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Maximum Entropy Segmentation
Based on the Autocorrelation Function
of the Image Histogram

Anton Brink

Department of Physics, University of Pretoria, Pretoria, South Africa

Most threshold selection schemes using the principle of
maximum entropy regard the image or its histogram as
a probability distribution. While such models can to a
great extent be justified, a common assumption is that the
discrete samples in these distributions (pixels or grey—
levels) are independent. It is intuitively clear that this is
not the case. The proposed method uses the histogram
autocorrelation function as a measure of grey—level inter—
dependence. The Shannon entropy of this distribution is
then viewed as a measure of image grey-level entropy,
where grey—level inter—dependence has implicitly been
taken into account. The thresholding process splits the
histogram into sub—histograms, ideally corresponding to
distinct regions within the image. The entropies of the au-
tocorrelation functions of these subranges are determined
and maximized to find the optimum threshold. Two meth-
ods of maximizing the class entropies are implemented
and some typical results are presented.

1. Introduction

Thresholding is a commonly used method for
image segmentation based on grey—level differ-
ences between various regions or features of the
image (e.g. “objects" and “background") (Pratt,
1991; Gonzalez and Woods, 1992; Haralick and
Shapiro, 1985). In its simple.t form, a single
global threshold is selected to b.arize the im-
age into two distinct grey—levels. Such meth-
ods can usually be easily extended to multi—
threshold and variable (dynamic) threshold se-
lection (Brink, 1991a), hence only the simple
case is discussed here.

Various forms of the principle of maximum en-
tropy have in the past been applied to this prob-
lem (Kapur et al, 1985; Brink, 1991b, 1992b;
Pal and Pal, 1989). At the root of any such ap-
proach lies the assumption, implicit or explicit,
of some statistical model of the image. The most

common models assume either the image itself
or its histogram (in 1 or more dimensions) to
represent a probability distribution. While such
models can be justified (Frieden, 1980; Skilling,
1986), a shortcoming is the underlying assump-
tion that adjacent discrete probabilities (pixels
or grey—levels) are statistically independent.

The method proposed here is based on the auto-
correlation function of the 1-D grey-level his-
togram. The autocorrelation values in this case
quantify the inter—dependence of the histogram
bins. They can also be viewed as probabilities
of general grey-level cooccurrence.

2. Image and histogram entropy

The principle of maximum entropy (MaxEnt)
has been successfully implemented in various
image processing applications, particularly re-
construction and restoration (Frieden, 1980; Ski-
lling, 1986; Gull and Daniell, 1978), enhance-
ment (Daniell and Gull, 1980) and segmenta-
tion (Kapur et al, 1985; Abutaleb, 1989; Brink,
1992a). The most common measure of entropy
used is the Shannon entropy from information
theory(Shannon and Weaver, 1949). Other for-
mulations have been proposed (Frieden, 1980;
Pal and Pal, 1991) but have not been found to
offer any significant advantages for this partic-
ular application. Given a set of events f;,7 =
1,2,.--, N with probabilities p;, the entropy
of the distribution is given by (Shannon and
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Weaver, 1949)

N
H=-) pilogpi (1)
i=1
In order to apply this to image processing, we
can view the image itself as a probability dis-
tribution. The events in this case are the ar-
rivals of photons at each pixel location. The
number of photons (grey—level) at each pixel
in a given image can be used as an estimate
of the probability of photons reaching that par-
ticular location in a future image of the same
scene. This image model was first proposed by
Frieden (Frieden, 1972) and has subsequently
been dubbed the “monkey model" (Skilling,
1986; Gull and Daniell, 1978; Daniell and
Gull,1980) due to the analogy to a team of
monkeys randomly throwing balls (photons) at a
grid of boxes (pixels). Consider an image made
up of N pixels 7 = 1,---, N with grey—levels
gi- Jaynes’ “principle of maximum degeneracy"
(Jaynes, 1968) states that, subject to a priori
constraints, the most degenerate image formed
in this manner is the most likely to occur. This
is the image which can be formed in the great-
est number of ways. Assuming independence
of the pixels, the number of ways that the image
can be formed is given by the Boltzmann law
(Sears and Salinger, 1975)
!
W = Jm (2)
g1!g2! -+ - gn!

where G = Zf\i] g;- Maximizing W is clearly
equivalent to maximizing log W. Using Stir-
ling’s factorial approximation and dropping con-
stant terms, it turns out that the quantity to be
maximized is

N
H'=-Y gilogg (3)
i=1 )

Since ¢; « pi, pi = gi/G the probability of
photons reaching pixel i, we can simply sub-
stitute these in (3). We find then that this is
precisely the entropy (1) of the image.

The image grey-level histogram is one of the
most commonly used distributions in image
analysis and processing. It is obtained directly
from the image and indicates the frequency of
occurrence fg of each discrete grey—level g in
the image. These frequencies are usually nor-
malized to give estimates of grey— level proba-
bilities p,. From information theory (Shannon

and Weaver, 1949), the entropy of such a prob-
ability histogram is given by

n—1
H=- Z Pg log pg (4)
g=0
where g = 0, -+ -, n — 1 are the n grey—levels of

the image, in this case. This definition of image
entropy can be justified on the basis of an im-
age model derived from Fermi-Dirac statistics
(Sears and Salinger, 1975) as follows.

We assume the image to be analogous with a
thermodynamical system: let the grey—levels g
correspond to energy levels and their locations
in the image (i.e. pixels) correspond to distin-
guishable energy states. The number of parti-
cles at level g (the number of occupied states)
is given by the frequency f,. Here the anal-
ogy becomes tenuous, since if a pixel (state)
is occupied at one grey-level (energy level), it
cannot be occupied at any other. There is thus
some dependence between histogram bins built
into this, in that we have to take account of the
fact that if, say, there are IV pixels in total and
fo pixels have level g = 0 (the lowest grey—
level), then the number of free pixels (states)
available at ¢ = 1is NV — fj. In general we find
that the number of available pixels N, at level
g = k + 1 is given by

k
Nen=N= f, (5)
g=0

with Ng = N. Using Fermi-Dirac statistics
we find the degeneracy w, of a grey-level g,
analogous to that of an energy level (Sears and
Salinger, 1975), given by
Nl
wg = N,Cp, = 6

R ey AT R
and the total degeneracy of the image (assuming
statistical independence between grey—levels)is

W:H’wg (7)

We again want to maximize W or, equivalently,
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log W. Using Stirling’s approximation
n—1
logW =Y~ N,log Ny — (Ny — f,)x
g=0
X log(Ng — fg) — folog f,
= Nlog N — (Np_1 = frn_1)X
X log(Nn—1 — frn-1)

n—2
s Z [Ng+1 log Ny+1 — (Ng - fg)x
g0 n—1
x log(Ng — fg)] - ng log f,
n—1 g=0
= NlogN =" fylog f,
g=0

since Nygy1 = Ny — fgand N1 — fr,_1 = 0.
Since the first term above is constant, the quan-
tity to be maximized is

n—1

H=-Y fylogf,

gl
or

n—1
H=-Y" pylogp,,
g=0

in the case of the normalized histogram.

3. Autocorrelation and threshold selection

Thresholding methods based on maximizing the
histogram entropy (4) of the segmented image
have been used with varying degrees of success
in the past (Kapur et al, 1985; Brink, 1991b).
A common (and valid) argument against his-
togram—based methods is that they fail to take
spatial information into account: many differ-
ent images could conceivably have identical his-
tograms. One could argue philosophically that
such images should correctly have the same en-
tropy value, but the fact remains that informa-
tion is lost. To circumvent this problem, tech-
niques based on the entropy of the image it-
self (1) (Brink, 1992b) and various forms of the
grey—level co—occurrence matrix (Pal and Pal,
1989; Abutaleb, 1989; Brink, 1992a) have been
proposed. It should however be pointed out that
when using an entropy measure such spatial in-
formation is in any case not taken into account:
for this reason the entropy of the image could

be expressed as a 1-dimensional sum over all
pixels (1), in spite of the fact that an image
is clearly a 2—dimensional distribution. While
some measure of the pixel inter—dependence is
built into the co—-occurrence matrix, these inter—
dependences are limited to a small neighbour-
hood of each pixel. The co—occurrence frequen-
cies are thus not entirely independent either.

For simplicity I will confine myself for the
present to the image histogram. It is clear that
the grey—level frequencies f, of the histogram
are inter—related, while again being assumed in-
dependent for the purposes of evaluating the his-
togram entropy. We can quantify the grey-level
inter—dependence by determining the autocor-
relation function of the histogram

25 Tn—l)

(8)

Pgg = (Tl—ﬂi Ty P2, 71,70, 71,72, "

where the coefficients r, are given by

n—1
Tk=Zpk+ng, —~(n—-1)<k<n-1
g=0

©)
where n is the number of grey-levels and p, is
the probability of occurrence of grey-level g in
the image. Note that p; = 0 outside the range
0 < g £n — 1. If we normalize the autocorre-
lation coefficients we can interpret the resulting
distribution as the probability of general grey—
level inter-dependence:
i
Pk = “—n_lk— (10)
k=1—n Tk
In other words, py quantifies the likelihood that
pixels differing by k grey—levels are related.
The entropy of this distribution is

n—1
H.=- " p;logpy
k=1—n

(11)

Similarly, the (2—-dimensional) autocorrelation
function of the actual image can be determined,
in this case quantifying the inter—dependence of
the actual image pixels or the likelihood that
pixels a given distance apart are related. How-
ever, for the purposes of threshold selection the
implementation of this approach is not apparent.

When an image is thresholded, the histogram
is split into a set of smaller subranges. In
the simplest case, binary thresholding, a sin-
gle threshold value divides the histogram into
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two subranges corresponding to “background”
and “object" regions of the image. Ideally these
regions are distinct and homogeneous, allowing
them to be regarded as separate distributions.
At the optimal threshold one would then expect
these distributions to be at their most uniform,
resulting in a high degree of “inter-relatedness".

Given an image with a grey—level range a <
g < b. At threshold T its histogram is split into
two distributionsa < g < TandT +1 < g <
b. The autocorrelation functions (8) for these
distributions are determined, with coefficients
given by

P
T%zZngrgpg, (T—-a)<k<T-a
g=a
where
{mﬁh a<g<T
p =
0, g<a,g>T
and
b
1 1 1
Tk = Z Ph+gPg>
g=T'+1
- b-T-1)<k<b-T-1
where
1 {pg/Pl, T+1<g<b
p =
! 0, gL'+, 50

Py and Py are the class probabilities

T
PO — Zpg:
g=a

P=1-0.

The autocorrelation coefficients are normalized
as in equation (10) and, following (11), the class
entropies Ho(7") and H{T') are determined as

n—1
Hy(T)=- Y_ phlogpy,
k=1—-n

(12)

n—1
Hy(T)=- Y pilogpi,
k=1—n

where
0
0 __ k
Pr = n—1 0’
k=1—n Tk
1
1 _ Tk
Pr = P 1’
k=1-n Tk

are the normalized class correlation probabili-
ties.

Two methods of determining the optimum thresh-
old 7 are considered. The first follows the
method of Kapur et al (1985) whereby a mea-
sure of total entropy is maximized: Kapur et
al based their entropy measure directly on the
grey—level histogram. Any given threshold T
partitions this distribution into two classes with
(histogram) entropies given by

T
Hy(T) =) pylogp,
(13)

b
Hi(T)= ) pilogp}.
g=T+1

The optimum threshold 7 is then defined as that
value of 7" which maximizes the sum of these
class entropies, i.e.

= arg{arélj@icb[ﬂé(T) + Hi(T)]}

Simply substituting the class entropies (12) ob-
tained from the histogram autocorrelation func-
tion thus yields the algorithm for the optimum
threshold 7

T = arg{arélzgicb[ﬂo(T) +H(T)]}  (14)

The second method follows Brink’s (1991b)
modification of the above approach. Briefly,
this method finds a trade—off value between
the thresholds maximizing the histogram—based
class entropies H))(T') and H{(T'), respectively:

7= arg{alsnzqicb[min{ﬂé(fl’), Hi(T)]}

The autocorrelation—based approach is there-
fore given by

T = arg{ar?%icb[min[ﬂo(T), Hy(T)]]} (15)
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4. Results

The two approaches generally select very
similar threshold values, with the more
subjectively pleasing results given by the
“maximin" approach of (15). Some rep-
resentative results appear below.
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Fig. 1. (a) original video image of text, grey-level range a = 33 to b = 63. (b) Grey-level hlstogram (c) Binary
thresholded result using (14) and (15) (same threshold value), T = 48.
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Fig. 2. (a) original infrared image of a warm tarred road at night, grey—level range ¢ = 18to b = 178. (b) Grey—
level histogram. (c) Binary thresholded result using (14), © = 100. (d) Binary thresholded result using (15), T = 95.
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Fig. 3. (a) original aerial photograph showing a river feature, grey—level range ¢ = 1 to b = 187. (b) Grey—level
histogram. (¢} Binary thresholded result using (14), T = 81. (d) Binary thresholded result using (15), = = 78.

5. Discussion and conclusions

A useful quantitative evaluation technique for
image segmentation has yet to be developed. A
recent method proposed by Albregtsen (1993)
evaluates techniques on the basis ¢f the accuracy
with which they partition an ideal histogram
consisting of the sum of two gaussian distribu-
tions corresponding to “background" and “ob-
ject". A criticism of this approach is of course
that we are not concerned with histogram parti-
tioning, but with image segmentation.

Using Albregtsen’s method, it was found that
the technique performs very well relative to
other histogram-based thresholding methods
(standard techniques as well as entropic meth-
ods). Performance deteriorates when class means

are close together (1 or 2 standard deviations
apart), particularly when one class mode is very
much larger than the other, as one would expect.

Other evaluation methods based on synthetic
images (Brink and De Jager, 1987) and images
where the dimensions of regions to be extracted
are known a priori (Sieracki et al, 1989) can also
be used to evaluate methods such as this one.
Brink and De Jager (1987) proposed using a
synthetic binary image which has been degraded
by adding varying amounts of noise and blur to
create a grey—scale image. The thresholding
process then becomes one of “restoration" of
the binary image. A correlation measure was
used to compare the results with the original
undegraded image. The design of the synthetic
image and the way in which it is degraded are
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critical for the evaluation result to be sufficiently
general. A modified version of this technique
(Brink, 1994) has also been used to test the
autocorrelation method described here. The re-
sults compare favourably with other methods,
including those using 2—dimensional distribu-
tions (Abutaleb, 1989; Pal and Pal, 1989; Brink,
1992a). In particular, the approach using (15)
for threshold selection appears to be particu-
larly robust to increases in the severity of the
image degradation. It is unfortunately beyond
the scope of this paper to include the full theory
and these preliminary evaluation results here.

Subjectively, the results are pleasing and use-
ful. The need for a reliable technique to quan-
tify such subjective evaluations of the actual
image results is clear. A quantitative evalua-
tion technique based on Albregtsen’s but using
a synthetic test image instead of a histogram is
currently being considered.

An obvious extension to this approach is the use
of the 2—dimensional autocorrelation function
of the image itself. Tests indicate that this would
be a useful model on which to base image en-
hancement and restoration methods. However,
it is at present not clear how the method can
be applied to image segmentation as the class
regions within the image are in general not spa-
tially continuous. Initial experiments have not
yielded particularly useful results.
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