Errata

249

Correction to “An Approach to Register
Number Determination Based on
Simulation of Register Allocation via
Graph Colouring”

Bojana Dalbelo Basi¢

In the issue, June 1994 of CIT, several typo-
graphical errors appeared on page 114. The
corrections are as follows.

We apologize to the author and the readers.

1. Concept of interference

Compiler front-end produces an intermediate
code, i.e. a low-level language defined for an
abstract computer (thus machine independent)
which is easily transformed into the machine
or assembly code. The intermediate code is
very convenient for transformations and there-
fore it is the interproduct of optimising com-
pilers. The primary difference between the in-
termediate code and the assembly code is that
the intermediate code does not specify the regis-
ters. The intermediate code preferred by many
compilers is the three-address code (Aho et
al., 1986). Three-address instruction has the
form: a := x op y, where z, y can be constants,
names of variables defined by the programmer,
or names of compiler generated temporaries,
and op being an arithmetical or logical opera-
tion. As register allocation procedure is per-
formed on an intermediate code, intermediate

x%i=3 definition of x
PI >
y:=x+1 use of x
P, »
cr=x-d use of x
Py >
szl definition of x
a:=y*2

Fig. 1. Example of variable life and interference. Var

code names are candidates for residing in regis-
ters and they are often called symbolic registers,
names, temporaries, or variables. In this paper
we shall be using the term variable.

The instruction a := x opy defines a and uses
x, y (Aho et al., 1986). A sequence of con-
secutive instructions of the three-address code
entered only at its beginning and whose control
flow is sequential, without halt or possibility
of branching, (except at the end of such a se-
quence), represents a basic block (Aho et al.,
1986). A directed graph with nodes represent-
ing basic blocks and with directed edges repre-
senting control flow between blocks, makes a
flow graph.

A simple code generator takes a sequence of
three-address instructions which form a basic
block and generates the target code assuming
that all register values must be stored in mem-
ory when moving across basic blocks bound-
aries. Register allocation inside the basic block
or a smaller sequential part of the code is lo-
cal register allocation (Aho et al., 1986) and it
can be solved efficiently but we are then forced
to store register values at the end of each basic
block. Global register allocation helps reduce
the number of LOAD and STORE instructions
by defining which variables will stay in the reg-
ister across block boundaries, so registers are
actually allocated for the entire procedure.

The fundamental terms related to register allo-
cation are variable life and interference of vari-
ables. A variable is live at a given point in a
program if it is previously defined and if there
is a path in the flow graph from this point to
a certain usage of this variable, otherwise vari-
able is dead (Aho et al., 1986). If two variables

x is live y is live

x and y interfere

iable x is live at points p; and po, dead in the point p3

