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Fuzzy Expert System
for Pattern Recognition®

Mojca Parkelj and Nikola Pavesic

Faculty for Electrical Engineering and Computer Science, University of Ljubljana, Ljubljana, Slovenia

In a pattern recognition environment it is often difficult to
capture information in a precise form, and consequently,
the knowledge about the recognition domain (problem)
may be inexact, incomplete or not reliable. In order
to properly represent the knowledge of this kind, fuzzy
production rules have been used. In this paper fuzzy
Petri nets arc used as a knowledge representation scheme
in which the fuzzy production rules arc applied for
describing a fuzzy relation between two propositions.
Based on the fuzzy Petri net model of a knowledge
base, an efficient algorithm is proposed to perform fuzzy
reasoning automatically.

1. Introduction

Information about a pattern recognition domain
(problem) can be uncertain, fuzzy, uncertain
and fuzzy and/or fuzzy uncertain.

Uncertainty occurs when one is not absolutely
certain about a piece of information. The de-
gree of uncertainty is usually represented by a
numerical value between zero and one. It rep-
resents a strength of a belief in the fact or in the
rule and it is named certainty factor (CF). For
example:

X is a bird. (CF=0.8)
IF (X is a bird) THEN (X can fly).
(CF=0.9)

The certainty factors are 0.8 and 0.9.

Fuzziness occurs when the boundary of a piece
of information is not clear-cut. It is represented
by fuzzy terms. For example:

The cube is small.

IF (the price is high) THEN (the profit is good).

Small, high and good are fuzzy terms.

Uncertainty and fuzziness may occur simulta-
neously. For example:

The cube is small. (CF=0.8)
IF (the price is high) THEN (the profit is good).
(CF=0.9)

Sometimes the uncertainty can also be fuzzy.
The fuzzy uncertainty is modeled by fuzzy num-
bers. For example:

The cube is small. (around 0.8)

Here, around 0.8 is the fuzzy uncertainty and
small is a fuzzy term.

This article presents a knowledge based system
that allows any mix of fuzzy and normal terms
as well as uncertainties in the rules and facts.
To provide this task, it employs fuzzy logic to
handle inexact reasoning and certainty factors
to handle the uncertainty.

In the Section 2. we deal with the representa-
tion of a fuzzy knowledge base in the Petri net
formalism. The idea of using Petri net theory
for knowledge representation was carried out in
1978 by S. Ribari¢ [10]. Later (1990), S. M.
Chen et al. in [4]proposedfuzzy Petri nets as a
knowledge représentation scheme in which the
fuzzy production rules are applied for describ-
ing the fuzzy relation between two propositions.

The inference engine is described in the Section
3. Treatments of fuzzy sets, fuzzy logic and
fuzzy models can be found in [1, 5, 13]and [14],

* We gratefully acknowledge the support of the Ministry of Science and Technology of Slovenia and Alexander von Humboldt

Foundation.



182

Mojca Parkelj, Nikola Pavesi¢: Fuzzy Expert System for Pattern Recognition

the representation of a fuzzy knowledge base in
the Petri nets formalism in [4, 8, 10, 11, 12],
whereas the rule evaluation and fuzzy reason-
ing algorithm are explained in [2, 3, 4, 15]. The
fuzzy reasoning algorithm proposed in [4]was
based on the certainty factor approach. The
fuzzy reasoning algorithm proposed in this pa-
per is based on the certainty factor approach as
well as on the fuzzy logic approach.

2. Fuzzy knowledge base

In the fuzzy knowledge base the knowledge en-
tities, such as facts and production rules are
stored. These knowledge entities provide in-
formation that enables the inference engine to
perform consultations.

A fact is a data proposition of the form:

OBIJECT is VALUE
(fuzzy/nonfuzzy uncertainty)

where an object is the basic entity in the system.
It is uniquely identified by the object name and
the attribute(s). The attribuite(s) can be empty
if an object name is sufficient to describe the
object. The object can be fuzzy or not. The
values of a nonfuzzy object are numbers or lit-
eral strings, but if the object is fuzzy, its values
are fuzzy terms. Fuzzy terms are represented
by fuzzy sets and fuzzy sets are defined by their
membership function. The uncertainty of the
fact can be fuzzy or nonfuzzy. Fuzzy uncer-
tainty is modeled by fuzzy numbers. A fuzzy
number is actually a real-number fuzzy set that
is both convex and normal. Nonfuzzy uncer-
tainty is expressed as ordinary certainty factors.
A certainty factor represents a degree of truth
of the fact and its value 1 means that the fact is
absolutely certain.

A production rule is defined as an implication
statement expressing the relationship between
a set of antecedent propositions and a set of
consequent propositions. Attached to each rule
is a fuzzy /nonfuzzy uncertainty describing the
degree of confidence in the rule:

IF (A is V) THEN (C is U) (CF=p)

where

e A is a antecedent object and C is the conse-
quent object of the rule. They can be fuzzy
or nonfuzzy.

e Vand U are object’s values.

e u is a value of the certainty factor CF and
represents the strength of the belief in the rule.
The larger the value, the more the rule is be-
lieved in.

The antecedent part of a rule consists of a sin-
gle propositions or any combination of two or
more propositions connected by a logical AND
or a logical OR. But the consequent part of a
rule can contain only a single proposition or
multiple propositions with AND conjunctions
between them.

The most distinctive feature of a fuzzy knowl-
edge base is that, beside facts and rules, it also
stores fuzzy sets representing fuzzy terms.

We can use a Fuzzy Petri net to model the
fuzzy production rules in the knowledge base.
A fuzzy Petri net is a bipartite directed graph
which contains two types of nodes: places and
Iransitions, where circles represent places and
bars represent transitions. The relationships
from places to transitions and from transitions
to places are represented by directed arcs. A
generalized fuzzy Petri net structure can be de-
fined as an 8-tuple:

Fuzzy Petrinet = (P, 7,D,1, O, f, a, B)

where
o P={p1,ps,...pn} is a finite set of places,
e T ={1,n,..t,} is afinite set of transitions,

e D= {d,dy,..d,} is a finite set of proposi-
tions,

e [: T — P is the input function - a mapping
from transitions to bags of places,

e O: T — P is the output function - a map-
ping from transitions to bags of places,

e f: T'— [0,1] is an association function - a
mapping from transitions to real values be-
tween zero and one,

e a: P — [0,1]is an association function - a
mapping from places to real values between
zero and one,

e f3: P — D is an association function - a bi-
jective mapping from places to propositions.
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Fig. 1. A fuzzy Petri net.

Let A be a set of directed arcs. If p; € I(¢;), then
there exists a directed arc a;;, a;; € A, from the
place p; to the transition ;. If p; € O(%;), then
there exists a directed arc a;, a; € A, from the
transition #; to the place py.

As an example, by using a fuzzy Petri net the
simple fuzzy production rule of type:

IF (dj: Ais V) THEN (dj: Cis U) (CF=ug)

can be modeled as shown in Figure 1.

If the antecedent part or consequence part of a
fuzzy production rule contains AND or OR con-
nectors, then it is called a composite fuzzy pro-
duction rule. The composite fuzzy production
rules can be distinguished into four rule-types
and they can also be modeled by a fuzzy Petri
nets as shown in figures below.

TYPE 1:
RULE: IF (dj;: Ay is Vi) AND ... AND (dj,:
Ay is Vy)

THEN (dy: C is U) (CF=ug)
TYPE 2:

RULE: IF (dj: A7 is V1) OR ... OR (dj: A,
is V),
THEN (dkl i 1s U) (CFIILLR)

TYPE 3:

RULE: IF (dj: Als V)
THEN (dm: C;is U]) AND ... AND
(dkn: Cnis Un) (CF:MR)

TYPE 4:

RULE: IF (dj: Ais V) |
THEN (dj;: Cyis Uy) OR ... OR (di:
C,is U,) (CF=ug)

Rules of this type are unsuitable for deducing
control because they do not make specific im-
plications. Therefore, we do not allow type 4
rule to appear in the knowledge base.

Example 1:

Let’s assume that the knowledge base of a rule-
based system is made up of the following fuzzy
production rules:

Ry: IF (d;: A is A;) THEN (dp: B is By)
(Ur1=0.85)
Rp: IF (dp: B is By) THEN (ds: C is Cq)

(ur2=0.80)

Fig. 5. Fuzzy Petri net representation of a type 4 rule.
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R3: IF (dz: B is B]) THEN (d.q,: D is Dj)
(,LLR3:O.80) .

Ry: IF (dg: D is D1) THEN (ds: E is Eq)
(,LLR4:O.90)

R5: IF (d]l A is Al) THEN (dﬁ: G is Gi)
(1rs=0.90)

Rg: IF (dg: G is G1) THEN (dy: D is D;) and
(dg: J iSJﬂ (HR6:0-95)

R7: IF (di: Ais A;) and (dg: I is I;) THEN
(d7: H is Hy) (ur7=0.90)

Rg: IF (d7: H is Hl) THEN (d4: D is Dl)
(1rs=0.90)

The rules and the facts can be modeled with
fuzzy Petri nets as shown in Figure 6.:

Fig. 6. Graphic representation of the knowledge base in
the Petri net formalism.

3. Inference Engine

The function of the inference engine is to extract
the knowledge stored in the fuzzy knowledge
base and to make inferences from the respec-
tive rules and facts. It can evaluate simple and
composite fuzzy production rules.

This Section is organised as follows. The sub-
section 3.1. describes evaluation of simple
fuzzy production rule. Evaluation of composite
fuzzy production rule is described in Subsec-
tion 3.2. The rule evaluation is a basic opera-
tion in a process of performing inferences from
rules which make up the knowledge base. The
subsection 3.3. presents the fuzzy reasoning
process in the knowledge base which include
rule chaining. The inference engine is making
inferences by forward chaining.

3.1. Evaluation of a simple rule
Suppose there is a fuzzy production rule:
IF (A is V) THEN (C is U) (CF=ug)

where

e A is an antecedent object of the rule,
e (' is a consequent object of the rule,
e up Is a certainty factor of the rule,

e V is a value of object A,

e U is a value of object C.

If an object is nonfuzzy, then its value is either
a number or a string. If the object is fuzzy, its
value 1s a fuzzy term. The object is treated as a
linguistic variable. By a linguistic variable we
mean a variable whose values are words or sen-
tences in a natural or artificial language. Each
value of a linguistic variable is represented by a
fuzzy set. If an object A or C is fuzzy, then its
value V or U is represented by fuzzy sets Fy or
Fy, respectively.

We can say that arule is fired by a fact and a con-
clusion is made simultaneously. The conclusion
involves two information: an object value and
a certainty factor of the conclusion.

Methods of simple rule evaluation:

I. Both objects A and C are nonfuzzy:

RULE: IF (A is V)
THEN (C is U) (CF=ug)
FACT: Ais V (CF=up)

CONCLUSION: Cis U (CF=puc¢)

In order to apply this rule a fact object should
be nonfuzzy. When the rule is evaluated, we
obtain a conclusion object that is nonfuzzy too.

The certainty factor uc of the conclusion is cal-
culated by multiplication of the certainty factor
of the rule ug and the certainty factor of the fact
ur. When certainty factors are fuzzy, then we
should apply a fuzzy number multiplication.

UC = PR * Up (1)

II. Object A is nonfuzzy, object C is fuzzy:

RULE: IF (A is V) THEN
(Cis U) (CF=ug)
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FACT: Ais V (CF=ur)
CONCLUSION: Cis U (CF=uc)

A fact object should be nonfuzzy. A conclusion
object obtained by the rule evaluation is fuzzy.

If C is a fuzzy object, then its value U is repre-
sented by fuzzy set I’y and the same fuzzy set
Fy represents the value U in the conclusion.

The certainty factor uc of the conclusion is cal-
culated by multiplication of the certainty factor
of the rule ug and the certainty factor of the fact
U

Uc = UR * U (2)

IT1. Both objects A and C are fuzzy:

RULE: IF (A is V) THEN
(Cis U) (CF=ug)
FACT: Ais V' (CF=pr)

CONCLUSION: C is U’ (CF=pc¢)

The fact object should be fuzzy. The conclusion
object obtained by the rule evaluation is fuzzy
too.

Ifboth A and C are fuzzy objects, then the values
V and U are represented by fuzzy sets Fy and
Fy, respectively. We form a fuzzy relation R
by performing some fuzzy operations of fuzzy
sets Fy and Fy. There are different approaches
to the fuzzy relation forming. For example, a
fuzzy relation R can be formed by performing
Cartesian product of fuzzy sets Fy and Fy.

Let Fy be a fuzzy set in the universe of dis-
course V and Fy be a fuzzy set in the universe
of discourse (/. The Cartesian product of two
fuzzy sets Fy and Fy is the fuzzy set of ordered
pairs (x,y),x € V, y € U. The membership
function of (x, y) in Cartesian product Fy x Fy
is a fuzzy relation from V to U and is defined

by:
mp(x,y) = min(mp, (x), me, (y))  (3)
where

e mp(x,y) is a membership function of the
fuzzy relation R,

e mp,(x)is amembership function of the fuzzy
set Iy,

e mp,(y)isamembership function of the fuzzy
set Fyy.

The value V' of the object A in the fact should be
a fuzzy term represented by a fuzzy set Fy.. The
fuzzy set Fyy of the value U’ in the conclusion
is obtained by applying a fuzzy composition
operation on Fyr and R:

FUIIFVJOR (4)

The membership function of the fuzzy set Fy
is given by the max-min product of the mem-
bership functions Fy+ and R.

e )= max(min(mFyr (x), mr(x,y)) (5)

The certainty factor pc of the conclusion is cal-
culated by multiplication of the certainty factor
of the rule up and the certainty factor of the fact
UE.

HC = UR * UF (6)

IV. Object A is fuzzy, object C is nonfuzzy:

RULE: IF (A is V) THEN
(C s U) (CF:LL;;)
FACT: A is V! (CF=ur)

CONCLUSION: Cis U (CF=uc)

If A is a fuzzy object, then its value V in the rule
is represented by a fuzzy set Fy and its value V'
in the fact is represented by fuzzy set Fy.. The
conclusion is nonfuzzy. The certainty factor of
the conclusion pc is obtained by multiplication
of certainty factors ug, pr and a similarity M
between Fy and Fy, which are fuzzy sets of V
and V', respectively. The similarity M measures
how similar two fuzzy concepts represented by
the two fuzzy sets are.

uc = (ug * up) - M (7)

The similarity M is calculated by the following
algorithm:

IFN(Fy; Fyi) > 0.5

THEN M=P(Fy; Fy)

ELSE M=(N(Fy; Fy:)+0.5) x P(Fy; Fy)

where
e P(Fy; Fy/) is a possibility of a fuzzy data
Fy» given the fuzzy pattern Fy,

o N(Fy; Fy) is a necessity of a fuzzy data Iy,
given the fuzzy pattern Fy.
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The following are the formulas of the possibil-
ity and necessity measures between two fuzzy
sets:

P(Fy; Fyr)=max(min(pr(w), up (w))) (8)

N(Fy;Fy) =1—-P(FS;Fy) (9
where

e u is a membership function of the above
fuzzy sets,

e w is an element in the universe of discourse
of the above fuzzy sets,

e F§ isa complement of Fy.

The possibility between two fuzzy sets gives the
maximum of their intersection and measures to
what extent they overlap. The necessity be-
tween two fuzzy sets reflects the following re-
lationship between them:

N(Fy;Fy) > 0.5 < Fy

is a concentration of Fy
N(Fv;FVJ) =05 &= Fy

is a duplicate of Fy
N(Fy;Fy) < 0.5 < Fy

18 a dilation of Fy

If Fy» is a concentration of Fy, it means that
Iy has a more concentrated or narrower distri-
bution than Fy. The more concetrated distribu-
tion of Fy+ represents a more strongly expressed
term than that of F'y. For a dilation the situation
is exactly the opposite.

In a fuzzy Petri net the evaluation of a fuzzy pro-
duction rule can be considered as firing a corre-
sponding transition. By using a fuzzy Petri nets,
the fuzzy production rule and the fuzzy fact:

RULE: TIF (dj: A is V) THEN
(d: Cis U) (CF=pg)

FACT: dj: Ais V' (CF=up)

can be modeled as shown in Figure 7.

d:AisV d,:CisU

Ha
m diAisV' N »
L) i

P Dy

o

Fig. 7. Fuzzy production rule before firing transition

Let A be a threshold value, where A € [0, 1].
Then:

e if up > A = arule may be evaluated,
o if up < A = arule cannot be evaluated.

A ftransition ¢; is enabled to fire if the token
values in all its input places are greater than
the threshold value A. A transition ¢; fires by
removing the tokens from its input places and
then depositing one token into each of its output
places. Simultaneously, the corresponding rule
is evaluated. In the output place the conclusion
is evaluated and the token value as certainty
factor of the conclusion is calculated.

3.2. Evaluation of a composite rule

The composite production rules are distinguished
into the following rule-types:

I. The antecedent part of the rule contains
multiple propositions (A1,A4;,...,4,) with
AND connectors between them:

RULE: IF (A1 is Vi) AND (A is V)
THEN
FACTS: Ay is V] (CF=ur,)

Ay is V) (CF=ur,)
CONCLUSION: Cis U (CF=uc¢)

If an object in the consequent proposition is
nonfuzzy, no special treatment is needed. If the
consequent proposition is fuzzy, the fuzzy set
of the object value U’ in the conclusion is cal-
culated by considering the distribution law in
logic:

(A ANDA,) = C

=(A; = C)OR(4; = C)  (10)
diAisV He d:CisU
O—F——®
P I P
dei €is)
He=He* My

Fig. 8. Fuzzy production rule after firing transition



Mojca Parkelj, Nikola Pavesi¢: Fuzzy Expert System for Pattern Recognition

187

We can break up the composite fuzzy produc-
tion rule into two simple fuzzy production rules
and the fuzzy set Fy» in the conclusion C is ob-
tained by taking fuzzy union of the fuzzy sets
Fy, and Fy,:

Fy = Fy, UFy, (11)

where

e Fy, is a fuzzy set in the conclusion C ob-
tained from the first rule evaluation:

RULE: IF (4, is V;) THEN (C is U)
FACT: Ay is V!

e Fy, is a fuzzy set in the conclusion C ob-
tained from the second rule evaluation:

RULE: IF (A4 is V2) THEN (C is U)
FACT: AyisV)

The certainty factor uc of the conclusion is
calculated by the following formula:

uc = min(up,, up,) * pr - (12)

II. The antecedent part of the rule contains
multiple propositions (41,A4,,...,4,) with
OR connectors between them:

RULE: IF (A] is V]) OR (AQ is Vz)
THEN (C is U) (CF=ug)
FACTS: Aqis V] (CF=up,)

Az is V) (CF=up, )
CONCLUSION: C is U’ (CF=uc)

If an object in the consequent proposition is
nonfuzzy, no special treatment is needed. If
the consequent proposition is fuzzy, a fuzzy set
of the object value U’ in the conclusion is cal-
culated by considering the distribution law in
logic:

(A; ORAy) = C

= (A1 = C)AND(A, = C) (13)
We can break up the composite fuzzy produc-
tion rule into two simple fuzzy production rules
and the fuzzy set I/ in the conclusion C is ob-
tained by taking fuzzy intersection of the fuzzy
sets Iy, and Fy,:

F”UIFUl ﬂFUz (14)

where

e [y, is a fuzzy set in the conclusion C ob-
tained from the first rule evaluation:

RULE: IF (A is V;) THEN (C is U)
FACT: A;is V]

e Iy, is a fuzzy set in the conclusion C ob-
tained from the second rule evaluation:

RULE: IF (A, is V3) THEN (C is U)
FACT: Ay is V)

The certainty factor ue of the conclusion is
calculated by the following formula:

uc = max(ur,, Wr,) * UR (15)
ITII. The consequent part of the rule con-
tains multiple propositions (C1,C5,...,Cp)
with AND connectors between them:

RULE: IF (A is V) THEN (Cy is Uy)
AND (Cy is Uy) (CF=ug)
FACT: Ais V! (CF=ur)

CONCLUSIONS: C; is U} (CF=p,)
Cy is U} (CF=uc,)

This rule can be decomposed into multiple rules
with a single conclusion. We can break up the
composite fuzzy production rule into two sim-
ple fuzzy production rules:

RULEL: IF (A is V) THEN (C; is U))
(CF=ug)

RULE2: IF (A is V) THEN (Cy is Us)
(CF=ug)

Each rule can be evaluated separately and all
conclusions have the same certainty factors:

Moy = U, = PR * Up (16)
IV. The consequent part of the rule contains
multiple propositions (C;,C»,...,C,) with
OR connectors between them:

RULE: IF (Ais V) THEN (C is U1) OR
(Cz is UQ) (CF:MR)
FACT: Ais V' (CF=pg)

Rules of this type are unsuitable for deducing
control because they do not make specific im-
plications and we don’t allow this type of rule
to appear in the knowledge base.
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Composite fuzzy production rule and their eval-
uation can also be modeled by a fuzzy Petri net
as shown in figures below.

d;
P
d,
>O
P
Px
a‘jﬂ
pjn
d,
P

Fig. 9. Fuzzy Petri net representation of a type 1 rules.

TYPE 1:
RULE: IF (dj1: Ap is Vi) AND ...
AND (dj: Ay is V)
THEN (d: Cis U)(CF=pg)
FACTS: Ay is V] (CE=pp,)

A, is V) (CF=ur,)
CONCLUSION: C'is U' (CF=uc)

Fyr = Fy, UFy, U...UFy,  (17)
uc = min(up,,...up,) *ur  (18)
TYPE 2:
RULE: IF (dﬂ: A1is V1) OR ... OR
(djn: A,l is Vn)
THEN (dy: Cis U)(CF=ug)
FACTS: Ay is V] (CF=py,)

A, is V] (CF=ug,)
CONCLUSION: Cis U’ (CF=uc)

Fy=Fy NFy,N...NFy,

uc = max(Wp,, ...ur,) * UR

Fig. 11. Fuzzy Petri net representation of a type 3 rules.

TYPE 3:

RULE: IF (df: AisV)
THEN (dk]l C1 is Ul) AND
... AND (dkn: Cn is Un)
(CF:MR)

FACT: Ais V' (CF=ur)

CONCLUSIONS: Cy is U (CF=yc,)

Cal8 T, (CE=lig)

e, = .. =Uc, = W) xpur  (21)
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3.3. Fuzzy reasoning
supported by Petri nets

Let R be a set of fuzzy production rules:

R = {RiRFoyuses B}
The general formulation of the i-th fuzzy pro-
duction rule is as follows:

Ri: IF (dA: A;is Vi) THEN (dc: C; is Ul‘)
(CF=pr;)

In many situations, we may want to deter-
mine whether there exists an antecedent- con-
sequence relationship from a proposition ds to
a proposition dg. If a fact dr for proposition
ds is given, we may want to ask what fuzzy set
and what certainty factor of a conclusion might
be evaluated. These problems can be solved by
developing a fuzzy reasoning algorithm based
on the fuzzy Petri net that was proposed by S.
M. Chen in [4].

The propositions ds and d are associated with
the place ps and pg, respectively in the fuzzy
Petri net. The places ps and pg are called a
starting place and a goal place, respectively.
The token value in the starting place pg is cer-
tainty factor of the fact ur and the fact fuzzy set
is also known.

All transitions that are derived from a starting
place are enabled to fire if a token value in the
starting place is greater than threshold value. A
transition fires by removing the token from its
input places and depositing one token into each
of its output place. Corresponding rules are
evaluated simultaneously. In the output places
the token value is calculated and a conclusion
is made. The evaluated conclusion behaves as
a fact for the next transition firing.

The fuzzy reasoning algorithm proposed by S.
M. Chen [4] can automatically generate all rea-
soning paths from a starting place to a goal place
and if the fact in the starting place pg is known,
then the token value in the goal place pg can be
calculated and the conclusion is evaluated.

The algorithm can be expressed by a reason-
ing tree. Each node of the tree is denoted by a
quadruplet:

(pi: a(pi)ﬁFV{afRS(piD

where
e p; € Pisa place in fuzzy Petri net,
e o(p;) is a token value in the place p;,

o Fy is a fuzzy set of the fact in the place p;,

e IRS(p;)is aimmediate reachability set of p;.

A root node of the reasoning tree is denoted by
the starting place ps. The reasoning tree may
have several terminal nodes denoted by a goal
place p;. They are marked as success nodes.
If there are no success nodes, then there does
not exist an antecedent-consequent relationship
from a proposition ds to a proposition dg. A
path from the root node to each success node is
called a reasoning path. Along one reasoning
path we can see in what order the rules have
been evaluated from the starting proposition ds
to the goal proposition dg.

To illustrate the fuzzy reasoning process an ex-
ample is used.

Example 2:

The knowledge base of a rule-based system con-
tains the fuzzy production rules as in Example
1. Assume that the threshold value is A =0.2.

The two facts are given by the user:

Fq: (d3: AisA)) (ur,=0.80)
Fy: (dh: ©is 1) (up,=0.70)

We have to determine whether there exists an
antecedent-consequence relationship from the
proposition dy to the proposition ds4. The rules
and the facts can be modeled by the fuzzy Petri
net model as shown in Figure 12.

Iy

% goal place

Fig. 12. Fuzzy Petri net representation of the knowledge
base.
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(pl:\ 08: FA‘J

(p2= 068: FB‘! {p3’p4})
0.8

(pq.! 0545 FDl's {ps})

(P(,, 072, FG': {P4,P9})

(4> 0.68, Fiy, {D})

{p2=p6: p7})

w 1Pa})
0.95 0.9

(P4: 057a FDB" {ps})

Fig. 13. Fuzzy reasoning tree.

The places p and p4 are called the starting place
and the goal place, respectively.

After performing the fuzzy reasoning algorithm
the fuzzy reasoning tree sprouts as shown in
Figure 13.

There are three success nodes. Let Q be a set of
success nodes:

Q = {(13470-54:FD1’: {.pS}):
(p4,0.68, Fpy, {ps}), (p4,0.57, Fpsr, {ps}) }

The dominant conclusion is that with the great-
est certainty factor. Therefore, the fuzzy set of
the conclusion is Fpy and the certainty factor
of the conclusion is 0.68.

4. Conclusions

To facilitate better knowledge engineering and
simulation of human reasoning, we have built
into an expert system fuzzy concepts and inex-
act reasoning. The proposed expert system can
handle both fuzziness and uncertainty, the two
basic inexact concepts. The presented model of
the fuzzy knowledge base based on fuzzy Petri
nets has an ability to represent knowledge in a
domain of application and supports fuzzy rea-
soning. The main properties of the presented
fuzzy reasoning algorithm are:

o thereasoning tree of a fuzzy Petri net is finite,

e generating only necessary reasoning paths
from an starting place to an goal place,

e anupper bound of the time complexity of the
fuzzy reasoning algorithm is O(nm), where
n is a number of places, and m a number of
transitions,

e an execution time of the fuzzy reasoning al-
gorithm is proportional to a number of nodes in
the reasoning tree generated by the algorithm.

Beside the fuzzy knowledge base and inference
engine, the knowledge acquisition subsystem
and user interface can be added to the fuzzy
expert system. The knowledge acquisition sub-
system is responsible for acquiring and manag-
ing rules and facts. The user interface caters for
communications between a user and the system
and comprehends linguistic approximation rou-
tine. An linguistic approximation routine is a
process that maps a set of fuzzy sets onto a set
of linguistic values or expressions. This pro-
cess is needed for two purposes. One is to find
corresponding verbal descriptions of fuzzy sets
representing fuzzy values. The other is to get
linguistic descriptions of fuzzy numbers repre-
senting fuzzy uncertainties. The function of the
linguistic approximation routine is translating a
fuzzy set or a fuzzy number into natural lan-
guage after the system makes a conclusion.
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