teach-
ing strategies and the game’s goals and will
be used in conjunction with the four standard
operations. The student knowledge model in-
cludes a student-player’s past and current roles
and knowledge, missing conceptions and diag-
nosed misconceptions.

6.1. The Domain Model

Organising the domain knowledge in cards and
stacks involves decomposing the domain knowl-
edge into different hierarchical and non-hier-
archical hypertext information cards whose level
of domain detail depends on their position in
the hierarchical structure [Angelides and Gib-
son, 1993] [Angelides and Tong, 1994]. The
context of these cards is exclusively domain
knowledge. It contains neither any knowledge
about the student or what to do with this knowl-
edge (i.e. tutoring knowledge). A card may be
linked with any other card via an organisational
hypertext information link, if there is a hierar-
chical relationship between the two cards, via a
referential hypertext information link, if the two
cards are non-hierarchically related, via a key-
word hypertext information link if they share the
same attribute, and finally via an annotation, if
additional information about a card cannot be .
included in its context, for example graphs. By

30 M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . .

being explicit, a hypertext information link car-
ries a name which designates the relationship
between the two cards it links.

The Domain Model includes all the knowledge
about the “metal box™ game. This should first
include an initial scenario card (or a stack of
cards) that introduce(s) the game by stating its
aims and principles, rules, roles, sequence of
action, and symbology. This is not intended
as a replacement of the Player’s Manual but as
a complementary resource which the user may
recall at any time. The Domain Model includes
all knowledge about the four gamed roles, Man-
aging, Financial, Production and Sales Director,
as four separate cards which may be stored to-
gether in a roles stack. It should also include
knowledge about the CDS, COS and Decision
Slips, in three separate cards (but all stored in
the same stack called notes), which may in-
clude, or may be linked to cards with, worked
examples of these as well as blank cards that
depict the CDS, COS and Decision Slips that
the players will fill in during game play. Since
the Production Director is responsible for filling
in the CDS, the Finance Director the COS and
the Managing Director the Decision Slip, there
may be referential links from the Production Di-
rector’s card to the CDS card, from the Finance
Director’s card to the COS card and from the
Managing Director’s card to the Decision Slip
card.

The Domain Model should also include a stack
of cards that depict the rules of the game. Thus it
should include cards about production, produc-
tion costs, the market, time sequence of produc-
tion and sales and cash flow, market research,
product sales, product advertising, R&D and
finance. These cards may be used for game
play or as a source of information for tutoring
purposes. There may referential links from the
rules cards to relevant cards in the roles cards
and the CDS, COS, etc. cards. The Domain
Model should also include an accounting sys-
tem for performing various calculations. Fi-
nally, the Domain Model should also include a
card or stack of cards that contain the steps of
play.

In addition to using its roles, rules, steps of play
and notes stacks for running the game, the Do-
main Model may use its knowledge about the
game, for example, to explain the rules of the
game should the environment detect a deviation

from them, to offer some help in applying them
correctly, to explain the purpose of a particular
role, to correct incorrect role behaviour, etc. For
this purpose, the Domain Model should have ac-
cess to a library of all common misconceptions
about the game.

6.2. The Tutoring Model

The Tutor Model includes knowledge about the
game’s teaching goals which it will try and help
the student to attain through game play; thus it
knows when, where and how to start, progress,
and finish a game [Angelides and Gibson, 1993]
[Angelides and Tong, 1994]. The Tutor Model
supervises the flow of the game by controlling
the steps of play, from introduction to the game
through to postgame discussion or critique. In
addition, by being in control of the time mech-
anism, it is in control of all the time parame-
ters. All tutoring activities are under the control
of computational teaching strategies which the
Tutor Model uses to let the game flow. If a mis-
conception is diagnosed for a player, then the
Tutor Model goes into remedial mode for that
player.

For every domain card there is a correspond-
ing set of local teaching goals. Teaching goals
are stored in cards. A teaching goals card con-
tains attribute slots whose values are the local
goals which the environment will try and help
the student-player to attain during the course
of interaction. Which teaching strategy will be
applied is decided either by reference to the stu-
dent model or by the user, during the course
of interaction. A teaching strategy is an im-
plementation of a particular teaching strategy
used by human teachers, for example, coach-
ing, questions/answering, evaluation of student
responses, etc. This implementation contains
tutoring knowledge about material presentation,
for formulating tasks/responses to the student-
user, for student evaluation and for remedial
action. This implementation of a teaching strat-
egy is stored in a “typed” card. A “typed” card
is neither part of any form of hierarchy nor does
it contain any hypertext information links to any
other hypertext information cards.

As with the domain model cards, a teaching
goals card is linked with organisational hyper-
text information links to other teaching goals
cards. This sets up a hierarchical structure of

M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . . 31

teaching goals cards. Since a teaching goals
card is designated for a specific domain card,
there can be no referential or keyword hypertext
information links from a teaching goals card to
another. However, there are annotations from
each and every attribute slot (i.e. a goal) to all
teaching strategies that are suitable for attaining
a game goal denoted by a slot.

6.3. The Student Model

The Student Model includes the current knowl-
edge of the player about the game, especially
how well he mastered the rules of the game,
the role he played during game play, his per-
formance during the different steps of play and
how well he managed the resources he was al-
located (if any) by the Environment [Angelides
and Gibson, 1993] [Angelides and Tong, 1994].
The student model also includes a record of
all missing conceptions and misconceptions he
has been diagnosed to suffer from, and whether
these have been remedied at any stage, as well as
any difficulties he experienced during the play.
The Student Model also includes an indication
of those teaching goals that the player has suf-
ficiently demonstrated that he satisfied. The
Student Model is a useful source of information
during game play because it provides the basis
on which the Environment can make decisions,
such as further distribution resources, role re-
assignment, and game progress reports. The
Student Model is an invaluable source of infor-
mation for postplay evaluation. The feedback
which the Student Model can provide can be
used by the game designer for the development
of initial player student models.

The student model is constructed during the
course of interaction as an overlay model of
the domain model, including diagnosed miss-
ing conceptions and misconceptions. For every
domain card that the Environment uses with a
student-player for game play or for tutoring, a
corresponding student card is constructed, the
contexts of which are determined by the context
of the domain card. The attribute slots of the
student card are a copy of the attribute slots of
the corresponding domain card with the inclu-
sion of some additional attribute slots to indicate
the different paths that lead to the domain card
(e.g. as part of the regular tutoring process or as
part of some remedial action), how the domain

card was used (e.g. to clarify the content of an
attribute slot), and various teaching strategies
that have been successfully or unsuccessfully
applied with the domain card. The values in the
attribute slots of the student card are obtained
during the course of interaction.

Since student cards are constructed during the
course of the tutoring process, any resulting
hypertext information links are computed at
the same time. Nevertheless, the end result
will be, as with the domain model and the
tutoring model, a network of student cards.
A student card may be linked with organisa-
tional hypertext information links to other stu-
dent cards. These organisational hypertext in-
formation links set up a hierarchical structure of
student cards. These links, in addition to the hi-
erarchical structure which they delineate, also
define the overlay model of the student-user.
There may be referential or keyword hypertext
information links drawn from one student card
to another, if the student-user establishes a non-
hierarchical relationship between two domain
cards or if two student cards share the same
attribute slot value. These links may have an
overlay statistic attached to the name which they
carry. A numerical value is a standard yardstick
of measurement in overlay models.

With every attribute slot there may be a set
of associated misconceptions. Every time the
student-user provides input which is not recog-
nised by the Environment as correct, the En-
vironment checks through the library of mis-
conceptions for a known misconception. If this
is the case, the Environment would record this
as a student misconception in the attribute slot
and create a referential link from it to the stu-
dent card that describes the misconception. The
name of the rule that proves that the answer is a
known misconception is set as the name of the
referential link. Finally, from each and every at-
tribute slot that has been filled-with a value there
may be annotations to the best teaching strategy
for acquiring the knowledge and achieving the
goal and also to those teaching strategies that
have been tried unsuccessfully.

6.4. The User Interface

The Hypertext Development Approach will yield
an Integrated Environment with a Hypertext-
orientated HCI which is supported by both the

32 M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . .

Hypertext network structure of the Domain
Knowledge representation and by the Integrated
ITS [Angelides and Gibson, 1993] [Angelides
and Tong, 1994]. Therefore, the interface to this
Integrated Environment allows users to commu-
nicate both in first-person and second-person
modes.

A Hypertext-oriented HCI supported by a Hy-
pertext network structure allows a user to per-
form actions by manipulating icons that link
directly to objects and actions in the Environ-
ment and link to other related objects and ac-
tions which is typical of a first-person interface
mode. The representation of domain knowl-
edge into semistructured hypertext information
links and the resulting hypertext network struc-
ture requires the existence, and provides for the
development, of a customised second-person in-
terface mode in order to provide tutoring sup-
port effectively. This second-person interface
mode may be in the form of a command lan-
guage, menu or (even more ambitiously) nat-
ural language. Both the Hypertext Develop-
ment Approach and the resulting accessibility of
the Gaming-Simulation Environment through
an HCI that supports both kinds of interface
modes will either eradicate or reduce the con-
straints that will affect the human computer in-
teraction with the HCL.

The semantically meaningful decomposition of
the domain knowledge and its representation
as semistructured hypertext information cards
which are usually a screenful of domain knowl-
edge each will help not to create any task con-
straints. The resulting networks of hypercards
will impose a structure on the activities the user
will be getting engaged in which in turn will im-
pose a structure on the HCI in order to support
this.

However, the hypertext base of HCI will also
result in encouraging the user to explore as it is
usually the case with such kinds of interfaces.
The structure imposed by the resulting network
of hypercards will also allow the Integrated ITS
to provide help through the HCI in the form of
Tutoring. The kind of help will depend on the
implementation of the Integrated I'TS.

A Gaming-Simulation will go through a cycle
and follow certain steps of play. This assumes
that there will be some sequence of events to be
performed by the players or the Environment

itself. At every phase of the cycle there is an
attainable goal related with a single hypercard
or group of hypercards. This could be stated
in the HCI and the student’s attention brought
to it. During this cycle, the players go through
different conceptual learning stages which they
will connect their simulated experience to the
real world.

The Integrated I'TS is capable to provide tutoring
at different competence levels and this feature
combined with the availability of both kinds of
interface modes will allow the HCI to provide
access to the Gaming-Simulation Environment
at varying levels of abstraction depending on
the level of competence of the student and at a
high degree of fidelity.

The Environment integrates Intelligent Tutoring
and a simulation game. Consequently, the Envi-
ronment may induce direct learning through tu-
toring about the domain knowledge of the game
or indirect learning through the game activities.
The Environment through its Integrated I'TS can
compensate for weaknesses in the users’ cogni-
tive abilities by directly or indirectly providing
missing conceptions or remedying misconcep-
tions and in general provide tutoring wherever
is needed. The HCI will be capable of convey-
ing any information relevant either to tutoring
task or game task in either (or both) of the in-
terface modes and at the appropriate level of
abstraction.

The integrated ITS can influence the capabili-
ties of the interface in order to ensure that the
user is carrying out semantically acceptable ac-
tions. Consequently, the HCI becomes an in-
structional environment in which user miscon-
ceptions could be remedied. Any physical re-
quirements (e.g. a physical device like the CDS)
may be reduced by directly representing it on a
first-person interface mode as it appears in real
life, or by animating it.

7. Concluding Discussion

The HCI to the Integrated Environment defines
the way that students think about the concepts
in which they are being taught [Miller, 1998]
[Burton, 1988]. Human-computer interaction
in such terms is not a mechanical exchange of
actions, but a communication of concepts, a se-
mantic process in which the interface reflects
the semantic nature of this interaction.

M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . . 33

The interface needs to embody an understanding
of, and appreciation for, the goals and concepts
that are important to users both in the game
and the inherent domain being tutored. Conse-
quently, it needs to embody an understanding
of the user’s cognitive abilities and limitations,
and the domain of the game to which the inter-
face serves as a portal. Therefore, the important
issue is not the application area of the interface
but the definition of the ways in which good
interfaces can support people as they gradually
acquire an understanding of a complex semantic
domain.

A Hypertext Approach in developing the Inte-
grated Environment and consequently the HCI
to this Gaming-Simulation Environment for
Learning promises to relinquish or at least min-
imise the constraints that may affect human
computer interaction with the Interface.

References

J. R. ANDERSON, The Expert Module. In Foundations of
Intelligent Tutoring Systems (M. C. Polson and J.
J. Richardson, Eds.), (1988) pp. 21-53. Lawrence
Erlbaum, USA.

M. C. ANGELIDES, Developing the Didactic Operations
for Intelligent Tutoring Systems: A Synthesis of
Artificial Intelligence and Hypertext, PhD. Thesis,
University of London, 1992.

M. C. ANGELIDES, Providing Intelligent Tutoring within
a Gaming-Simulation Environment for Learning,
submitted for publication in the Games, Simu-
lations and Human-Computer Interfaces special
issue of the Journal of Simulation and Gaming
(1994).

M. C. ANGELIDES and G. GIBSON, Pedro — The Spanish
Tutor: A Hypertext-based Intelligent Tutoring Sys-
tem for Foreign Language Learning, Hypermedia,
5(3) (1993)

M. C. ANGELIDES and A. K. Y. TONG, Implementing
Multiple Tutoring Strategies in an Intelligent Tu-
toring System for Music Learning, Journal of
Information Technology, 9(3) (1994).

M. C. ANGELIDES and R. J. PAUL, Towards a Framework
for Integrating Intelligent Tutoring Systems and
Gaming-Simulation. In Proceedings of the 1993
Winter Simulation Conference (G. W. Evans, M.
Mollaghasemi, E. C. Russell and W. E. Biles,
Eds.), (1993a) pp. 1281-1289. Los Angeles,
USA.

M. C. ANGELIDES and R. J. PAUL, Developing an Intel-
ligent Tutoring System for a Business Simulation
Game, Simulation Practice and Theory, 1(3)
(1993b), 109-135.

L. BIELAWSKI and R. LEWAND, Intelligent Systems De-
sign: Integrating Expert Systems, Hypermedia and
Database Technologies. John Wiley and Sons,
USA, 1991.

R. R. BURTON, The Environment Module of Intelligent
Tutoring Systems. In Foundations of Intel-
ligent Tutoring Systems (M.C. POLSON and
J.J. RICHARDSON, Eds.), (1988) pp. 109-142.
Lawrence Erlbaum Associates, USA.

W.J. CLANCEY, Knowledge-based Tutoring: The
GUIDON Program. MIT press, USA, 1987.

E. H. SHORTLIFFE, Computer-based Medical Consulta-
tions: MYCIN, Artificial Intelligent Series. Else-
vier, New York, 1976,

J.R. MILLER, The Role of Human-Computer Interaction
in Intelligent Tutoring Systems. In Foundations
of Intelligent Tutoring Systems (M. C. Polson and
J. 1. Richardson, Eds.), (1988) pp. 143-189.
Lawrence Erlbaum Associates, USA.

(CRAC) CAREERS RESEARCH AND ADVISORY CENTRE,
‘Stelrad Limited’ The Metal Box Business Game,
Cambridge: Hobsons Press, 1978.

J. NIELSEN, Hypertext and Hypermedia.
Press, USA, 1990a.

Academic

F. G. HALASAZ, Reflections on notecards: Seven issues
for the next generation of hypermedia systems,
Communications of the ACM, 31(7) (1988), 836—
852,

H. M. HALFF, Curriculum and Instruction in Automated
Tutors. In Foundations of Intelligent Tutoring
Systems (M. C. Polson and J. I. Richardson, Eds.),
(1988) pp. 79-108. Lawrence Erlbaum, USA.

J.NIELSEN, The Art of Navigating through Hypertext,
Communications of the Association of C omputing
Machinery, 33(3) (1990b), 297-321.

A. F. SMEATON, Retrieving information from hypertext:
Issues and problems, European Journal of Infor-
mation Systems, 1(4) (1991), 239-247.

A. STEVENS, A. COLLINS and S. E. GOLDIN, Miscon-
ception in Students Understanding. In Intelligent
Tutoring Systems (D. Sleeman and J. S. Brown,
Eds.), (1982) pp. 13-24. Academic Press, USA.

K. VANLEHN, Student Modelling. In Foundations of
Intelligent Tutoring Systems (M. C. Polson and .
J. Richardson, Eds.), (1988) pp. 55-78. Lawrence
Erlbaum, USA.

Contact address:

Marios C. Angelides and Ka Yan Tong
Information Systems Department
London School of Economics

and Political Science

Houghton Street

London WC2A 2AE, UK.

34 M. C. Angelides and Ka Yan Tong: Using Hypertext in Developing. . .

MARIOS C. ANGELIDES is a Lecturer in the Information Systems Depart-
ment at the London School of Economics. He holds a B.Sc. degree in
Computing and 2 Ph.D. in Information Systems, both from the London
School of Economics. He has six years of experience in researching in
the area of intelligent tutoring systems in which he completed his Ph.D.
He has authored and co-authored twelve journal papers in intelligent tu-
toring systems. In addition he has published another six articles in other
areas of artificial intelligence, one of which is in the area of artificial
intelligence and simulation. He is the co-author of the book Lisp: From
Foundations to Applications published in 1988. He is Vice-Chairman of
IFIP’s (International Federation for Information Processing) Working
Group 9.5: Social Implications of Artificial Intelligence Systems.

KA YAN TONG is a full-time research student reading towards the degree
of Ph.D. (Econ) in Information Systems in the Informaticn Systems De-
partmentat at the London School of Economics. Her research area is
that of intelligent tutoring systems. She holds the degrees of B.Sc. in
Computing and M.Sc. in Analysis, Design and Management of Infor-
mation Systems, both from the Lendon School of Economics.

