Journal of Computing and Information Technology - CIT 2, 1994, 2, 67-75 67

Mapping Programs on a
Torus-like Transputer Network

Peter Kolbezen and Peter Zaversek

University in Ljubljana, Ljubljana, Slovenia

This paper proposes a torus based network architecture
which consists of multiple, unidirectional rings. Such
a system can be made very flexible by combining the
proposed architecture, adequate program graph presen-
tation, and a suitable allocation algorithm. The task al-
location and reconfiguration is carried out dynamically.
Some possible process allocatipn algorithms are consid-
ered and an experimental verification of these algorithms
is performed according to the proposed multitransputer
network.

Keywords: Transputer-based systems, mapping and allo-
cation algorithm, interconnection networks

1. Introduction

The importance of parallel computing hardly
needs emphasis. It is widely believed that the
only feasible path towards higher performance
is to consider radically different computer or-
ganizations, in particular ones exploiting paral-
lelism. One of the simplest and most promising
types of parallel machines is the well known
multiprocessor architecture. Of all the tech-
niques used to improve processing throughput,
parallel processing must be one of the simplest
to design in hardware but the most challenging
in software. Parallelism can be fine-grained as
in array processors, coarse-grained as in ma-
chine networks, or medium-grained as in the
transputer systems.

A lot of problems associated with multipro-
cessor systems design using conventional mi-
croprocessors center on the use of centrally
shared resources through which communica-

tions among processors and processes take place.

Hardware provisions must be incorporated in
such systems to resolve multiple simultane-
ous requests for accessing the shared resources

and the software must guarantee mutual exclu-
sion in executing critical regions of programs
where shared variables are being used (HWANG
and BRIGGS 1984). As number of proces-
sors and processes increases, the management
overhead increases as well and bottleneck sit-
uations become increasingly more prominent.
The combined effect of all these is to limit the
system’s performance so that the incremental
performance improvement achieved with every
additional processor decreases fairly sharply.
Transputer-based multiprocessor systems elim-
inate most of these problems by not having
shared resources at all.

Many multiprocessor systems are based on the
idea of static allocation of processors, which
means the algorithm should be analyzed very
carefully and a decision must be made which
processor to place a certain process onto and
at which time instance to do it. As we see we
must have a complete knowledge of the algo-
rithm (exact process execution times and rela-
tions between processes) on one hand and of the
process network on the other hand as well.

Our contribution to solving the problem stated
above is based on a multiprocessor system which
could allocate processes dynamically having
poor knowledge about the algorithm and know-
ing even less about the processor network itself.

The accent of our work was to exam a possibil-
ity of efficiently executing irregular algorithms
on a regular architecture. Efficiency of a pro-
cessor network is superior if the system and
the program algorithm are matched. Matching
can be achieved either by careful analysis of
the program and/or configuring multiprocessor
network to suit the program algorithm. We con-

68 Peter Kolbezen, Peter ZaverSek: Mapping Programs on a Torus—like Transputer Network

sidered achieving efficient mapping of different
algorithms onto a given fixed structure network.

2. Algorithm Presentation

We assume that algorithms are presented in tra-
ditional way (sequential programs). An algo-
rithm (program) which requires optimal execu-
tion on a multiprocessor system must be care-
fully analyzed and decomposed into a set of
processes to exploit the parallelism. One of the
necessary conditions of a program for parallel
processing is that the program possesses many
parallel paths.

Methods to detect the parallelism in Algol-like
languages are known. There is no limit to the
amount of parallelism detected, hence the need
to harness it. A tool using a specification lan-
guage (SL) is introduced which does it (KATTI
and MANWARING 1989). This tool outlines a
procedure to detect parallelism in sequential
programs (SP), expresses this parallelism and
achieves efficient parallel execution of the se-
quential program on a multiprocessor architec-
ture.

Data flow analysis is used to detect parallelism
in Algol-like language SL, where basic units
are variables (or processors). As with each pro-
gram so also with SP there is associated some
flow graph G(SP) that carries the information of
control flow.

As a rule in our examples all program state-
ments in SL are defined on the medium-grained
level. Any maximal group of consecutive pro-
gram statements is called a block if entry to this
portion of the program is possible only through
the first statement (called the block head), and if
exit is possible only through the last statement
(called the block tail), and there is at most one
control statement present in this group. It is
clear that all control statements represent block
tails and any statement following a control state-
ment must be a block head. All assignment
statements in the block represent the interior of
a block.

In the block diagrams the nodes may be atomic,
such as adders or multipliers, or non atomic,
such as digital filters, FFT units, multipliers,
modulators, phase locked loops, etc. The com-
plexity of the function (the granularity) will

determine the amount of parallelism available.
The block function may also be a matrix multi-
plication. If so, the systolic array of processors
can be realized with the association of more
local processor sets in the architecture (SZTUR-
MOWICZ and TUDRUJ 1989) (reconfigurable ar-
chitecture). This kind of architecture also per-
mits concurrent processing of the blocks.

The data flow graph of a block is an acyclic
directed graph. Such blocks can be efficiently
executed on the proposed transputer network.

An algorithm can generally be split into pro-
cesses. How many processes we shall split the
algorithm into, which we call a granulation of an
algorithm, depends greatly on the number and
capabilities of the employed processors. We de-
fine Te,. as execution time of a graph node, and
Tirans as the time required for interprocessor
data and program code transmision. The gran-
ulation degree influences the ratio Teye/Tirans
which we call the transmission time ratio. We
wish to keep this ratio as large as possible. We
can define a minimal the transmission time ra-
tio. value which can give acceptable results.
We can, thus, granulate the algorithm properly
to match the prescribed ratio as much as possi-
ble.

We intended to develop a mechanism for run-
time allocation of processors. The algorithms
which will be executed on a processor network
should be presented in a proper form to enable
efficient allocation of processors. We selected
the presentation form of data driven graphs
which must not be cyclic, must be simple and
no communication may take place between two
concurrently executed processes. Algorithms
are widely presented in a form of data flow
graphs (DFG) which are cyclic in general. A
conversion of a cyclic DFG into a convenient
form which we named a Hierarchical Acyclic
Data Flow Graph (HADFG) may be performed
by following stages:

1. Remove cycles from the DFG. Cycles
must be decomposed into a sequence of acyclic
blocks or should be performed on a higher level
(e.g. as proposed in (SZTURMOWICZ and TU-
DRUJ 1989)).

2. Simplify the blocks. Acyclic DFG obtained
by stage 1 should be simplified. Simple graphs
expose a property of stating completely defined
time relations between processes (i.e. between

Peter Kolbezen, Peter ZaverSek: Mapping Programs on a Torus—like Transputer Network 69

nodes in the graph) (HWANG 1984). There are
many possible approaches to graph simplifica-
tion problem depending on time characteristics
of certain processes within the acyclic block.
Process time characteristics may be completely
known, may vary within certain bounds, or may
be unknown. It is possible to simplify the
graph in either of the three cases, although we
must emphasize that the output graphs tend to
be least complex when time characteristics are
completely defined. We may notice that the
knowledge about some graphs can be loose due
to unknown node execution time characteris-
tics despite completely stated time relations be-
tween nodes. The simplification procedure for
acyclic DF graphs has already been automated
by recent work of our group.

3. Convert acyclic and simple blocks into
HADF graph. Blocks of simple DF graphs
are ready to be converted into a HADF graph
form. HADF graph is a graph which consists of
alternating sequential and parallel levels. Par-
allel HADF graph levels consist of branching
nodes with branches that can be executed con-
currently. Sequential levels include the nodes
with outgoing branches which must be executed
sequentially. HADF graph exactly matches the
mathematical description of simple, acyclic data
flow graph.

We can compare DFG and HADF graph in fig. 1.
Fig. 1a shows the original ADFG. An equiva-
lent HADF graph is shown by fig. 1b, where
thick lines represent sequential and thin lines
parallel levels. To clear up the example we also
expose mathematical presentation according to
(HWANG and BRIGGS 1984) of the same graph:

=11 X [(x4 + 35) x (x7+ z8)
+ (23 + 22) X 6] X T9

It can clearly be seen that the mathematical for-
mula perfectly matches the HADF graph, where
x; represents process node 4.

Now we will use to introduce a notion of sorted
graphs. We must notice that all branches leav-
ing a single concurrent node are equivalent as
they represent concurrent processes. Conse-
quently, their position within a node may be
changed and the nodes may be sorted according
to the execution time of the outgoing branches.
The node is qualified to be sorted if the branch
exposing the longest execution time is placed to
the leftmost and the branch stating the shortest

ONONONOG,

b) HADFG

Fig. 1. DFG and equivalent HADF graph

execution time to the rightmost position within
the node. If this procedure is performed on
the entire HADF graph from its bottom to the
top, then we say that the whole HADF graph is
sorted (KOLBEZEN and ZAVERSEK 1991).

2. Physical Configuration

The basic topological element of the proposed
multi-processor network is a ring of processors.
Two or more equal rings may be wrapped to-
gether by additional rings which connect equally
positioned processors in adjacent rings. Such
a form of multiple equal cross-linked rings is
widely called a torus. Processing elements can
be transputers which perfectly fit this type of

70 Peter Kolbezen, Peter ZaverSek: Mapping Programs on a Torus—like Transputer Network

topology. Four connections needed to ensure
paths to each of the four neighbours are obtained
by four link-pairs on each transputer. Trans-
puter boards are commercially available con-
taining four transputer devices connected into
a ring. The rest of the links are available for
custom connection to other devices (INMOS
1988).

Each physical ring we consider as two unidirec-
tional communication rings which do not have
to be of the same size. We only demand that
each processor be connected to two physical
rings, which may also be obtained by short con-
necting two links of a single processor. This
fact may be useful e.g. when a processing de-
vice breaks down. Damaged devices can simply
be removed from the network and links should
be short connected to establish closed ring com-
munication paths for the non-damaged devices
(KOLBEZEN and ZAVERSEK 1993). Fig. 2 shows
some valid network examples.

In the considered networks (Figure 2) all 4 link-
pairs for each transputer are employed. Such
networks could be conected to the “outside
word” (i.e. to a front-end computer) by one of
two possible ways:

— by adding a new “input-output transputer” in
one of links, or

—by adding a new medium to the manufacturer-
provided transputer links — shared common
memory for one or more transputers within the

£ A
aannnd
&

o

Juuuy
n
;

TS

—
D)
—

e
e C

U Uy

s

/__
.

—
Yoo d

Fig. 2. Network examples

network and the front-end (host) computer. Ac-
cess to this shared memory, by each of the input-
output transputers in a network and the host
computer, is controlled by specially developed
arbitration logic.

Message passing

Message passing mechanism is based on token
passing principle. As we consider each phys-
ical ring as two unidirectional communication
rings, the employed tokens are also divided into
control and data tokens. Control tokens pass
the control commands and system status words,
and data tokens pass the data packets. Con-
trol tokens transfer should be fast to reduce la-
tency and improve the array response time. Data
transfers take longer and, thus, transmitting both
groups of tokens using the same paths could de-
grade system’s performance. There are many
possible approaches for balancing the two fac-
tors, e.g. using separate communication paths,
priority, multiplexing messages, use of virtual
channels, etc. 'We used the simplest possible
method by applying a separate communication
ring for either group of messages.

Traffic effect

Transputers are devices which can communi-
cate over the links at several different speeds
from 5 up to 20 Mbits~! over each of four avail-
able links in either of two possible directions.
Peak message transfer rate depends on the trans-
puter used, e.g. comparing T800 and T414 we
can notice that T800 provides an improved com-
munication protocol and, thus, enables higher
data transfer rates. In order to utilize full band-
width of the links, almost 50% of the external
bandwidth is used in DMA transfers by the link
controller. If data is buffered into internal mem-
ory the percentage is somewhat smaller (15%)
(JESSHOPE 1988).

A practical message traffic effect investigation
based on T414 transputer was presented in ref-

_erence (WARING 1990). The results show that a

single, unbroken stream of data packets causes
no more than 10% reduction in computational
capacity and that the reduction does not expose
a high dependence to message packets’ length.
When having more streams of data, reduction in
computational capacity rises rapidly as message
length is shortened. For 1-byte messages and

Peter Kolbezen, Peter ZaverSek: Mapping Programs on a Torus—like Transputer Network 71

more than two streams the reduction tends to be
almost 100%. However, if the message length
is about 1024 bytes the reduction is not worse
than 7% for single and not worse than 12% for
multiple data streams.

3. An Allocation Example

The most suitable network for execution of
HADF graph is a treeshaped network. Con-
sidering the graph in fig. 1, we can construct a
network of processing elements which fully ex-
ploits the stated parallelism (see also ZAVERSEK
and KOLBEZEN 1992). A possible example of
an adequate network is shown in fig. 3a. This
is neither the only possible, nor the optimal net-
work. The network can be reduced as shown
in fig. 3b without harming the network perfor-
mance. Time analysis may show that the execu-
tion of process pairs (4,5) and (7,8) takes much

a) P1,P9
] j H
P4,P7 P5PB P2P6 P3
b) P1,P4,P7,P9

L

P5,P8 P26 P3

c) P1,P4,FP7,P9

B
]

P5,P8 P2 P3,P6

Fig. 3. Process alloocation example

longer than the sequence (2,3) and 6. In this
case the network may be reduced further (fig.
3c). If the exact time characteristics are not
completely known it is hard to compose the op-
timal network and the network can easily exeed
the required size.

Our idea was to perform a tree-like allocation
employing a ringbased processor network to
override the above stated drawback. Processors
in such a ring-network always have a succes-
sor, which is not the case when observing the
tree-network. Ring-based architecture does not
have to be constructed for a particular graph of
explicitly stated depth and width but is virtually
scalable according to current graph dimensions.
Process mapping can be automated enabling ef-
ficient run-time allocation of processes with un-
known time characteristics. One can notice that
it would be easier to execute HADF graphs on
a reconfigurable architecture where the network
could be dynamically rearranged. We believe,
however, that our system could be competitive
because of its hardware simplicity. The de-
lays due to ring control communications in the
proposed system may well be comparable to
time delays which a matrix switch would need
to establish the demanded connection. Delays
caused by more dense traffic between proces-
sors may be reduced by prescribing acceptable
transmission time ratio (algorithm granulation).

4. Proposed Allocation Algorithm

The proposed allocation algorithm is based on
HADF graph representation of program algo-
rithms. A HADF graph instructs the allocation
routine exactly which processes to execute in
parallel and which in sequential manner.

The allocation procedure is started at the top-
most node of the program graph, at the root
node. Consequently, the processor which per-
forms the allocation is called a root processor.
When a new graph or a sub-graph is encoun-
tered on a processor, it must be analyzed first to
determine which nodes can be allocated to pro-
cessors concurrently and which ones sequen-
tially. The allocation procedure proceeds down
the HADF graph tree taking the leftmost branch
in each sequential node. All the nodes finding
in branches on a parallel level are allocated to
queues of waiting processes except the leftmost

72 Peter Kolbezen, Peter ZaverSek: Mapping Programs on a Torus-like Transputer Network

branch. If the leftmost outgoing branch termi-
nates at a node that is not a process, then the
above procedure is repeated. However, if the
leftmost branch ends at a process then the pro-
cess is executed on the current processor and
nodes waiting in the queues are allocated to
available resources.

We have already mentioned the ring as the ba-
sic topological element of our network. All
further actions and notions are subordinate to
this point of view. Processors may be allocated
onto at most two processor levels relative to the
observed processor which we call a root pro-
cessor. The first processor level is composed
by processors which fit into the two rings that
cross the root processor. The second proces-
sor level includes all the rest of the processors
in the network which are, as we must notice,
not directly reachable from the position of the

root processor. The two levels are illustrated in
fig. 4.

We must notice that notion of the root is rel-
ative and, hence, we may find more than one
root processor in the network at the same time.
When a node from the process waiting queue is
allocated to an idle processor and a node turns
out to be a root point of a subgraph (the node is
not a process), then a part of the original HADF
graph, i.e. the subgraph in question, is trans-
ferred to the newly allocated processor. The
allocated processor becomes a root processor
of a subgraph. Consequently, more than one
root processor may appear in the network. We
can conclude that the original program graph is
being partitioned. Graph partitions, i.e. sub-
graphs and processes, are being allocated to
remote processors causing program code and
process data to be distributed over the network.

Allocation of processors is performed on every
root processor as follows. Let’s presume that
a processor received the program HADF graph

Root processor
Y First level
[JSecond level

Fig. 4. First and second processor level

and that the concurrent nodes were allocated to
waiting queues already. The first step is then
to locate and seize an idle processor. This is
done by sending appropriate control token via
control ring. We allocate processors in both
available directions, horizontal and vertical, si-
multaneously. Assoon as the resource is seized,
program code and data are transferred to the al-
located processor. Search for idle processors
primarily takes part on the first processor level.
If no idle processor is found on the first pro-
cessor level then the second processor level is
examined. To do so, the root processor instructs
the first level processors, one after another, to
search the first processor level excluding pro-
cessors from the root’s first level for unused
processors. The search process is successful if
an idle processor is found and unsuccessful if all
the first and the second level are examined and
the result is negative. Upon successful termina-
tion the search procedure is repeated, otherwise
the search procedure is stopped, and we have to
wait for some processors to be set free. When
an arbitrary processor terminates execution of
its process or subgraph respectively, it sends a
control token to announce to all other members
thatit is free to receive another request. Concur-
rently it starts returning execution results, while
program code and data are rejected as they are
not needed any more. Processors with non-
empty waiting queues can then repeat their de-
mands and the allocation procedure is repeated.
Such an algorithm is able to employ all the pro-
cessors in the network if only there were enough
processes waiting in processors’ queues.

5. Simulation

We have observed the behaviour of the alloca-
tion procedure on a simulator that was built-
for our particular case. When building the
simulator the increase of the computional time
caused by communication was taken into ac-
count. We presumed 10% reduction of compu-
tational power when passing messages in only
one direction and 15% reduction when passing
message streams in two directions. The two
selected values are slightly higher than those
stated in (WARING 1990) to catch the allocation
algorithm overhead. Our interest concerned
the acceptable granulation of he algorithm (i.e.

Peter Kolbezen, Peter Zaversek: Mapping Programs on a Torus—like Transputer Network 73

transmission time ratio) and the most appropri-
ate network configuration.

When preparing for simulation at the first step a
set G, of 20 random HADF graphs was gener-
ated. The graphs were sorted and an additional
set G5 of 20 sorted HADFG’s was obtained.
The simulation set G = G,, U G5 contained the
total of 40 graphs in two functionally equivalent
subsets of 20 graphs each.

Execution of the two subsets was simulated
on several different configurations of proces-
sor network a x b; a,b € {1,2,3,4}. We have
split the simulation into three phases.

The first phase of simulation was to establish the
most suitable processor configuration which we
would decide to take into account for further
simulation.

The second phase was to state the acceptable
transmission time ratio by varying the ratio in
steps 1,2,5,10,...,1000 and observing the final
execution time. The process transmission time
was properly modified for the whole set of test
graphs after establishing acceptable transmis-
sion time ratio.

The emphasis of the third phase was in observ-
ing the efficiency of execution of sorted and
unsorted graphs at selected processor configu-
rations and transmission time ratio according
to

— execution time

— efficiency of processor network.

Definitions

Minimal transmission time ratio

The time taken for executing a certain HADF
graph on a certain network greatly depends on
the transmission time ratio. In general, a higher
ratio provides a shorter execution time and vice
versa. We define the minimal transmission time
ratio as the nearest value of ratio Tege/Tirans
where the time taken for executing the HADF
graph is not more than twice as long as the best
time (at ratio 1000) when varying the ratio.

Graph execution time

Graph execution time is the first measure of the
allocation algorithm success. Besides network

configuration it depends on algorithmic proper-
ties of the graph as well. To avoid the affect-
ing the algorithmic properties of particular test
graphs, we define a sum Sk(Gj) of all observed
HADF graphs’ execution times as a measure:

Se(Gj) = ZTi

kE{2xB8x34x4}
Gj = {Gm GS}
T; . .. execution time of ¢-th HADF graph from
subsetiG; (1 =125, 20)
Efficiency of the processor network

Efficiency E defines the execution cost ratio
when comparing a single- and multi-processor
system where a higher efficiency signifies a
lower execution cost.
Ts

iy,
n ... number of processors in the network
T, ... average processor busy time
T, ... sequential execution time of a HADF

graph
To=> T

T, . .. execution time of ¢-th process in a graph

Simulation results

Simulation has shown that the best results can
be achieved on a square processor network con-
figuration. Such a configuration provides equal
interprocessor distances and the smallest maxi-
mum traffic density. Thus, for further research
we adopted square configuration networks 2 x 2,
3 x3and 4 x 4.

Fig. 5 shows the transmission time ratio and how
it influences the execution time. We must notice
that the minimal transmission ratio, varies in ef-
fect of examined configuration and graph set.
The value of the ratio is lower on smaller net-
works and sorted graphs and higher when con-
sidering larger networks and unsorted graphs.
Our further simulation was based on the
Tewe/Tirans ratio value of 10.

Fig. 6 shows the execution time sum S, (G;) vs.
network size. Execution time is much shorter
for the sorted graph set. This is due to commu-
nication overhead when allocating processes or

74 Peter Kolbezen, Peter ZaverSek: Mapping Programs on a Torus—like Transputer Network

Normalized executio

1 2 5 10 20 50 100 200 500 1000
Transmission time ratio (Texe/Ttrans)

a) sorted graphs

1 2 5 10 20 50 100 200 500 1000
Transmission time ratio (Texe/Ttrans)

b) unsorted graphs

Fig. 5. Normalized execution time vs. ratio

subtrees of greater size to remote resources. We
conclude that sorted graphs provide significant
improvement in contrast to the unsorted ones.
Consequently the network efficiency (fig. 7) is
much better in the case of sorted graphs as well.

Unsorted graphs may represent algorithms with
completely unknown process execution time
characteristics. In practise it is often possible
to estimate approximate execution time length,
so we believe that typical results for our set of
graphs should find place somewhere between
the upper and lower simulated bounds. Some-
what small efficiency can be explained by two
facts. The first is that some of the test graphs
could not possibly exploit all the processors in

4 6 8

10 12 14 16
Number of processors

Fig. 6. Absolute execution time

the array because they do not contain enough
parallelism. The second is the fact that the
graphs were generated on a random basis and
that some of them could be dominated by a se-
quential component.

5. Conclusion

The proposed multiprocessor system described
a possible approach for executing irregular pro-
gram algorithms employing a regular network
architecture. Program algorithm should be pre-
sented in a tree-like HADF graph form. Fur-
ther the proposed run-time allocation algorithm
enables efficient mapping of tree-like HADF
graphs onto a torus-like network providing effi-
cient process allocation. When comparing tree-
and torus-like networks, we conclude that the
torus can better serve the processor utilization
due to virtual network scalability. A simulation

Tt ¥y

array effi
=
o

4 6 8 10 12 14 16
Number of processors

Fig. 7. Network efficiency

Peter Kolbezen, Peter ZaverSek: Mapping Programs on a Torus-like Transputer Network 75

based network analysis assuming transputers as
processing elements was performed. Some fac-
tors such as processor network form, array di-
mensions, transmission time ratio and HADF
graph subset were compared vs. graph execu-
tion time and efficiency of the processor net-
work. The square network form was generally
found to be the most appropriate although some
specific configurations may achieve better per-
formance for a particular HADF graph.

The proposed data driven processor network
system may be found useful in applications
where process execution times are not explic-
itly stated (static), but can vary within certain
bounds. The system does not employ resources
by creating waiting queues on each one of them,
but rather seizes a resource after it is set free.
This may be a limitation of the system. Thus, to
avoid unwanted delays, we demand the execu-
tion time to be much greater than the processor
seizing and data transmission time. The value
of transmission time ratio should be held as high
as possible; it is not advisable to be less than 10
for a 4 x 4 network.

Although transputers were adopted as process-
ing elements this is not necessary, neither is sig-
nificant the type of employed transputer. The
results are applicable to any kind of system re-
sources. We must bear in mind, however, that
transmission time depends on system’s trans-
mission bandwidth and that execution time is
dominated by processing capabilities of em-
ployed resources. Transmission ratio will
change depending on the system characteris-
tics, so we must partition the graph properly to
match our system.

In case of need for executing more independent
tasks we can establish appropriate numbers of
network entry nodes.

References

K. H. HWANG, F. A. BRIGGS (1984) Computer architec-
ture and parallel processing, McGraw-Hill Book
Company, Chaps. 7 & 8.

INMOS SPECTRUM (1988) Product information, The
Transputer Family.

C. JESSHOPE, Transputers and switches as objectsin OC-
CAM (1988) North-Holland, Parallel Computing
8,19-30.

R.S. Karri, M. L. MANWARING (1989) Executing
sequential programs in parallel on a multiproces-
sor architecture, Presented at the Proceedings of
the 3rd Annual Parallel Processing Symposium,
March 29-31, pp. 385-400, California State Uni-
versity, Fullerton, California.

P. KOLBEZEN, P. ZAVERSEK (1991) A hierarchical multi-
microprocessor system, Informatica, A Journal of
Computing and Informatics, The Slovene Society
Informatika, Vol. 15, Nr. 1, 65-76

P. KOLBEZEN, P. ZAVERSEK (1993) A Fault-Tolerant
Torus-Based Transputer Network, Presented at the
Proceedings of the Second Electrotechnical and
Computer Science Conference ERK’93, Vol. b,
pp- 139-142, Portoroz, Slovenia.

M. SZTURMOWICZ, M. TUDRUJ (1989) A multi-layer
transputer network for efficient execution of OC-
CAM programs, North-Holland, Microprocessing
and Micro-programming, Vol. 28 | 133138,

L. C. WARING (1990) A general purpose communica-
tions shell for a network of transputers, North-

Holland, Micro-processing and Microprogram-
ming, Vol. 29, 107-119.

P. ZAVERSEK, P. KOLBEZEN (1992) Dynamic Allocation
on the Transputer Networks, Parallel Processing:
CONPAR 92-VAPP V (L. BouG et al., Eds.) Lyon,
France, Lecture Notes in Computer Science 634,
825-826

Received: November, 1993
Accepted: January, 1994

Contact address:

Peter Kolbezen, Peter ZaverSek

University in Ljubljana, “JoZef Stefan” Institute
Department of Computer Science and Informatics
Jamova 39, 61111 Ljubljana, Slovenia

Phone: +386 61 12-59-199

Fax: +386 61 219-385, 273677

Tix: 31 296 jostin si

E-mail: peter.kolbezen@ijs.si

PETER KOLBEZEN received B.Sc., M.Sc. and D.Sc. degrees in electri-
cal engeneering from the University in Ljubljana, Slovenia, in 1957,
1968 and 1974, respectively. Since 1957 he joined the “JoZef Stefan”
Institute, Ljubljana, where he is a researcher and since 1956 the head
of research grupe at the Department for Computer Science and Infor-
matics. Since 1989 he has been assistant professor and since 1989
full profesor at the Faculty of Electrotechnics and Computer Science
from University in Ljubljana. His main interests are digital networks,
computer architectures, parallel processing and computer control.

PETER ZAVERSEK teceived B.Sc. and M.Sc. in the area of computer
control of industrial processes and computer science from the Univer-
sity in Ljubljana, Slovenia, in 1989 and 1993, respectively. In 1989 he
joined the Industrial concern “Gorenje”, Velenje, and simultaneously he
obtained the post of a research assistent at the Department of Computer
Scence and Informatics at the “JoZef Stefan” Institute. His research and
development intcrest have been in the areas of parallel and distributed
computing, communications systems and computer control.

