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An Extended G-Net Model
for Knowledge Representation”

M. Gerksic¢ and N. Pavesic¢

Faculty of Electrical Engineering and Computer Science, University of Ljubljana, Slovenia

A new, generalized scheme for knowledge representation
of fuzzy timed systems is proposed. The scheme is based
on principles of a G-net model. We extended the existing
G-net capabilities by the possibility of describing fuzzy
defined and time dependent relationships among the
system agents.

A fuzzy system is described by fuzzy relations. A fuzzy
production rule is represented by a fuzzy term and valued
by a certainty factor. Possibilities of modeling different
types of knowledge are given.

Time dependencics in the systems and their representa-
tions vary according to the nature of the problems studied
and a type of represented knowledge.

The represented scheme is capable of a static and a dy-
namic knowledge representation in a unique framework
and enables interaction and coordination of both types of
knowledge.

Finally, some illustrative examples are given.

1. Introduction

In the field of knowledge representation, many
different approaches of modeling have been de-
veloped. They differ in the type of used struc-
ture, type of represented knowledge and in the
set of used reasoning methods.

When modeling situations from different real
(or simplified)-world vision system domains,
we rarely come across problems where every-
thing can be described in a small, one-purpose
system. Moreover, in modeling a real world
problem we always deal with different types
of knowledge joined. Additionally, knowledge
can be hierarchically organized in various levels

or layers to represent the problem domain in the
way that is easier to comprehend. Then, what
is sought is a good knowledge organization en-
abling interactions among all levels and types
of knowledge. Or, in terms of vision system
domain, efficient robot action is a set of various
agents such as sensors, situation analysis, gen-
eral knowledge, domain knowledge, reasoning,
conclusions. . ., compound together in a com-
pact entity.

Among various approaches of knowledge mod-
eling we have chosen the Petri-net formalism as
a base of our robot vision system. By means of
this formalism many different models have been
built up to represent block world scenes, level-
organization, time dependencies, fuzzy reason-
ing, etc. [7], [8], [9].

We have decided building on a very general
knowledge representation scheme, with the pos-
sibility to combine static and dynamic knowl-
edge and fuzzy described and time dependent
parts. The combination of static and dy-
namic knowledge representation has been al-
ready done by Deng et al. in [2] and it is named
G-net. In this paper, a fuzzy, time dependent
knowledge base for computer vision systems,
based on the G-net structure, is introduced. In
addition, some general principles of reasoning
in this structure are proposed. The detailed de-
scription of the reasoning algorithm is given in
the article by Parkelj et al. [4] of this issue.

To illustrate the proposed scheme, two exam-
ples are given. The first one is representation
of static knowledge with gradual inclusions of
time and fuzzy dependencies. The other is a de-
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scription of a dynamic, time-dependent process
with a fuzzy quality control element.

2. Knowledge Representation
Using Petri-Nets

A structure of a Petri-net knowledge represen-
tation system can be defined as a 7-tuple [8]:

KRP =] (P,T;I;Oaun aiﬁ))
where

e P={pi,ps,...p,} is afinite set of places;

o T = {f,ts,...1y} is a finite set of transi-
tions;

e [:T — P isthe input function, a mapping
from transitions to bags of places;

e O :T — P is the output function, a map-
ping from transitions to bags of places;

e u is a marking vector, denoting current state
of the net by the distribution of tokens;

e o : P — C is an associating bijective func-
tion, a mapping from places to set of knowl-
edge concepts;

e [ :T — 2 is an associating surjective func-
tion, a mapping from transitions to set of rela-
tions.

This is a very universal structure and allows var-
ious interpretations in potential fields of appli-
cations. An outline of the implemented model
,as well as the set of used reasoning mecha-
nisms, will depend on the type of the repre-
sented knowledge.

To start modeling, knowledge should be classi-
fied, according to the problem given, into one
of the two general types: static knowledge and
dynamic knowledge.

2.1. Static Knowledge

Here, we refer to static knowledge when we
have to represent some facts or general informa-
tion, to describe a scene by its elements and re-
lations among them. The basic Petri-net would
be modified trough the elements of the sets of
knowledge concepts C and relations Z.

e C = { objects, classes of objects, object
properties }

e X = { semantic, structural, positional rela-
tions among objects, property relations }

The other modification would be in the set of
inference mechanisms. We are interested in in-
formation on the physical position of an object,
its properties, its classification, thus we require
inference mechanisms [6] in order to provide
this information from given facts and knowl-
edge.

e inference mechanisms = {inheritance, ob-
ject recognition, intersection search }

2.2. Dynamic Knowledge

Dynamic knowledge is introduced when we
have to represent some processes or algorithms.
In this case the sets of knowledge concepts C
and relations X can be interpreted as follows:

o (C = {states of a process, control p-nodes}

e X = {functional and causal-effect relation-
ship, actions in the process, environment ac-
tions, control t-nodes}

The inference mechanisms have to enable
analysis of the net behaviour [3]. Therefore:

e inference mechanisms = {reachability, live-
ness, safety, efc.}

3. G-net as a Knowledge
Representation Scheme

G-nets enable combining of static and dynamic
knowledge into a unified structure for knowl-
edge representation and inference. The G-net
can be introduced as an extended Petri net, and
represented as a 9—tuple [2]:

G=(k,P.T,m,1.0, c.p,D).

The differences between G and Petri net are:

e k is a parameter used to determine the type
of knowledge represented by a G-net. The
value of k canbe either “static” or “dynamic”.
According to this value the set of the infer-
ence mechanisms is chosen.

e m is a marking function which indicates to-
kens distribution. The tokens are “colored™:
white and black for dynamic, and forward
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and backward for static knowledge. A white
token is a normal enabling token as defined
in a Petri-net. A black one, when generated,
destroys all white tokens in the output place.
By using forward and backward tokens each
transition can be fired bi-directionally and
can be used as well for recognition (forward)
as for inheritance (backward).

e D is a triple denoting the properties of a se-
mantic relation in the static part of the G-net
structure. It is defining the set of semantic re-
lations used in the G-net, the inheritance set of
a given semantic relation and the set of reverse
semantic relations.

The transformation of the G-net into a knowl-
edge table, as proposed in [2], can be used to fa-
cilitate the reasoning process. Here, for the clar-
ity reasons, we are pointing out just a switching
place between a static and dynamic knowledge
representation.

The switching place is a special type of a place.
[t contains information of an elementary G-net:
name, type, marking, etc. Additionally, it is a
place as any other in the G-net and can be used
accordingly. It can be assigned transitions and
thus connect in type or in level different “sub”
G-nets.

New, resulting features of the unified structure
are then:

o the efficiency of knowledge managing,
e modular and hierarchical construction and

e clarity and systemization of represented
knowledge.

4. Time dependencies

When modeling time dependencies, we have
found just a few approaches and many different
interpretations of these approaches according to
the problem domain. We have decided on the
approach described by Ribari¢ in [10]. Types
of the time dependencies can be separately con-
sidered for static and dynamic knowledge.

In a static knowledge model a time dependency
means a dynamic, time dependent changing of
the model. This can be achieved either by a
predicate or by an interval associated to every
net transition. In both cases the net structure is

extended by an additional condition for transi-
tion firing.

Dynamic knowledge models are frequently
describing processes (or process protocols).
Therefore, the time dependency can be bounded
to

e a certain state of the system,
¢ coordination among different processes,
e process or real time.

The first two items have rather control while the
third one action meaning.

The first two can be modeled implicitly by either
using inhibitor arcs or black tokens. Inhibitor
arcs are transitions or part of transitions that
can enable (disable) or control another transi-
tion. Similar mechanism is a black G-net to-
ken. The black token is a G-net mechanism
and when generated, destroys all white (nor-
mal, enabling) tokens in the controlled place.
Graphically it is represented by a transition arc
ending with a back-arrow instead of an arrow.
The modeling of this can be done by defining
appropriate input and output set of a transition.
Another possibility in the mechanism for Petri-
net knowledge representation are functions for
changing the marking of the net. With them we
can change the marking of the net at the begin-
ning, to denote the situation in the scene, or in
the middle of the run, on a special request of
some actions. Mechanisms of the black token
and the time interval are not mutually exclusive
and can also be used simultaneously, when nec-
essary or requested. The only proper solution
for the modeling of time in this case is again the
use of a time interval.

The time interval shows to be very useful and
can be applied in many ways. It is sufficient
to represent all time dependencies at a static
knowledge representation and even some at dy-
namic. Although we mentioned the inhibitor
arc as a possible solution it can be substituted
by the time interval in some cases. The only
situation where it can not be accepted is when a
black token mechanism is used.

A time interval can be defined either as a pair
of two real-time moments denoting the start and
the end time point, or the start and duration, or
two real numbers showing just the time relation-
ships, etc. In any case it is defining the value of
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a predicate assoclated to transition. The pred-
icate has a logical value and it is an additional
condition to fire a transition.

Formally we define the time interval by the finite

set © of ordered pairs associated to transitions

S T:

o 0 ={(0,,0,);
©1; < O3}, where

W

e ©1; and O are the start and end point of
the time interval when the transition ¢ is en-
abled;

e the transition ¢ is enabled by w(t) = w;

s B s -
where: w; = { 1; 0y <7 <8y,

0; otherwise, § ang

e 7 stands for current time.

To be able to “calculate” with the time inter-
vals, what is very convenient for knowledge
representation, the mapping function 6 is in-
troduced:

6:A—=R,

where:

e A is the ordered set of start, end and inner
points of time intervals and

e R the set of real numbers.

This function maps time into the set of real num-
bers:

° 6:@J;»—>®;-;®;-ER.

5. Fuzzy Dependencies

There are as many different fuzzy set theory
based knowledge representation as researchers
dealing with them, but here we concentrate on
one only. interpretations of a representation the
fuzzy set theory and only one aspect will be
shown here. We will take the mechanism [1]
and then treat the static and the dynamic knowl-
edge representation separately.

A static fuzzy system usually represents the
problem of recognition or inheritance of an ob-
ject/ concept, where input data are given de-
scriptively or inexactly. A typical problem
would be a representation of medical knowl-
edge.

On the other hand, with dynamic fuzzy systems
the main stress is on fuzzy system control. Input
data can be quite exact but numerous and thus
difficult to manage consistently. The control of
the process is reduced to a few rules for the most
typical situations, but defined loosely enough to
be of a wide use.

Typical problems are arising from complex sit-
uations with unpredictable variable parameters
as driving a car, balancing of a moving object,
etc.

Concerning static problems, first, properties can
be defined fuzzy by using linguistic qualifiers.
Then, concepts represented by places become
fuzzy sets. Values can be assigned to tokens.
Thus we denote the value of a membership func-
tion for a fuzzy set represented by the place.

For dynamic problems, further, the rules (tran-
sitions) can be weighted by a certainty factor
to denote possibility of a rule. Also, additional
type or a color of a token (enable —e) is needed
to enable process control and feedback loops.

To enable all these features, the net structure is
extended by the following definitions:

e v : P — [0,1] is an association func-
tion, denoting value of a token in a place:

y(pi) € [0,1];
e f:T — [0,1]is an association function, de-
noting certainty factor of the transition (rule)

f(ti) = [0: 1]5

e X € [0,1]is a threshold value, an additional
condition to fire a transition.

6. The Extended G-net Scheme

Let us recollect all the pieces of our jigsaw to-
gether:

Petii-net= PN = (P, Lu. I, O)
ERP = PN + (a,8,C,Z)

G-net = G = KRP + (k,m,D);
time= (O, 6, w)

fuzzy= (v,f, A, M);  (m— M)
Extended G-net= EGN = G+ time + fuzzy=
(P,T,1,0,a,B,C % k,MD,0,5 w,y,f,\)

(u +— m)
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This 17—tuple is the first iteration of Extended
G-net description. To obtain the proper Ex-
tended G-net structure a few changes are made.
First, we have sorted the given parts according to
their function and divided them into two groups:
parts of net structure and parts for knowledge
representation. This division can be represented
by the following expression:

EGN = network + knowledge =
= (PJ TJI? O)M§ w? ‘}/’fﬂA‘)
—i—(a,ﬁ,C,Z,@,é,k,D,)

The next step was to find whether there are some
common expressions in the different parts, that
can be joined and thus the net structure sim-
plified. No simplification can be done in the
“knowledge” part. This part is a kind of an in-
terface between the knowledge and its net rep-
resentation and therefore this relation must be
clear and exact. In the net part some modifica-
tions can be made.

The first one was indicated at the beginning of
this section, along by the structure of the Ex-
tended G-net, with changing of the function of
the token distribution. At the beginning, there
was w in the Petri-net, giving the number of to-
kens in places. Then it was changed to m in the
G-net. Here the tokens had four colours, a pair
for each type of knowledge, with their meanings
unchanged. After introducing fuzzy reasoning,
another modification happened and the function
was renamed to M. In the fuzzy reasoning, as
described above, tokens have values between 0
and 1 or e.

In the second modification we assembled the
firing condition. A transition can fire, if it is
enabled and if there are enough tokens in all
preceding places. In assembly of the structures,
we have gathered two enabling predicates. The
first one is w(¢;) or w;, from the time depen-
dencies and has a binary value. The second is
defined by A, the threshold value of the fuzzy
rule. We propose the following assembly. In-
stead of taking A € [0, 1], as defined by the
fuzzy part, let A € [0,2]. The condition of fir-
ing a fuzzy transition remains the same, but if
we want to disable the transition we add 1 to the
current value of the threshold A := A +1. Sothe
value of an enabled transition is between [0, 1,
and of a disabled in [1,2]. With this mech-
anism we can enable and disable a transition
with one predicate, without losing information

of the threshold. At the end, we have to adjust
the enabling predicate for the transition in the
time dependent and non-fuzzy system. Accord-
ing to the former mechanism, the “predicate”,
now A instead of w;, must be in inverted logic:
0 for enabled and 1 for disabled.

What is gained by this approach? Surely, this
method has some disadvantages: instead of log-
ical predicate a real value is used to control the
transition. Even where we could look at it as a
binary value, it has an inverted value. On the
other hand, what we achieved is the possibil-
ity of using the same structures for normal and
fuzzy reasoning with a minor change in the time
part of knowledge representation.

The final version of the Extended G-net is the
following 16—tuple:

EGN = network + knowledge =
=BT LM T )
+la, B, € 2,8,:8,kD) =
=(PT,1,0,M,v,f,
A,o,B,C 28,0k D)

In spite of greater complexity, derived struc-
ture is comprehensive and extensive so that
can be used in a wide spectrum of problems.
comprehensive and extensive wide spectrum of
problems it is not so terrible. All the unnec-
essary parts can be disabled or just put aside
by choosing the appropriate “indifferent” val-
ues. Indifferent values are constant values that
“hide” unoccupied segments and enable sim-
plified reasoning. In the example of the fir-
ing condition the indifferent value would be
A(t;) = 0; V¥V € T and all transitions are
enabled.

7. Examples

7.1. A Static Knowledge Representation
Example

The example of a static, time dependent knowl-
edge represented with EGN is given in figure 1.
In the figure we can see a normal static knowl-
edge of a concept “a horse”. From this scheme
we can learn:

Mare is_a Lipicaner is_a Horse



198 M. Gerksic, N. Pave$i¢: An Extended G-Net Model for Knowledge Representation

Stallion is_a Lipicaner is._a Horse
Stallion is_a_son_of_a Mare

(For the ease of the comprehensiveness of the
problem, the nets are marked by knowledge
items from the sets C, 2, ... instead by the net
items from P, T'. . ..)

Horse
sw:Horse
k=static

Lipicaner

sw”y

Fig. 1. Concept a_horse.

is_a_son_of

In figure 2 this concept is widened with some
time dependent knowledge. The time, in this
case, means the age of a horse.

The additional results of the inheritance reason-
ing in this scheme would be:

Horse

has_color _
3.4 b

Lipicaner
Dark () \

has_color
[0, 3]

is_a is_a

Mare d

Fig. 2. Time Dependent Knowledge

? Horse

e B,
s

{ is a
White @ %] -
as_color
Dull \ 5 i
/ Lipicaner
Dark @4
is_a
Grown_up
is a u is_a

N

Mare Q O Stallion

Fig. 3. Fuzzy defined static knowledge.

T=7: Mare is_a Lipicaner
has_color White
T=2: Stallion is_a Lipicaner

has_color Dark

However, the age is a typical fuzzy term. An-
other example is a color. We can not tell exactly,
at which moment a horse, if it is a lipicaner,
ceases to be dark and becomes white. We know
that it is dark when born, and white when grown
up. Regarding the time and colour, the change
is gradual.

In figure 2, another place is added. It is repre-
senting the fuzzy set Grown up. The first tran-
sition in this net is then a mapping from the
real horse’s age to the membership function of
the fuzzy set Grown_up. The transitions towards
Lipicaner and Horse have the value 1 because
the memberships to these sets are not fuzzy-
defined themselves. The value of the token
is important when evaluating the color of the
horse.

The evaluation for the stallion is shown in fig-
ures 4 and 5.

Finally, the results for this highly simplified ex-

T Grown_uap
1.0

10 Age

Stallion

Fig. 4. Evaluation of the membership of the fuzzy set
Grown._up.
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Color
T T —— Dark
il : - - Dull
! ; — —  White
] \ :

‘ 11() G;own_up

Fig. 5. Evaluation of the membership of the fuzzy set
Dull.

ample are:
Stallion has_color Dark (1.0)

Mare has_color White (1.0)

For the study of the fuzzy logic and realization
of this examples we also used [13], [11] and [12].

7.2. A Dynamic Knowledge Representation
Example

Let us consider another horse, of a different
color.

For dynamic knowledge representation we have
chosen an example from quality control. We

have a line for filling up diverse perfume bot-
tles. We have a simple machine that fills all
the bottles approximately equally, a sensor of
height and a corrector. Since we do not want
to have a jam in the line every time we have to
correct a bottle, another, queuing place is added
at the beginning. At the filling machine is a
control mechanism, which is demanding a free
line before the next bottle is proceeded. The
system is shown in figure 6.

The net structure displayed in figure 6, is ex-
plained in detail in the tables 1 and 2.

8. Conclusion

The Extended G-net we have proposed, enables
modeling combined knowledge types in a uni-
fied scheme. Although we have examined dif-
ferent kinds of representations separately, they
are not mutually exclusive but can be combined.
Even though the structure is comprehensive it
can be easily simplified by assigning appropri-
ate constant values to unnecessary parameters.

Since the fuzzy logic is very generalized it can
be degraded by additional limitation rules to
model a stochastic, multilevel or a normal logic
system.

M= (0,0,0,0,0,¢)

Fig. 6. A line for filling up the bottles.

[ place [ concept [ token value |

meaning |

D1 EMPTY No number of waiting bottles

P2 FULL 0,1 membership f. of fuzzy set FULL
3 GOOD 0,1 membership f. of fuzzy set GOOD
J2 MUCH 10,1 membership f. of fuzzy set MUCH
Ps LITTLE 0,1 membership f. of fuzzy set LITTLE
Ps DONE e bottle finished, enable next bottle

Table I. The Table of Places.
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| transition | action | token calculation | meaning ]
H NEW +1 new bottle in the queue
fp FILL fuzzy fill the bottle
f3 MEASURE norming filled % of bottle volume
Iy CORRECT € bottle corrected, fill next enabled
ts END e fill next enabled

Table 2. The Table of Transitions.

The examples have shown the use of defined
structure in a complex problem domains.
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