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The Missing Information Principle
in Computer Vision

J. Hornegger and H. Niemann

Lehrstuhl flir Mustererkennung (Informatik 5), Universitét Erlangen—Nirnberg, Erlangen, Germany

Central problems in the field of computer vision are
learning object models from examples, classification,
and localization of objects. In this paper we will
motivate the use of a classical statistical approach to
deal with these problems: the missing information prin-
ciple. Based on this general technique we derive the
Expectation Maximization algorithm and deduce statis-
tical methods for learning objects from invariant features
using Hidden Markov Models and from non-invariant
features using Gaussian mixture density functions. The
derived training algorithms will also include the problem
of learning 3D objects from two—dimensional views.
Furthermore, it is shown how the position and orientation
of a three—dimensional object can be computed. The
paper concludes with some experimental results.

Keywords: Expectation Maximization algorithm, Hid-
den Markov Models, statistical object recognition

1. Introduction

Object recognition systems are expected to be
robust with respect to instabilities of segmen-
tation results. Moreover, those systems should
also provide capabilities of learning, i. €. the
algorithms should be able to acquire knowledge
of a new object from sample data. The effi-
ciency of an object recognition system is based
on a reliable classification and localization of
objects. These requirements suggest the use of
statistical methods in a natural manner. If the
features are treated as random variables or vec-
tors, their behavior in varying segmentation re-
sults can be described by probability functions.
Thus, complete object models are represented
as density functions. The process of learning
corresponds to the computation of the param-
eters of the density function or the application

of non—parametric estimation techniques in the
non—parametric case. Reliability is achieved, if
the Bayesian decision rule is applied, since it is
known from decision theory that the Bayesian
classifier is optimal with respect to the proba-
bility of misclassification.

Classical pattern recognition theory [8] is based
on the assumption that each pattern of a class can
be characterized by one feature vector of a fixed
dimension. The statistical model of one object
is thus described by a single density function.
An object, in general, cannot be represented by
a single feature vector; commonly, a sequence
of features or a set of features is required for the
demanded discriminental power. Hence, more
general techniques and algorithms have to be
used to deal with the training and recognition
problem of objects.

This contribution motivates that many image
recognition problems can be understood as an
incomplete data estimation problem. We in-
troduce a general mathematical framework to
manage those issues. The described abstract
algorithm is applied to three different problem
domains: we introduce Hidden Markov Models
for learning from feature sequences of varying
length, we suggest a statistical approach to the
problem of learning three—dimensional struc-
ture from 2D views, and finally, it is shown how
the proposed recipe can be used to compute the
position and orientation of a known object in a
given scene. The paper concludes with some
experimental results and additional remarks.
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2. Incomplete Data Estimation Problems

The features which can be computed for a given
image frequently do not provide the complete
information. For instance, if we use the model
based approach for object recognition, itis a pri-
ori not known which image feature corresponds
to which model feature. In the case of three—
dimensional vision problems from 2D views the
range information is additionally missing. If
there is an heterogeneous background, the par-
tition of object and background features is also
a component of hidden information for the clas-
sification algorithm.

These examples demonstrate, that a lot of im-
age recognition problems can be decomposed
using the following colloquial paraphrase of the
Missing Information Principle [13]:

Observable Information
= Complete Information
— Missing Information

Obviously, this general statement provides no
algorithms. We will use statistical principles
and deduce an algorithmic framework, which
admits to deal with incomplete data estima-
tion problems. Let us assume that a parametric
probability function is given by the parameter
set B = {ay,a2,...,a,}. We denote the ob-
servable data by the random variable X and the
missing data by Y. The goal of a training algo-
rithm is the estimation of the parameters B using
exclusively the observable information. Never-
theless, there exist relations between observable
and hidden data, which might be advantageous
for the learning process in some cases. Using
a maximum likelihood approach to estimate the
parameter set B, the probability function

P(X,Y|B)

PX|B) = P(YIX,B) (1)

has to maximized. Frequently, it is computa-

tionally worthwhile to use the logarithm of the

probability function L(X, B)=1log P(X | B) for
the optimization process. Thus, we have
log P(X |B) = log P(X,Y|B)

—log P(Y | X,B) (2)

which indeed corresponds to a mathematical
formalization of the missing information prin-
ciple: the complete information is described by
log P(X,Y|B) and log P(Y |X,B) represents
the missing part. An iterative algorithm for
the computation of B can be derived if we use
the conditional expectation of the logarithmic
likelihood function (2) with respect to the ac-
tual estimate of B and the observable set of ran-
dom variables X. The reestimations are denoted
by B. The application of the definition of the
conditional expectation results in the following
key—equation

where
08.8) = [ P(¥|x.5) x
x log P(‘X} Y|B)dY (4)
and

H{(B B) = /P(Y|X,B) X
x log P(Y | X, B) dY. (5)

Using Jensen’s inequality [11] it can be shown
that an increase of the Q—function (4) corre-
sponds to a decrease of the H—function (5).
Consequently, it is sufficient to optimize merely
the Kullback-Leibler statistics Q(B,B). An
iterative algorithm for the optimization of
L(X, B) is the Expectation Maximization Algo-
rithm described in Fig. 1. This algorithm was
developed by Dempster e. a. [3]. The prop-
erties of the EM—-algorithm are summarized in
[3,12,7]. The positive characteristics of the EM—
algorithm are based on the constant storage re-
quirements and on the observation that in many
applications a decomposition in much easier
optimization problems occurs. The disadvan-
tages of this iterative estimation procedure are
the slow convergence rate and the restriction for
the computation of local maxima. A compari-
son of maximum likelihood estimates with the
iterative EM—algorithm can be found in [2}.

The missing information principle can be sum-
marized by the following steps: First of all,
you have to define a suitable statistical model
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Initialize B

WHILE B # B

E-STEP: compute Q(B, B)

M-STEP: compute B = arg max; O(B, B)

Figure 1. A structogram for the EM—Algorithm

for the given problem to be solved. Then, the
observable and hidden information can be de-
rived and the computation of probability func-
tions P(X,Y | B) and P(Y | X, B) has to be done.
Before the EM—iterations are carried out, one
has to choose an appropriate maximization tech-
nique of the Kullback—Leibler statistics.

The remaining parts of this contribution are ded-
icated to the application of this abstract algo-
rithm to different computer vision problems.

3. Applications

This section describes three different applica-
tions of the missing information principle in the
field of image processing. We introduce Hid-
den Markov Models, which are broadly used for
the classification of speech signals, and derive
training formulas for estimating the parameters.
The second and third application describes re-
cent results dealing with the problem of learning
3D objects from 2D views and the localization
of a known 3D object in an observed scene.

3.1. Learning from Feature Sequences

If an object in a scene can be associated with
a feature sequence O =< 01,(07,...,0, >, a
classification system is needed which can com-
pute the a posteriori probability for observing
the special feature sequence of length n. An
established statistical model for dealing with
the problem of classifying feature sequences are
stochastic automata, especially Hidden Markov
Models (HMMs). The stochastic automata con-
sist of a set of states, transitions among these
states, and emission probabilities for elements
of a given alphabet. The probabilistic behav-
ior of an HMM with N states {Sy,...,Sy} can
be described by a triplet A = (7, A, B), where

7w = (m,m,...,my) is the vector of probabil-
ities for the generation of a sequence of out-
put elements to start at a special state. The
state transition matrix A = (a;j)o<i<y,0<j<n in-
cludes the probabilities a; ; to change from state
$; to state §;. The third element of the triplet A
is a matrix B = (b;(v))o<i<n,0<i<1 including
discrete probabilities for a finite output alpha-
bet {vi,v2,...,v.}. An example of a Hidden
Markov Model is shown in Fig. 2.

ass

Figure 2. Ergodic Hidden Markov Model; each state
emits probabilistic output symbols

Let us assume that the observable feature se-
quence for a given object is produced by one
automaton. The parameter set B of Fig. 2 cor-
responds to the parameters m,A and B of the
Hidden Markov Model. Following the miss-
ing information principle, we have to determine
what is known and what is hidden for the train-
ing process. Obviously, the parameter estima-
tion procedure is unsupervised inasmuch as the
state sequence, which produces the sequence of
output symbols, is not observable. Thus X = O
and ¥ = s, where O represents the sequence
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of observable output symbols and s is the non—
observable state sequence. Thus, the needed
probabilities for the complete and the missing
information are

n—1

P(s,0 | A)=m, Has, . Hbs, o), (6)

and

P(s, 0| )
P(O] 1)

n—1 n
TTsy H Ast.5011 H bs;(or)
- n—1 n :
E -7-551 H aS{,Si_Ar] H bs;(of)
S =1 t=1

Due to the fact that the unobservable data repre-
sent discrete state sequences, the integral (4)
becomes a sum over all admissible state se-
quences.

P(s|0,1)=

(7)

Q(A,A)=> P(s|O,1) logP(s,0|4) (8)

The calculation of the maximum of the Kull-
back—Leibler statistics in each iteration is a con-
straint optimization problem, because the pa-
rameters are discrete probabilities. We compute
the zero crossings of the first derivative with re-
spect to the parameters 7, ds, s, , and by, (0,) by
taking into consideration Lagrange multipliers.

=S P(s|0,4) V; log P(s,0| 4)

=" P(s]0,2) V; (log #,
§

n—1 n
+ Z log &s,s,.,+ Z log b, (01)) (9)
=1 =1

Evidently, the derivatives separate different vari-
ables and we obtain a closed form solution of
the reestimation procedure for the required pa-

rameters.
A P(Sl :Sg,OUL)

n—1
Z P(S;ZSL', Sr41 :SJ‘, O ‘ )L)

~ =1
Bgj=ep— = (11)

> " P(si=S:,5:41=S},0| A)
=1 t=1
> P(s=S,0]|4)

5 te{t| or=0;}

bi(0j) =
> P(s=S,0]|A)
=1

(12)

These formulas are the basis of the well known
Baum-Welch algorithm [1] and can now be used
for training the parameters of the HMM.

3.2. Learning 3D Objects from 2D Views

In the previous section we assumed that it is
possible to associate with each object a fea-
ture sequence, independent of its localization
in the image. Let us assume the more general
case that a three—-dimensional object is charac—
terized by its 3D vertices, by means of rota-
tion, franslation and subsequent projection 2D—
point—features can be observed (see Fig. 3).

In [7] it is shown that there exists no ordering
on these projected points, which is conform to
the 3D ordering. Thus, the observable object of
the j—th view (1 < j <J) has to be represented
by asetof featuresi(y = {10, 5, g0 Oj,,,zj}.
The set of the correlated model features is de-
noted by C, = {CK>1? C;(Jz, Be— ch,n,c}- The
matching function &, assigns to each observed
feature O;; a model prlmltlve Cx,i- Due to seg-
mentation errors and noise, point features show
some instabilities, which can be modeled by
assuming that each point feature is normally
distributed [15]. One observable point might be
assigned to any model feature. Therefore, the
probability of observing one special point O
can be written as

=3 P(£c(0j)=Cx) X
i=0

XP(OJ.k (Oj:k):CK,,‘,f)’).

P(O;r| B)

(13)
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3D model

3D rotation and translation \'I,

transformed model

projection (no inverse)

segmented
grey level image

Figure 3. From the 3D model to the 2D scene

If statistical independency of point features is
assumed, then the probability of observing a set
of features can be computed by multiplying the
single probabilities of (13).

Let us now postulate that the two—dimensional
distribution of the described features is the re-
sult of the transformation and projection of the
three—dimensional features Cy, i. €. a mapping
of three—dimensional Gaussian distributed ran-
dom vectors. If the projection is orthogonal, i. e.
the complete mapping of a three—dimensional
model variable Cy ; into the observed scene fea-
ture O} can be described by an affine transtorm

where R € Re?*3 and r € Re?, the result-
ing random vector is again normally distributed.
Let y; and K; be the mean and covariance of
the i—th component of the 3D Gaussian mix-
ture density. For the transformed random vari-
ables the following is valid: O;; is normally
distributed with the mean R u; 4 ¢ and the co-
variance D; := RK;RT [11]. Now we have in-
troduced a rudimentary statistical model for our
learning problem: The projected features are
modeled by mixture densities and each view
j provides an affine mapping characterized by
R; and ;. The parameter set to be estimated
are the weights P(E,c(Ojx) = Ci,i), means u,
and covariances K; of each component of the

mixture density function, B = {P(Lx(Ojk) =
Cii) i, Ki| 1 < i < ni}. The next step in the
application of the missing information princi-
ple is the determination of the observable and
missing information, and the definition of the
probability functions needed for computing the
Kullback-Leibler statistics for this application.
Obviously, the set of 2D point features O is ob-
servable for each view. The known rotation and
translation of the object in the image has not
to be summarized as an observation, because
they are not modeled as random variables. Hid-
den for each view is the the set of assignments
of model and scene points. Consequently, we
have

P(Ojk; & (Oj) = Cx ;| B)

:P(CK(OJ,/C) = CK,f) eu

+/det ZJ'ED!'J ’

(15)
where

1 ro_
”:—E(Oj,k—RfMi—f) D' (Oj—Rjpi—t),
and
PlE(Orp) = Ci | 011 B)

= 'P(Oj,ka CK(Oj,k) = CK,i |B) . (16)
> 1 P(Ojg, &c(Ojx) = Cx,i| B)
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Using the Dwyer—Macphail matrix derivative
calculus [16], the zero crossings of the gradient
of the associated Kullback—Leibler statistics can
be computed with respect to the unknown pa-
rameters. As in the previous case of subsection
4.1., we get three types of estimation formulas
for the unknown parameters. For the weights
and the means we obtain closed form solutions,
see (17) and (18);

1

Joom
X Z P
J=1

k=1

ol | Ojks Ry 1 a 1), (17)

-1

Joom
di= | 3 P(CuilOjp, ax, )R D 'R,

J=1 k=1
g "
i ;
Z P(CK15|Oj=k7aK’,’)RJ; Dl-“,- (Oj,k*tj) (18)
j=1 k=1
We define S = (Ojr—Rjuw—1;) (0 x—Rjtti— ;)"

and get the following non—linear equation for
the computation of the covariance matrices:

I om
ZZP Kt|0,kaarct) TD_
J=1 k=1

Dij—S)DRi=0  (19)

These formulas admit the training of 3D objects
from 2D views presupposed a good segmenta-
tion algorithm for detecting vertices is available
and the capability of computing the objects pose
for each view is given.

3.3. Estimation of Pose Parameters

Aside from the problem of learning from exam-
ples, the recognition and localization of objects
is another central requirement of a recognition
system. In the following, the issue of computing
the position and orientation of a known object
in a scene including heterogeneous background
is done by applying the missing information
principle. Analogous to the learning process, a
three—dimensional object is modeled using a n—
dimensional Gaussian mixture density function,

where 7 is the dimension of the model features.
Again, the features might vertices, for instance.
In contrast to the previous section, the means,
covariances, and weights are known parameters
and the components of the rotation and transla-
tion constitute the parameter set B, which has
to be estimated throughout the EM-iterations.
The observable image of the scene includes both
features of the object and the background. All
features corresponding to the background are
assigned to the special model feature Cy . Fol-
lowing the results described in [15] the back-
ground features are uniformly distributed; for
the abstract mathematical formulation, we gen-
eralize that the background features underly an
arbitrary distribution, which has to be indepen-
dent of the rotation and translation parameters.

The known information is the set of two—dimen-
sional point features. Unknown is again the
matching of model and image features, which
also indicates the partition of background and
object features. The a priori probability of ob-
serving one element O; of a set of image features
thus is

t'??j

O | B) ZP OuC CK’,5|B)
=PENO;) = KJO)-P(O.'; | (O i):CK,O:B)
) (0i]E(0 i)=Cx WB)

+ Y PlEo)=
=1
(20)

This results in the following Kullback—Leibler
statistics

m o Hyg

=22,

O”C K,[IB)
i=1 [=0 O |B)

log P(O;, C(Oi):CK,f |B) (21)

The next fundamental problem is the selection
of a suitable optimization technique. Due to the
fact that the function for optimization has a lot
of local extrema, local gradient techniques will
a priori not be applicable for the computation of
the maximum. Furthermore, the maximization
problem does not fall into optimization prob-
lems in lower dimensional search spaces like in
previous applications. Therefore, itis suggested
to use global, iterative optimization techniques
within the EM—iterations and the estimation of
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pose parameters can be decomposed into two
iterations.

An interesting side effect results from the frac-
tion P(0O;, §(0;) = C1|B)/P(O;|B), which ob-
viously yields a probability measure for the un-
known matching between model and scene fea-
tures.

4. Experimental Results

The application of the missing information prin-
ciple results in the described iterative algorithms
of section 3., which are implemented on a HP
735 in C++ for experimental evaluations us-
ing the object oriented image processing sys-
tem wwos, described in [9]. The following
subsections briefly summarize and discuss the
achieved results.

4.1. Hidden Markov Models
for Object Recognition

In the first part of our experiments we imple-
mented and tested Hidden Markov Models for
2D object recognition problems. The basic con-
straint for the use of Hidden Markov Models is
the limitation to classification problems, where
objects can be represented by feature sequences.
We decided to use affine invariant features, de-
scribed in [6], based on closed contour lines
of 2D objects. Hence, the sequence of features

does not change if the object is rotated and trans-
lated. We took four objects, shown in Fig. 4,
and trained Hidden Markov Models with differ-
ing numbers of states using 50 samples for each
object. The classification results for 10 images
of each object are shown in Tab. 1. For an ef-
ficient computation of the a priori probabilities
for a given observation and a Hidden Markov

Model we use the forward—backward algorithm
[10].

object number of states
314]5]6]7
monkey 9 1 8|9 |88
giraffe 7171788
elephant || 8 | 8 | 8 | 5 | 4
camel 5|5158513 |5
ratein% || 72 | 72 | 72 | 60 | 62

Table 1. Recognition results using Hidden Markov
Models with different numbers of states

The disappointing recognition rates are not based
on the chosen features. In [6] it is shown that
the correct classifications increase, if we leave
out the ordering on the feature sequence.

TN L
O

Figure 4. Original gray—level image (children toys) used for the experimental evaluation (left) and resulting closed
polygons of the contour (right). Polygons are used for the computation of the affine invariant feature sequences. he
lower four images illustrate four different amples of the elephant used for learning.
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4.2. Training and Localization
of 3D Objects

In contrast to Hidden Markov Models, the use
of mixture density functions for object learn-
ing, recognition, and localization purposes is a
new technique. The described algorithms are
actually tested using synthetical data. For the
estimation of parameter set including means,
covariances, and weights, an initialization of
the density function for each feature is required.
The number of features and initial estimates of
parameters have to be given before the EM—
iterations can start (see Fig. 2). Presently, we
use views where no occlusion occurs. For sim-
ple polyedric objects the method produces sat-
isfactory results, if we determine the number
of needed object features using one view. The
mean vectors are initialized by the observable
2D point features, where the depth value is de-
fined to be zero. Empirically, 40-50 views are
sufficient for learning an object, which is repre-
sented with 15 characteristic features. Although
the convergence rate of the EM—-algorithm was
expected to be considerably low (see [3]), the
learning process converges after 10 iterations, in
average. The time needed for one iteration using
a C4+ implementation of the learning formula
(18), which is suitable for arbitrary dimensions
of feature vectors, takes 97.98 seconds with 50
training views. The memory requirements are
constant for each iteration.

The experiences with methods for pose esti-
mation using the computed density functions
showed that the EM approach is only suitable
for refinements of good initial pose parameters.
For the localization of objects where no a pri-
ori information of the object’s pose is avail-
able, the EM—algorithm yields translation and
rotation parameters of no use, even if global
optimization techniques are used within each
EM-iteration. One conceivable application of
EM-iterations for pose estimates might be the
localization in image sequences, where the ini-
tial pose of an object is given by the object’s
pose in the previous image [4].

Promising results are achieved by applying an
adaptive random search technique described in
[14] to the log likelihood function (2) for the
observable data. We trained the density func-
tion for 5 different objects with 15 features and
used these results for evaluating the algorithms

for computing the position and orientation. The
pose estimates for artificially rotated and trans-
lated objects succeeded in all tested cases. The
actual implementation needs about 80 seconds
to find the global maximum of the multivari-
ate functions, which depend on three rotation
angles and both components of the translation
vector.

5. Future Work

The promising approach to treat the 3D object
recognition problem using gray-level images
will be used for realizing a system, which can
learn and classify simple polyedric objects. For
the implementation of the training stage we will
use a robot, where a camera is mounted on its
hand. This device will admit the computation of
pose parameters for each training view. A brief
introduction into the actual realized components
of the system can be found in [5]. Theoretical
work has to be done with respect to the opti-
mization techniques of the estimation of pose
parameters.

6. Conclusions

This contribution introduces the missing in-
formation principle and shows how this tech-
nique can be applied to different computer vi-
sion tasks. Characteristically, it is shown that
the Hidden Markov Models, which are inten-
sively used in the field of speech recognition,
are based on the same theoretical foundation
like the new statistical approach to deal with
the 3D object recognition problem introduced
in subsections 3.2. and 3.3. It should be em-
phasized that the learning procedure for 3D ob-
jects from two-dimensional avoids an explicit
matching between features.

The experimental results show, that the EM—
algorithm is not unlimited suitable for all ap-
pearing incomplete data estimation problems
(subsection 3.3.). For improving the three—
dimensional object recognition system a more
sophisticated statistical model for 3D objects
might be useful, because statistical dependen-
cies between several features and occlusion are
not modeled in the actual framework. Finally,
the extension to more general features like lines
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or polygons will be as necessary as the imple-
mentation of training and recognition formulas
for perspective projection.
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