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Volumetric Models in Computer
Vision — an Overview’

Franc Solina

Faculty of Electrical Engineering and Computer Science, University of Ljubljana, Ljubljana, Slovenia

Volumetric models are the top-level representation in
computer vision applications. Volumetric models are
especially suited for part-level representation on which
manipulation, recognition and other reasoning can be
based. The two most popular types of volumetric mod-

els are generalized cylinders and superquadrics. This

paper gives an overview of research and applications of
volumetric models in computer vision and robotics with
emphasis on superquadrics.

1. Introduction

The goal of computer vision and robotics is to
enable intelligent interaction of artificial agents
with their surroundings. The means of this in-
teraction are images of various kinds; intensity
images, pairs of stereo images, range images or
even sonar data and information from contact
sensors (touch, force, torque). Images which
at the sensory level consist of several hundreds
or thousands of individual image elements must
in this process be encoded in a more compact
fashion. For any reasoning or acting on the sur-
roundings, it is advantageous that this coding
of images as well as the internal representation
of the robot work space closely reflects the ac-
tual structure. Distinct objects, for example,
should have distinct models of themselves. In
this way, the labeling of individual entities, nec-
essary for control and higher level reasoning,
becomes possible.

So far, many different models have been used
for modeling different aspects of objects and
scenes. Models for representing 3D structures
can be grouped into local and global mod-
els. Methods for local representation attempt

to represent objects as sets of primitives such
as surface patches or edges. Global methods
on the other hand attempt to represent an ob-
ject as an entity in its own coordinate system.
When objects of such global models correspond
to perceptual equivalents of parts, we speak
of part-level models. Several part-level mod-
els are required to represented an articulated
object. A part-level shape description is im-
portant for several tasks involving spatial rea-
soning, object manipulation, and structural ob-
ject recognition. People often resort to such
part description when asked to describe natural
or man-made objects [35]. Such part descrip-
tions are generally suitable for path planning
or manipulation—for object-recognition, how-
ever, they are sometimes not malleable enough
to represent all necessary details and several re-
searchers are looking into extending part-level
models with additional layers of details.

1.1. Generalized Cylinders

The first dedicated part-level models in com-
puter vision were generalized cylinders [8]. A
generalized cylinder, sometimes called a gener-
alized cone, is represented by a volume obtained
by sweeping a two-dimensional set or volume
along an arbitrary space curve. The set may
vary parametrically along the curve. Different
parameterizations of the above definition are
possible. In general, a definition of the axis and
the sweeping set are required. To limit the com-
plexity and simplify the recovery of generalized
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cylinder models from images researchers often
used only straight axes and constant sweeping
sets. Properties of straight homogeneous gen-
eral cylinders are addressed in [39]. General-
ized cylinders influenced much of the model-
based vision research in the past two decades—
theory [33, 7] as well as actual building of vision
systems [10]. In general, one can criticize the
methods of recovering generalized cylinders on
the count that they are not very robust because
they must rely on complicated rules for group-
ing low level image models (i.e. edges, corners,
surface normals) into models of larger granular-
ity (i.e. symmetrical contours or cross-sections)
to arrive finally to generalized cylinders. These
problems are due in part to the complicated pa-
rameterization of generalized cylinders and to
the lack of a fitting function that would enable
a straightforward numerical examination of the
model’s appropriateness for the modeled im-
age data. The latest achievements in recovery
and segmentation of strait homogeneous gener-
alized cylinders can be seen in [32].

Several other global models exist that attempt
to represent an object as an entity in their own
coordinate system: Spherical harmonic sur-
faces [41], Gaussian images and extended Gaus-
sian images [25], Symmetry seeking models [46],
Blobby model [31], Hyperquadrics [22], and Su-
perquadrics.

Superquadric models appeared in computer vi-
sion as an answer to some of the problems
with generalized cylinders [35]. Superquadrics
are solid models that can, with a fairly simple
parameterization, represent a large variety of
standard geometrical solids as well as smooth
shapes in between. This makes them much
more convenient for representing rounded, blob-
like shaped parts, typical for objects formed by
natural processes.

The rest of the paper is divided as follows:
in the next section we define superquadrics.
In the second section we talk about recovery
of superquadrics and applications in computer
vision. The third section is on usage of su-
perquadrics in robotics. In the conclusions
we summarize the advantages of superquadric
models and point to possible future develop-
ments, especially in human-computer interface
design.

2. Superquadrics

A superellipse is a closed curve defined by the
following simple equation:
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where a and b are the size (positive real number)
of the major and minor axes and m is a rational
number

m:E>0, where{
q

p s an even integer,
g 1is an odd integer.

If m = 2 and a = b, we get the equation
of a circle. For larger m, however, we get
gradually more rectangular shapes, until for
m — 00, the curve takes up the shape of
a square. Superellipses are special cases of
curves which are known in analytical geome-
try as Lamé curves [30]!. Piet Hein, who pop-
ularized these curves for design purposes also
made a generalization to 3D which he named
superellipsoids or superspheres [15]. The fi-
nal mathematical foundation of superquadrics
was laid out by Barr [5], who generalized the
whole family of quadric surfaces with the help
of varying exponents, and coined a new name
for them—superquadrics. Superquadrics are
by definition a family of shapes that includes
not only superellipsoids, but also superhyper-
boloids of one and of two pieces, as well as
supertoroids.

The explicit superellipsoid equation, defined by
the following surface vector, is

a; cos®l(n) cos®?(w)
x(n,w) = | ap cos®(n) sin®(w)
as sin®(n)
—n/2<n<x/2 (1
—T<wdw ’ )
where a1, @; and a3 determine size, and g1 and
€ determine global shape. The alternative, im-

plicit superellipsoid definition, also called the
inside-outside function is
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' Lamé curves are named after the French mathematician Gabriel Lamé, who was the first who studied them in Examen des
différentes méthodes employées pour résoudre les problémes de geomeirie, Paris, 1818.
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Fig. 1. Superquadric models enhanced with global deformations. (From [45].)

Points x, y, z that correspond to the above equa-
tion are on the surface of the superellipsoid.

For numerical calculation, it is easier to assume
that exponents ¢ and & can be any positive
real number. Then, one should assume that ex-
ponentiation in equations 1 and 2 means

. x* x>0
=g ={ Ty T2

to avoid complex numbers. For applications in
computer vision, the values for g and &; are
normally bounded: 2 > g1,& > 0, so that
only convex shapes are produced. For a su-
perquadric in canonical position one needs to
set the value of 5 parameters (3 for size in each
dimension, 2 for shape defining exponents). For
a superquadric in general position 6 additional
parameters are required to define the translation
and rotation of the model. Parametric defor-
mations typically require a few more parame-
ters. For treatment of parametric deformations
see [6, 45].

Barr saw the importance of superquadric mod-
els in particular for computer graphics and for
three-dimensional design. Superquadric mod-
els, which compactly represent a continuum of
useful forms with rounded edges, and which can

casily be rendered and shaded due to their dual
normal equations, and deformed by paramet-
ric deformations, are very useful in computer
graphics. Parametric deformations [6] such as
twisting, bending, tapering, and their combi-
nations can be applied directly to superquadric
surfaces. The surface vectors and the normal
vectors of a deformed model are calculated by
a simple matrix multiplication from the sur-
face and normal vectors of the undeformed su-
perquadric surface.

Pentland [35] was the first who grasped the po-
tential of the superquadric models and paramet-
ric deformations for modeling natural shapes
in the context of computer vision. He proposed
to use superquadric models in combination with
global deformations as a set of primitives which
can be molded like lumps of clay to describe

_ the scene structure at a scale.that is similar to

our naive perceptual notion of parts. Pentland
presents several perceptual and cognitive argu-
ments to recover the scene structure at such a
part-level since people seem to make heavy use
of this part structure in their perceptual inter-
pretation of scenes. The superquadrics, which
are like phonemes in this description language,
are deformed by stretching, bending, tapering
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or twisting, and then combined, using Boolean
operations to build complex objects.

2.1. Recovery of Superquadrics

The problem of recovering superquadrics from
images is an overconstrained problem. A few
model parameters (i.e. 11 for non-deformed
superquadrics) must be determined from sev-
eral (i.e. a few hundred) image features (range
points, surface normals or points on occlud-
ing contours). By its parameterization the su-
perquadrics impose a certain symmetry and in
this way place some reasonable constraints on
the shape of the occluded portion of a three di-
mensional object.

In the first article on the use of superquadrics in
computer vision, Pentland [35] proposed an an-
alytical method for recovery of superquadrics
using the explicit equation (1). Except for
some simple synthetic images, this analytical
approach did not turn out to be feasible. Pent-
land [36] later proposed another method which
combined recovery with segmentation and was
based on a coarse search through the entire su-
perquadric parameter space for a large number
of overlapping image regions. The major ob-
jection to this method is its excessive computa-
tional cost.

Iterative methods based on non-linear least squar-
es fitting techniques using different distance
metrics were proposed [3, 9]. Solina and Ba-
jesy [3, 43, 45] formulated the recovery of de-
formed superquadric models from pre-segmen-
ted range data as a least-squares minimization
of a fitting function. An iterative gradient de-
scent method was used to solve the non-linear
minimization problem. Initial estimates of the
superquadric mode] are easy to compute. Cen-
ter of gravity and central moments of inertia of
the input points serve as estimates for position
and orientation, while shape parameters &1 and

gy are set to 1, making the model an ellipsoid.
A modified superquadric implicit or inside-out-
side function (Eq. 2) with an additional multi-
plicative volume factor was used as the fitting
function. The volume factor is used to ensure
the recovery of the smallest superquadric model
that fits the range data in the least squares sense.
To make the inside-outside function more suited
for rapid convergence during minimization the
inside-outside function (Eq. 2) was raised to
the power of ;. Although this error metric
varies across the surface when &1 # & and
when size parameters change, it turned out to
be efficient and robust (see Fig. 2). To the stan-
dard superquadric model, which requires 11 pa-
rameters, linear tapering, bending, and a cavity
deformation were added, which adds up to a
total of 18 parameters. Recovery of a single su-
perquadric model requires on the average about
30 iterations (see Fig. 2).

Pentland [37] proposed another superquadric re-
covery method. Segmentation was first achiev-
ed by matching 2D silhouettes (2D projections
of 3D superquadric parts of different shapes
and of different orientations) to the image data.
After part segmentation, superquadric models
were fitted to range data of individual part re-
gions. Superquadric fitting based on modal dy-
namics [38] used as the error metric the squared
distance along the depth axis z between the
range data and the projected volume’s visible
surface.

Hager [21] proposed a novel approach to sensor-
based decision making that combines the esti-
mation (recovery) process with the decision-
making process (i.e. graspability, categoriza-
tion). Usually both processes are divorced in
the sense that first a recovery process is per-
formed and then a decision is made based on
the recovered models. Convergence on com-
plex and non-linear problems are difficult to
ensure on one hand and the amount spent on
the fitting stage may be inappropriate for the

Fig. 2. Recovery of a tapered superquadric from pre-segmented range data. (From [45].) From left to right: original
range image, E—initial estimate, models after the 7th and 30th iteration.
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Fig. 3. Recovery of superquadrics from occluding contours (From [48]). The top row shows the actual models and
the input contours. The second row shows the recoverd models. In the bottom row the difference between the input
contour and the contour of the recovered model are displayed. In example (a}, a very close match between the
original and the recovered model was obtained. In example (b), the contour of the recovered model closely matches
the input contour, however, the actual model is quite different.

decision sought on the other hand. Combining
both stages should result in minimal work re-
quired to reach a decision. Any large system
of parametric constraints under the assumption
of bounded sensing error can be solved by this
approach which is demonstrated in the article
on two different problems, graspability and cat-
egorization, using range data and superquadric
models. The approach is based on a interval-
bisection method to incorporate sensor based
decision making in the presence of parametric
constraints. The constraints describe a model
for sensor data (i.e. superquadric) and the cri-
teria for correct decisions about the data (i.e.
categorization—see also [44]). An incremental
constraint solving technique performs the mini-
mal model recovery required to reach a decision.
The major drawback of the method is slow con-
vergence when categorization is involved. De-
termining the shape parameters &1 and &;

Yokoya et al. [52] experimented with simulated
annecaling to minimize a new error-of-fit mea-
sure for recovery of superquadrics from pre-

segmented range data. The measure is a linear
combination of distance of range points to the
superquadric surface and difference in surface
normals (first proposed by Bajcsy and Solina
in [3]). Several hundred iterations were needed
to recover models from range data.

Vidmar and Solina [48] studied the recovery of
superquadrics from 2D contours (see Fig. 3).
For a given contour several possible superquadric
interpretations are derived. To a human ob-
server some of these interpretations are obvi-
ously more natural than others, although all re-
covered models have a very tight fit to the con-
tour data. Perceptually better solutions could

~be selected-by using just afew additional pieces

of information (a few range points or shading
information).

Horikoshi and Suzuki [24] multiplied the objec-
tive function with a weighting function for ro-
bust estimation (based on whether the point is
closer to the median value of the inside-outside
function, or far from it in either directions).
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Consequently, the model is less sensitive to out-
liers.

3. Application of Superquadrics in Vision

This section explores the role of superquadrics
as volumetric shape primitives for object classi-
fication and recognition, model evaluation, and
segmentation. As is the case with any shape
primitive, superquadrics have a limited shape
vocabulary. They can be used to capture the
global coarse shape of a 3D object or its con-
stituent parts. The addition of global defor-
mations increases the expressive power of su-
perquadrics, but still limits it to the global coarse
shape as opposed to local details. This lack of
fine scale representation can be addressed by
adding local degrees of freedom [38, 47]. How-
ever, one drawback of such locally deformable
extensions is that they have too many degrees of
freedom to meaningfully segment even a sim-
ple scene. The increase in expressive power
also results in an increase in complexity of all
the visual tasks like segmentation, representa-
tion, recognition, and classification. Conse-
quently, all of the segmentation and classifi-
cation work [37, 17, 14, 29] has used globally
deformable models, limiting the role of local
deformations to refine the surface details.

The earliest works on superquadrics dealt pri-
marily with single model analysis, since seg-
mentation of a complex scene required model
recovery to be understood first. These meth-
ods focussed either on classification of single
models, where the power of superquadrics as a
compact parametric model was exploited [44,
23, 40], or on using superquadrics as a volu-
metric primitive after a segmentation had been
obtained [36, 19, 13]. Once the model recovery
was understood, more sophisticated techniques
were designed to apply superquadrics to scene
segmentation [17, 29, 24].

3.1. Model Classification and Recognition

Solina and Bajcsy [44] recovered objects in the
postal domain and categorized them as flats,
tubes, parcels, and irregular packages based on
the shape and size parameters of the segmented
recovered models. Gupta et. al. [19] extended
Solina’s approach to work on a cluttered scene

by segmenting the range image using an inde-
pendent edge-based scheme, and then recov-
ering individual postal objects after reasoning
about the physical supporting plane to constrain
the 3D shape of the object.

Horikoshi and Kasahara [23] partitioned the su-
perquadric parametric space between 0 < g <
2.0 and 1.0 < & < 3.0 to develop a shape in-
dexing language. They mapped the representa-
tion space to verbal instructions like “rounder”,
“pinch”, “flatten”, etc., and developed a man-
machine interface to construct object models.
They also described an indexing scheme where
complex objects were stored as superquadric
models and indexed by model parameters.

Raja and Jain [40] conducted experiments on
mapping superquadric shapes to 12 shape classes
corresponding to a “collapsed” set of 36 dif-
ferent geons. Geons are qualitative descrip-
tions of shapes, classified only on the basis of
axis shape, cross-section shape, cross-section
sweeping function, and cross-section symme-
try [7]. These qualitative geometrical properties
could prove to be very useful in indexing object
databases. Raja and Jain used the five shape
and deformation parameters of superquadrics
for classification into 12 geon classes using bi-
nary tree and k-nearest-neighbor classifiers.

Model-driven recognition (with superquadric
part-primitives) has not so far been exploited
despite the compact representation. The reason
is that it is very difficult to recover “canoni-
cal” representations of objects from real data.
Instead of recovering canonical descriptions,
most researchers have followed the data-driven
bottom-up strategy of fitting superquadric mod-
els to the data. The recognition problem then
reduces to matching superquadric parts from a
library of a continuum of shapes to a cluttered
scene.

3.2. Model Evaluation, Validation
and Active Exploration

Using a parametric shape model for vision re-
quires that the model evaluation be built into
the segmentation and recognition systems. To
this end, it is imperative to study the residuals
of shape models by comparing them against the
given data. Gupta et al. [18] describe qualita-
tive and quantitative residuals for the objective
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evaluation of the recovered superquadric mod-
els. Whaite and Ferrie [51] have recently de-
scribed a decision theoretic framework to eval-
uate the fitted models. They extended their ear-
lier work [50] on uncertainty in model parame-
ters to develop three lack-of-fit statistics. Their
technique is embedded under the umbrella of
“active exploration,” which evaluates the recov-
ered model as more data is collected. Gupta
and Bajesy [17] used global and local distribu-
tion of residuals to determine model fitness and
segmentation options on static data.

Real situations demand that the parametric shape
models must be recovered on partial and noisy
single viewpoint data. Data could be missing
due to other objects occluding the view, or due to
the shadows in scanner geometry, or due to self-
occlusion in single viewpoint data. Noise in 3D
measurements is inevitable and most difficult to
model. While the symmetry constraints of su-
perquadrics are useful in predicting the missing
information, the downside of parametric models
is the lack of uniqueness in describing incom-
plete and noisy data within an acceptable error
of tolerance. This fact is borne out in the ex-
periments conducted by [50], where they derive
an ellipsoid of confidence within which all the
acceptable models lie. Model validation is a
crucial step in scene segmentation.

3.3. Segmentation

A common underlying task of most recognition
applications is building the scene description
in terms of symbolic entities. A challenging
problem in scene understanding is segmenta-
tion, where each piece of information must be
mapped either to a shape primitive or discarded
as noise. At the same time, there should be a
minimum number of such primitives applied,
so as to get as compact a description as pos-
sible. The absence of the domain knowledge
further makes it more difficult, as ambiguities
arise due to multiple representations, incom-
plete data, and the multiple degrees of freedom
of superquadrics. There have been various ap-
proaches to scene segmentation when using su-
perquadrics to model parts in images. The ap-
proaches to segmentation can be broadly clas-
sified into two categories:

1. Segment-then-fit schemes.
2. Segment-and-fit schemes.

3.3.1. Two-stage Segment-then-fit
Methods

These methods decouple segmentation and mo-
del recovery. First, segmentation is performed,
then superquadrics are fitted to resulting re-
gions.

Pentland [37], for example, used matched fil-
ters to segment binarized image data into part
regions. The best set of binary patterns that
would completely describe a silhouette is se-
lected. The 3D data corresponding to each of
the selected patterns was then fitted with a de-
formable superquadric based on modal dynam-
it

Gupta et al. [19] used an edge based region
growing method to segment range images of
compact objects in a pile. The regions were
segmented at jump boundaries, and each recov-
ered region was considered a superquadric ob-
ject. Reasoning was done about the physical
support of these regions, and several possible
3D interpretations were made based on vari-
ous scenarios of the object’s physical support.
A superquadric model was fitted and classified
corresponding to each recovered object.

Ferrie et al. [14] used differential geometric
properties and projected space curves modeled
as snakes for segmenting range data. An aug-
mented Darboux frame is computed at each
point by fitting a parabolic quadric surface,
which is iteratively refined by a curvature con-
sistency algorithm.

Another qualitative shape recovery method us-
ing geon theory was proposed by Metaxas and
Dickinson [34] to recover superquadrics on in-
tensity data. Their integrated method uses
Dickinson et al. [12]’s geon-based segmentation
scheme (into ten geon classes) to provide ori-
entation constraint and edge segments of a part.
This is then the input to the physically-based
global superquadric model recovery scheme de-
veloped by Terzopoulos and Metaxas [47].

All two-stage approaches suffer from the prob-
lem that the results of segmentation might not
correspond tightly to any superquadric model.
Thus, model recovery on such part domain will
be uncertain about the shape, size and orien-
tation of the model. To describe adequately
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a scene with a particular shape language, one
must use this language also for partitioning the
scene. A method that can accommodate the
domain to the orientation, shape, and size of
the superquadric model must be used. The
integration of model recovery with segmen-
tation was proposed in [4]. Solina [42] had
originally attempted part-segmentation by re-

(e)

cursively splitting the domains and rejecting
extraneous points during model recovery. It
is, however, extremely difficult to constrain the
single model recovery to take part-structure into
account. Clearly, segmentation into part models
must recover parts by hypothesizing parts and
testing (evaluating) them.

Fig. 4. Range image segmentation using deformed superquadric part models. The human form was segmented by
employing the recover-and-select paradigm [27]. (a) — original range image, (b) — input range points, (c), (d) -
models during the recovery process, (e), (f) — the final result from two views.
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3.3.2. Interleaved Segment-and-fit
Methods

Pentland [36] was the first one to integrate seg-
mentation with superquadric model recovery.
However, the brute-force method of searching
the entire parameter space for a large number of
overlapping image regions is computationally
too expensive.

Gupta and Bajcsy [17], proposed a recursive
global-to-local technique for part recovery. A
global model is recovered for the entire data (us-
ing [45]), which is evaluated by studying local
and global residuals so that the further course
of action can be determined. A set of qualita-
tive acceptance criteria define suitability of the
model. If the model is found to be deficient in
representing data, then additional part models
are hypothesized on the un-described data (re-
gions of surface underestimation). The global
model is refitted on the remaining data. Thus,
the global model shrinks while the part models
grow, yielding a hierarchical part-structure.

A tighter integration of segmentation and model
recovery was achieved by combining the recover-
and-select paradigm developed by Leonardis [28,
27] with the superquadric recovery method by
Solina [45]. This work demonstrates that su-
perquadrics can be directly and simultaneously
recovered from range data without the medi-
ation of any other geometric models. The
recover-and-select paradigm for the recovery
of geometric parametric structures from image
data [27] was originally developed for the recov-
ery of parametric surfaces [28]. The paradigm
works by recovering independently superquadric
part models everywhere on the image, and se-
lecting a subset which gives a compact descrip-
tion of the underlying data.

Horikoshi and Suzuki [24] proposed a segment-
and-merge method to segment 2D contours (with
the figure of interest separated from the back-
ground) and sparse 3D data. This recursive pro-
cedure results in a possibly overlapping convex
superquadric parts. Parts are then merged to
arrive at a compact description.

4. Applications of Superquadrics
in Robotics

Superquadrics have been used for several dif-
ferent applications in robotics. Grasping can be
used for manipulation by picking up objects as
well as for tactile recognition. Choi et al. [11]
studied the use of superquadrics for grasp plan-
ning. The robot gripper mounted on the Mars
Rover developed at Carnegie-Mellon University
has the task of picking up rock samples. A range
image of the area in front of the Rover robotic
arm is taken and areas corresponding to larger
objects on the surface are isolated with a simple
segmentation method. The range data of these
regions serves as the input to the superquadric
recovery method [45]. A robot gripper is then
guided to pick up the objects.

Allen et al. [2] used superquadrics for obtaining
initial global estimates of object’s gross con-
tour and volume as part of a larger system for
3D shape recovery and object recognition us-
ing touch and vision methods. For grasping
by containment they used the Utah-MIT hand
equipped with tactile sensors which provided a
fair amount of sparse point contact data. These
points were the input for the superquadric re-
covery algorithm [45].

Agba et al. [1] applied superquadrics to model-
ing kinematic chains. For control of kinematic
chains such as robot manipulators and legged
robots, simulation of interactions of kinematic
links with objects in the environment is re-
quired. Superquadric models are used for mod-
eling individual links of the manipulator. Us-
ing the inside-outside function, it is possible to
determine distinctly whether an arbitrary point
falls inside or outside of the volumes defined
by the superquadrics. This modeling technique
has been implemented in a hybrid simulator for
undersea telerobotic manipulation for collision
detection and grasp planning.

Khatib [26] and Volpe and Khosla [49] pro-
posed superquadric potential functions for mod-
eling obstacles and goal positions in robot work
space. Manipulators and mobile robots must
reach a desired destination without collision
with obstacles. Aurtificial potential technique
surrounds the obstacles with repulsive potential
energy functions and places the goal in an at-
tractive well. This approach enables real-time
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collision avoidance since the control of the ma-
nipulator can be done in the operational space—
the space in which the task is described. Volpe
and Khosla [49] applied superquadric potential
functions in a newly developed robot controller
in an experimental setting. In the future, visual
feedback is planned that could provide obsta-
cle data in real-time, enabling dynamic obstacle
avoidance. Providing that the vision system
also employs superquadric models, the integra-
tion of visual feedback into the robot control
would not be difficult.

5. Conclusions

Despite initial reluctance in using superquadrics
due to their nonlinear form, they have proven to
be the primitives of choice for many a researcher
seeking a volumetric model. Since no direct
comparison of different metrics and minimiza-
tion methods for superquadric recovery was
made, it is difficult to rank them only on the ba-
sis of results presented in the articles. Some ex-
perimental comparisons of different error-of-fit
measures are given in [16]. Gupta [18] also dis-
cusses the error-of-fit functions. What is finally
important is the perceptual likeness of models
to the actual objects, the speed of convergence,
and last but not least, the simplicity of imple-
mentation. On this ground the method proposed
in [45] received a wide acceptance since sev-
eral other authors have used it in their vision or
robotic systems [2, 18, 17, 11, 40, 14, 29].

Superquadric models have shown to be use-
ful as volumetric shape primitives for object
categorization, segmentation, recognition, and
representation. Segment-and-fit methods re-
port good results on objects which would oth-
erwise be un-segmentable with surface-based
techniques. Reliable segmentation of intensity
and sparse 3D data is still an open problem. The
discussed methods do not use domain knowl-
edge directly, although it is possible to build in
hooks to incorporate task-level constraints [21].

Important to notice are other potential applica-
tion areas for parametric models. Image com-
pression is normally not concerned with the
actual structure of the depicted scene. How-
ever, a much higher compression rate could be
achieved by (&) recovering models, (b) sending
only the parameters of the models, (¢) and then

reconstructing the image from the models on the
receiving side. Such intelligent compression is
important if the scene must be understood also
in terms of its physical structure (i.e. teleoper-
ation).

Image understanding is becoming more impor-
tant for general computer user interfaces since
even personal computers are getting equipped
with cameras and fast capabilities of image dig-
italization. Teleconferencing, face recognition,
gesture recognition, user dependent interfaces,
and virtual reality are just some of the exciting
new application areas for computer vision.
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