Journal of Computing and Information Technology - CIT 2, 1994, 2, 87-101 87

A Multiprocessor System
for Performing Mail Sorting

in Real Time

D. L. Andrews, R. Brown, C. Caldwell and A. R. Hennessey

Department of Electrical Engineering, University of Arkansas, Fayetteville, U.S.A.

This paper describes a special purpose embedded multi-
processor architecture and algorithms developed for per-
forming real time Multi-Line Optical Character Recogni-
tion (MLOCR). MLOCR is a computationally intensive
real time application involving character image extrac-
tion, gray scale thresholding, rotation and scaling of indi-
vidual characters, and character identification. The com-
putational complexity of the algorithms implemented in
the system required custom hardware in a parallel pro-
cessing environment to meet the real time system require-
ments. The algorithms as well as the functional partition-
ing of the algorithms into parallel processing subsystems
are discussed.

1. Introduction

The United States Postal Service (USPS) has
invested heavily in automation technology to
help defer the ever increasing challenges of a
competitive business environment [1]. The Uni-
versity of Arkansas is one of many institutions
that have been performing research and devel-
opment for the USPS in the area of Multi Line
Optical Character Recognition (MLOCR) sys-
tems design [2]. An MLOCR system is a ma-
chine used for automatically sorting envelopes
at high speed. The functions required to provide
a sort decision for a single envelope are com-
putationally intensive and include character im-
age extraction, gray scale thresholding, rotation
and scaling of individual characters, and char-
acter identification. This paper describes work
now nearing completion on a multi-year project
to design and develop a small and inexpen-
sive MLOCR machine. This paper discusses
the algorithms implemented, and tradeoffs per-
formed in partitioning the computationally in-
tensive algorithms into multiple asynchronous

subsystems capable of meeting the real time re-
quirements. This critical step defines the neces-
sary level of parallelism in the system, and also
identifies those algorithms that must be imple-
mented in custom hardware to meet real time re-
quirements. The interface specification and data
flow between subsystems are also discussed, de-
tailing the real time bus bandwidth and derived
subsystem timing requirements that result from
algorithm partitioning. The organization of the
software is then discussed, outlining the key is-
sues that must be addressed in development of
software operating under hard time constraints.

MLOCR Requirements

The functions and algorithms implemented in
an MLOCR system are listed in Table 1. Al-
though these functions and algorithms can be
computed sequentially on a single CPU ma-
chine, the MLOCR system must be capable
of performing all processing for each envelope
within a window of 100 milliseconds. In order
to meet this requirement, the algorithms must
be partitioned and executed in parallel. A struc-
tured top down design approach was developed
for partitioning and mapping the algorithms into
individual parallel subsystems. Each subsystem
has been assigned a derived timing requirement
based on the overall system requirement. The
results of mapping algorithms into the various
subsystems and derived timing requirements are
also listed in Table 1.

The following sections present the algorithms
implemented in each subsystem listed in Table
e
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Function Algorithms Subsystem Requirements
Capture and Digitize Image | Capture and Digitize Image Camera Synchronize with transport
Store and Transfer Image Store and Transfer Image Buffer Board | Transfer 25 MBytes/Sec.
Locate Address Blocks 1-D Pixel Decimation VABL 15 msec./Envelope
1-D Image Smoothing
1-D Edge Detection
1-D Edge Smearing
Connected Component Analysis
2-D Filtering
Separate Characters Thresholdiné0 HABL 10 msec./Candidate Address
Connected Component Analysis Block
2-D Box Filtering
2-D Word Filtering
2-D Line Filtering
Scale, Rotate, Threshold 2-D Interpolation SRT 200 usec./Character
2-D Thresholding
2-D Windowing
Identify Characters 2-D Template Matching OCR 200 usec./Character
Control Asynchronous Data | Data Queues and Scheduling Controller 10 Envelopes/Sec.

Table 1. MLOCR Component Requirements

2. Subsystem Definition

Camera

The camera is responsible for capturing the en-
velope image as it is transported along a con-
veyer belt at high speed. The image data is
represented as 8-bit gray scale, and is captured
at a synchronous rate proportional to the speed
of the transport. The operation of the camera
is shown in Figure 1. As an envelope moves
past the lens of the camera, one column of 1024
pixels is captured every clock strobe. The data
is transferred along a synchronous, processor-
memory bus [3], first to the buffer board, and
then to the VABL board.

Envelopes on Conveyer

The synchronous rate of image capture is de-
termined by the speed of the conveyer belt.
One column of pixels is recorded for each clock
strobe. The clock strobe signals are set to a fre-
quency corresponding to the speed of the trav-
eling envelope. If the clock strobes are not set
in proper proportion, then the envelope image
will suffer distortion. If the clock strobe fre-
quency is too fast, then the captured image will
appear stretched in length. If the camera clock
is too slow, then the captured image will appear
as compressed. Either way is not acceptable,
since image distortion can greatly affect char-
acter recognition results. Ideally, each pixel
represents a square area 4.72 mils on a side.
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Fig. 1. Camera Operation
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Fig. 2. Buffer Board Block Diagram
Buffer Board

The camera data is input across a high speed
dedicated synchronous bus into the buffer board.
The buffer board is responsible for storing enve-
lope image data in two interleaved, dual ported
RAM buffers. While data is being received
by the buffer board, it is also preprocessed to
perform camera correction and image enhance-
ment. The improved quality image is then
stored in one of the two buffers in an alternating,
ping- pong fashion. Figure 2 shows the block
diagram of the buffer board memory. Alternat-
ing buffers allows processing to continue on the
previous envelope while the next envelope im-
age is being acquired. The pixel values input
from the camera are stored in the buffer board
as 8-bit gray scale data. The dual ported RAM
buffers must be large enough to store all pixel
data from an envelope. The maximum size is
given by the 1024 pixels read vertically by a

‘ Image Captured
in Buffer Board >

maximum of 3072 columns. This requires 4
MBytes for each of the two ping pong buffers.

While the buffer board is acquiring camera data,
it may also receive a request to transfer image
data to another processing module. The request
may be either for image data on the current enve-
lope being acquired, or for image data from the
previous envelope stored in the alternate buffer.
The buffer board is capable of transferring im-
age data from either buffer while it is receiving,
processing, and storing camera data to one of
its buffers. This is an enhancement over the
original buffer board design that only allowed

. data to be read from the buffer that had finished

storing data for the previous envelope. This
enhancement allows processing to start on an
envelope while the envelope is still being cap-
tured. Figure 3 shows the effects on timing of
this enhancement.

As shown in Figure 3, it takes approximately
80 msecs to read an envelope into the buffer
board. As the speed of the transport only al-
lows 125 msecs between the time the front of
the envelope is passed by the camera and the
time the envelope will arrive at the sort gate,
all processing for an envelope must occur in
this 125 msec window. If the processing cannot
start until all envelope data has been read into
the buffer board, then processing cannot start
until 80 msecs. This leaves only 45 msecs for
all processing. By allowing data to be read out
of the buffer board as the envelope data is still
being input into the buffer board, processing
can be initiated at approximately 15 msecs after
the first data is entered. This start time is non-
deterministic, and is dependent on the physical
location of the address and other printed infor-
mation on the envelope.

< Image Captured
in Buffer Board

| | 1 |

| | 1 ]
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Fig. 3. Timing Enhancement
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Vertical Address Block -Location (VABL)

The second and most critical step in process-
ing an envelope is to identify all Candidate
Address Blocks (CABs). This function is per-
formed in the Vertical Address Block Location
(VABL) subsystem. While receiving input data
for an envelope, the VABL subsystem may out-
put multiple partial results. As soon as one or
more CABs have been located on the envelope,
VABL outputs its findings to the system con-
troller. Outputting partial results from VABL
as quickly as possible is a key issue in meeting
the real time requirements of the system. The
V in VABL refers to the fact that the processing
is done in vertical raster scan order as the cam-
era supplies pixels in vertical raster scan order.
VABL does not make use of the buffer board.

The first partial result is typically output from
VABL approximately 25 msecs after the start-
ing edge of the envelope is detected. The actual
time when a result is output from VABL is ran-
dom, and is dependent on the exact position and
size of the address block on an envelope. How-
ever, envelopes are input to the system with the
stamp edge of the envelope passing the camera
first, and the return address of the envelope pass-
ing the camera last. With this orientation, the
actual destination address block is frequently
located by VABL fairly early in the process.
VABL assigns a rank to every CAB indicating
the probability that the CAB contains the actual
destination address. The VABL weight value is
arough estimate based on the CAB’s dimension,
line structure, and position on the envelope.

Only pixels in the area on the envelope identi-
fied as a candidate address block are required
for subsequent processing. As such, the output
of this function serves as the transition between
the high bandwidth requirements of the cam-
era bus, and a greatly reduced requirement for
processing individual address blocks. The com-
plete envelope image is reduced to just a handful
of CAB images. The capability of the system
to correctly sort an envelope is directly depen-
dent on correct identification of the destination
address block. As such, this first step is critical
in the correct operation of the system. Figure 4
shows the processing flow of VABL.

The first processing VABL performs is to bi-
narize the image “on the fly”. This is done
by identifying the white to black and black to

White <-> Blac

Transjtions

Character
Smearin g

Connected
Components

Form Address
Blocks

Rank Address
Blocks

Fig. 4. VABL Processing Flow

white transitions. A binary image is needed
for the connected component [4] analysis used
to locate candidate address blocks. This step in
performed in dedicated hardware that thresholds
[5] the difference in gray scale levels between
adjacent pixels.

A A is computed for each pixel relative to pix-
els above. Whenever a black pixel is identified,
it is smeared to the right. Each black pixel is
smeared to the right a fixed number of pixels, n,
which is greater than the inter character spac-
ing. This smears letters together, converting an
entire line of text into a single connected black
region. Identification of the transitions and the
smearing can be seen in Figure 5. A pixel at
(x,y) in the smeared image will be black if any
pixel on the line segment between (x—n,y) and
(x,y) is black in the binary image.

VABL determines the boundary boxes of con-
nected black regions in the smeared image.
These boxes will usually each contain one line
of text in an address block. The lines of text are
grouped together with nearby lines into candi-
date address blocks by software. VABL ranks
the CABs based on uniformity of line height,
spacing, justification, and position of the CAB
on the envelope. Thresholding, smearing, and
connected component boxing are all done in
custom hardware in raster scan fashion.
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Fig. 5. Character Smearing

Connected component analysis is done in verti-
cal raster scan order by growing connected com-
ponents one column at a time. The black pixels
in any one column form a set of vertical black
line segments. Each of these line segments, or
intervals, is part of some connected component.
If an interval touches an interval in the column

Initialize connected component list to empty:

to the left, it is part of that intervals connected

component. If one interval touches two or more
intervals in the column to the left, their con-
nected components must be joined into a single
one. The following pseudo code describes the
growing of connected components.

Initialize interval list for column 0 to empty:

for ( n= 1; n <= number of columns; ++n)

{

Determine black intervals in column n;

for ( m =1; m <= number of intervals in column n; ++m)

{

if (interval m touches no intervals in column n--1)

start new connected component;.

else if(intervals m touches one interval in column n--1)

{

label interval m as part of its connected component;
update bounding box of that connected component;

}

else

{ /%% touches two or more intervals %%/

join the connected components for these intervals (if different);

re-label intervals in them;

label interval m as part of resulting component;

update bounding box;

}
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VMEbus

Fig. 6. Two Connected Regions of a Broken Letter

Horizontal Address Block Location
(HABL)

After an address block has been identified, pix-
els within the address block area are processed
to find the individual characters. This is per-
formed in the Horizontal Address Block Loca-
tion (HABL) subsystem. The HABL module
receives CAB images from the buffer board, lo-
cates all characters within the CAB, and groups
them into words. Characters are identified by
locating connected black components in the im-
age. HABL returns the bounding boxes of these
components as letter boxes. It tries to merge
the boxes of broken characters, and tries to
eliminate “flyspecks” and other noise. HABL
then attempts to group the letters into lines and
words.

Connected component analysis is performed in
HABL using the same algorithm described in
VABL, but in a horizontal raster scan order. In-
tervals in a row are compared to intervals in
the two rows immediately above rather than to
just one row above. This patches together some
slightly broken characters. Other broken char-
acters can be patched together by noting that the
boundary boxes of their pieces overlap. This is
shown in Figure 6 for a broken “J”.

HABL requires a better thresholding algorithm
than VABL to avoid broken or merged charac-
ters. Missing pixels are not crucial in VABL
since smearing covers these missing pixels.
HABL’s thresholding algorithm calculates thresh-
olds using the minimum and maximum inten-

sities in each of a fixed grid of small win-
dows. Three different thresholds are used, and
the resulting boxes are combined in software.
Thresholding and connected component boxing
are performed in dedicated hardware. The re-
mainder of the processing is performed in soft-
ware.

HABL re-ranks CABs based on letter box struc-
ture, and assigns its own weight value to indi-
cate the probability of the CAB containing the
destination address. The HABL weight value is
considered to be more accurate than the previ-
ously determined VABL weight.

Scale, Rotate, Threshold (SRT)

Characters can appear in different fonts and
sizes, and may also be of varying contrast lev-
els. The SRT subsystem processes each charac-
ter located by HABL. The first step taken is to
scale and rotate the character image to a stan-
dard dimension of 16 x 24 bytes, with each
byte representing a single pixel in 8 bit gray
scale format. While scaling, the SRT algorithm
canremove up to &7 degrees of skew by rotating
the character. Rotation of the character image is
necessary when the address block is not placed
squarely on the envelope. These two operations
can be combined into a single operation [6] and
performed simultaneously. Each character im-
age can be viewed as a 2D array of pixel points.
The matrix operations for scaling and rotation
can be combined into a single operation given

by:
Sz, 0
0 Sy

o) = o] |
Szcos¢ Spsing }
—Sysing Sycos¢

cos¢ sing }

—sin¢g cosg
= [z ] [

where S; and S, are the x-dimension and y—
dimension scaling factors, respectively. These
equations represent the general form for com-
puting the new points of a scaled and rotated
character. In a real time system, computing
cosf and sinf is very costly. The angle ¢ in our
application is limited to +7 degrees. In order to
meet the real time requirements, sin ¢ and cos ¢
are pre computed for -7 < ¢ < 47 in 1 degree
increments and stored in a lookup table. The
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equations applied to a character are now given
as

#' = xS, cosd — ySysin ¢

y' = zSysin¢ + ySy, cos ¢
When computing the new coordinate values z’,
y', the index values computed for accessing the
pixels from the original character may not fall

evenly on a pixel value. For example, assuming
S5:z=3,8=2,¢=5,

x' = 23 cos5 — y2sinb = 22.988 — 3.1742
y' = x3sin5 + y2cos5 = £.2613 + y1.992

Now, consider transforming the two pixel loca-
tions [0,0] and [2,1]. In matrix notation,

2.988 2613
N[00] = 0[00] [_.17421 s ] = 0[0, 0]
2.988 .2613
N[21]=0[21] [_.17 o1 o } =0[5.8,2.5]

N[00], the new pixel value at 0,0, is the pixel
from the original character at coordinate 0,0,
010, 0]. However, N[21], the new pixel value
at 2,1 is the pixel from the original character at
coordinate 5.8,2.5. In this case the scale/rotate
algorithm performs a linear interpolation using
the fractional values to compute a weighted av-
erage gray scale value for the new pixel.

Finally, the SRT subsystem performs threshold-
ing on the character image. Yet a third thresh-
olding method is needed for SRT, since the sub-
sequent Optical Character Recognition (OCR)
function is even more sensitive to thresholding
errors than HABL. Better thresholding is pos-
sible as the number of pixels to threshold is
smaller. Thresholding reduces a character im-
age of 8-bit gray scale data requiring 384 bytes
of storage, to a binary character image of 16 x 24
bits, requiring only 48 bytes of storage.

Two different thresholding algorithms are per-
formed on each character: window threshold-
ing, and line thresholding. Line thresholding is
implemented independently in both the vertical
and horizontal directions. A majority vote is
performed on the output of the three results to
determine if the pixel should be 0 or 1. Each
of these methods operates on the basic principle
of comparing the gray scale value of a pixel to

a computed neighborhood average. If the pixel
is darker than the average, then the pixel is as-
signed a value of 1. If the pixel is brighter than
the average, then the pixel is assigned a value
of 0. The general operation of the two methods
(horizontal and vertical line thresholding only
differ in the axis used) are discussed below

Window Threshold

A5 x 5 sliding window is used to compute the
average pixel intensity value for the window
thresholding function. The average, I,,4. , for
pixel Py, can be stated as

1 2 2
Icwg. = % Z Z Px+z'y+j

i=—2 j=—

After the average is computed for pixel Py, the
pixel value is compared to the average and set
to 1 or 0 accordingly.

Line Threshold

The line thresholding technique uses a vertical
or horizontal slice of the character. In contrast
to window thresholding which computes a sep-
arate threshold for each pixel, line thresholding
produces the threshold values for a line segment
at a time. This is achieved by thresholding the
line in segments between critical points. A crit-
ical point is a pixel with a local minimum or
maximum value. The threshold used for pixels
between two critical points is the average of the
intensities of the critical points. The approx-
imate algorithm (for horizontal line threshold-
ing) can be stated as:

for row ;
start = Py
for col = 1 to 16 in row ,

if Feolrow is local minima,maxima{

start + P,
threshold = T Feolyrow

for all pixels between start,f%dﬂvw{
if (Pixel < threshold) Pixel = 1
else Pixel = 0

}

start = Pco.!,'rou;

}
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The outputs of all three algorithms are input into
a majority vote circuit that determines the final
1,0 value for each pixel.

The complexity of the combined thresholding
algorithm is O(n), where n is the number of pix-
els representing the character. Although the
algorithm is only O(n), all 384 pixels must be
processed in the 200 usec requirement. This
allows only 520 nsecs of processing per pixel.
The per pixel processing of the window thresh-
old alone requires calculating the average of 25
8 bit pixel values. This average must be com-
puted in under 520 nsecs. Due to the amount
of processing required for each character the
SRT subsystem must be implemented on a cus-
tom designed processor using high speed logic.
The output of the SRT subsystem is a Binary
Character Image (BCI) character.

Optical Character Recognition (OCR)

Finally, the OCR subsystem receives BCI data
output by SRT and performs one of several
template matching algorithms to determine the
character identity. If a unique identification can-
not be obtained, the OCR module will output a
list of possible matches. The system permits
multiple OCR methods to be implemented in
parallel to increase the probability of a unique
identification. This module also processes a
vast amount of data to obtain its results. The
BCI input is compared with about 100 tem-
plates, contained in a data base of over 5,000
templates. Since the OCR module must also
meet a throughput requirement of one charac-
ter every 200 usecs, it also is implemented in
custom designed hardware.

Camera Synchronous Buses

rorIT

System Controller

The system controller is the focal point of the
MLOCR system. All other modules in the sys-
tem are designed to perform a specific function
at high speed. The system controller commands
each of the subsystems to perform their individ-
ual tasks, and then maintains the results. All
asynchronous I/O is communicated with the
system controller through a message passing
protocol [7].

The system controller must operate in real time
to insure that processing is completed for all
envelopes within a specified period. It is the re-
sponsibility of the system controller to provide
the sort decision before the envelope reaches
the sort gate. To perform its requirements in
real time, the controller is interrupted and data
driven to respond immediately to all system
messages. In addition, the controller maintains
watchdog timers on various events to prevent
subsystems from exceeding their allocated time
frames.

The system controller is responsible for coordi-
nating the processing of image data as it prop-
agates through all subsystem components. The
data consists of a combination of synchronous
camera data containing the digitized image, and
asynchronous message data containing the in-
termediate results of processing modules. The
controller must set the conditions for process-
ing modules to continuously receive inputs and
communicate results.

3. System Organization

Each subsystem is implemented on one or mul-
tiple processor modules. As shown in Figure

D
DOO0
IMrrOI-HZOO

Fig. 7. MLORC System Architecture
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Subsystem Hardware Requirements
Camera 1-Custom Board
Buffer Board 1-Custom Board

Vertical Address Block Location (VABL)

2-Custom Boards, 1-Commercial Board

Horizontal Address Block Location (HABL)

3—Custom Boards, 1-Commercial Board

Scale, Rotate, and Threshold (SRT)

2—Custom Boards

Optical Character Recognition (OCR)

2—Custom Boards

System Controller

1-Commercial Board

Table 2. Subsystem Hardware Implementation

7, all subsystems are connected by an industry
standard VME bus [8]. Besides the global VME
bus, some processor modules are also equipped
with a high speed synchronous bus. The com-
mon VME bus is used primarily to communi-
cate control messages across the system. The
VME bus can also be used, however, to transfer
small portions of image data. Using an indus-
try standard bus eliminates the cost of design-
ing multiple data interfaces for each subsystem,
and also promotes an open systems approach
[9]. Image transfers requiring higher bandwidth
are routed through one of the dedicated, syn-
chronous buses. Image data enters the system
over a 16-bit, synchronous bus from the camera
running at 14 MHz. The camera data is stored
on the buffer board. Unbuffered data can be
transferred directly from the camera to HABL
along a 16 bit synchronous 14 MHz bus. Data
stored in the buffer board can be transferred to
HABL along a 32-bit bus running at 10 MHz.
The buffer board is also capable of transferring
data across the global VME bus to anywhere in
the system.

By using the industry standard VME bus, the
system is very flexible with regard to compati-
bility of hardware. Most processor boards in the
system are custom designed to perform a spe-
cialized task at high speed. Each of the subsys-
tems can be substituted, however, with commer-
cial off-the-shelf (COTS) hardware and system
software. The application of COTS proved use-
ful in prototyping and testing the system. How-
ever, the system cannot meet overall through-
put requirement of real-time operation without
most subsystem modules being implemented in
custom hardware.

Most of the subsystems require custom hard-
ware to meet the real time requirements. Some

of the subsystems require multiple processor
boards. In some cases this includes a combi-
nation of custom hardware and commercial off-
the-shelf (COTS) hardware. Algorithms that
could be executed in software and still meet
system timing requirements were implemented
on COTS hardware. The Motorola 147 and 165
boards were used to host software based algo-
rithms. Table 2 provides a breakdown of each
subsystem into its hardware implementation.

The system controller is the only component
that does not require custom hardware. Instead,
the controller is based solely on a commercial,
Motorola 147 board. The 147 board features a
68030 processor, a full VME bus interface, and
access to timer registers and mailboxes. The
functionality of the system controller is imple-
mented entirely in software. While the software
has been written for the Motorola 147 board as
its target, it is also highly portable and can be
adapted to any general purpose VME based pro-
CessOr.

4. System Data Flow and Timing

Data flow through the system is shown in Fig-
ure 8. Subsystem components are represented
by rectangular boxes, and data items are repre-
sented using cigar shaped boxes. Synchronous
camera data is represented by boxes without
shading, while asynchronous data is represented
by shaded boxes. The system controller plays
no direct role in acquiring camera data, or in
providing that data to the buffer board or VABL.
The controller is only responsible for initializ-
ing the buffer board and VABL to enable data
acquisition. All other data transfers in the sys-
tem are driven by messages from the system
controller.
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Fig. 8. System Data Flow

The diagram in Figure 8 shows data flowing di-
rectly between processing modules without any
system controller interaction. This is not the
case in actuality. The diagram is merely rep-
resentative of the data items that flow between
modules, and is not indicative of the communi-
cations route taken. All subsystems communi-
cate results only with the system controller. The
system controller implements these data trans-
fers as standard format and protocol messages.

Routing all data into and out of the controller us-
ing a standard transfer protocol provides several
advantages to the overall system. First, logging
utilities built into the controller provide debug
support throughout the complete MLOCR sys-
tem. In the event of a system failure, a log file
can be output from the controller. This log file
can be analyzed based on time stamp record-
ings to determine when and where a subsystem
failed. The time stamped data can be unrolled to
trace backwards all messages exchanged. The
time stamped messages also provide timing in-
formation for each subsystem, allowing identi-
fication of any system bottlenecks.

Second, routing all data into and out of the con-
troller allowed a set protocol for communica-
tions to be established, independent of the exact
implementation of each subsystem. This proto-
col is discussed in more detail in the following
sections.

Priority Interrupt Design

The interrupt driven design of the system con-
troller provides for continuous data flow be-
tween the asynchronous subsystems. Each sub-
system is continuously kept busy and in full
operation as long as data is available for pro-
cessing. Each time the controller receives out-
put data from a system component, a message is
immediately sent to supply that component with
its next input. If the next component module in
the pipeline is not already active, then it also is
immediately sent work to process. Assuming
every subsystem is tuned so that no bottlenecks
occur, every module sustains continuous opera-
tion.

The interrupt routines perform the sorting of
available data to be sent to the next subsystem.
In this fashion, each subsystem provides more
precise information concerning the determina-
tion of the destination address. The first weight
value provided by the VABL subsystem is com-
puted based on the dimensions, line structure,
and position of the CAB on the envelope. Each
CAB position and corresponding weight value
are sent to the system controller. The system
controller uses the VABL assigned weight to
prioritize work for the HABL. The results of
HABL, and more specifically, the HABL as-
signed weight is used to prioritize work to SRT
and OCR.
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Fig. 9. Data Processing Timeline

The diagram in Figure 9 illustrates the timing
of the MLOCR data. In the time line shown
for a typical envelope stream, it is assumed that
the envelope entering the system at time t=0
is the first envelope and that all processors are
idle. The buffer board starts acquiring the image
at t=0 and VABL starts looking for Candidate
Address Blocks. At approximately 25 msecs,
VABL outputs a message containing all CAB’s
found thus far. The highest priority CAB is then
sent to HABL for processing. When HABL re-
turns, the first character data is available for SRT
to process. When SRT returns at approximately
40 msecs, the first character is available to be
sent to OCR. At this time, all processors are in
full operation.

Each board executes asynchronously and inter-
rupts the controller when output data is avail-
able. If more input data is available when a
processor sends its output to the controller, then
execution can continue on that processor. Oth-
erwise, the board is left in an idle state until
more input data is obtained from the preceding
board’s output.

When image acquisition for the next envelope
begins at approximately 100 milliseconds, the
HABL, SRT, and OCR subsystems may still be
processing information extracted from the pre-
vious envelope. The CAB’s and characters from
the previous envelope continue to be processed
while CAB’s for the next envelope are being
generated. In this way, all MLOCR subsystems
sustain full operation. After the first envelope
has been processed, subsequent envelopes ap-

pearing in rapid succession are effectively over-
lapped to maintain full capacity of the MLOCR
pipeline.

A key design consideration of the MLOCR sys-
tem is the non-deterministic nature of the pro-
cessing involved. Envelopes are non-uniform
in size, and the destination address block is not
constrained to be of a particular size or occupy
a specific set of coordinate values on the en-
velope. This non-determinism requires each
subsystem to operate asynchronously, process-
ing a varying amount of data for each enve-
lope. The VABL subsystem may identify only
two or three CAB’s on one envelope, and may
identify five or six CAB’s on the next enve-
lope. Each CAB contains a variable amount of
information for further processing, including a
varying number of words, characters, and font
sizes. In order to coordinate the processing of
each asynchronous subsystem, the system con-
troller coordinates the transfer of information
between subsystems based on its data driven,
interrupt paradigm. The overall objective of the
controller is to provide the correct sort decision
in the quickest possible time. In order to ex-
pedite processing of the asynchronous data, the
controller maintains prioritized work queues for
each subsystem. Output from one subsystem is
sorted and placed into a pending work queue
for the next subsystem. The work queues are
sorted and updated in data driven interrupt ser-
vice routines.
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5. Communication Protocol

The standard communications protocol uses a
combination of registers and interrupts operat-
ing in a predefined handshake sequence. This
provides for seamless integration of various ap-
plication specific hardware into the system. All
data transfers are defined as full 32-bit long
word transfers, taking advantage of the full
VME bus bandwidth. Also, all system com-
ponents, except the controller, implement the
standard register interface shown in Figure 10.

VME BUS

YMEMODULE Input Reg

Input Fifo o

Interrupt

S, Qutput Reg o —-—
S ———
P T

Output Fifo .
- e
R |

Fig. 10. Subsystem I/O Registers

The system controller sends a message to a com-
ponent by writing the message data into the
module’s 32-bit input FIFO. After the data has
been placed into the FIFO, the controller noti-
fies the module that it has a message to process
by writing a 32-bit op code to the board’s in-
put register. Writing the op code to the input
register generates an internal interrupt on the
board. The module responds to the interrupt by
reading the system message from its input FIFO
and performing the specified operation. Results
are communicated back to the system controller
by a similar message passing scheme using the
board’s output registers. The output message is
written to the board’s 32-bit output FIFO, a 32—
bit op code is written to the output register, and
then a VMEDbus interrupt is raised to inform the
system controller that a message is ready. The
controller completes the cycle by reading the
output message from the interrupting board’s
registers.

6. Software Organization

System controller functions are all software
based. However, the module is required to per-
form low level register access on multiple cus-
tom hardware devices. The controller accom-
plishes this while using general purpose, com-
mercial hardware. The software has been de-
signed using the Object Oriented Paradigm [10]
in C++ to maximize performance and maintain
portability.

An important objective of the system controller
is to keep all boards in the system running at full
capacity. The throughput requirement break-
down for each module, which has been given in
Table 1, was generated by considering an aver-
age envelope and assuming that data is always
available for each module to process. This as-
sumption requires there to be minimum lag time
as messages and data are passed between mod-
ules. The system controller has no explicit re-
quirements listed in Table 1. Instead, the system
controller’s requirement is merely to provide an
environment that ensures system components
meet their individual requirements.

The system controller is built upon a number
of software sub-modules. These sub-modules,
hereafter referred to simply as modules or com-
ponents, provide all services required by the
system controller. The modules are imple-
mented using both C++ classes and C code.
These major components of controller software
are 1) Data Queues; 2) Data Management; 3)
Timer Services; and 4) Interrupt services.

Data Queues

The system controller requires data queues in
many different places and for different reasons.
The requirement for multiple instances of a ba-
sic queue operation was implemented in object
oriented C++ classes. The first place where a
queue structure was needed was in providing a
very fast implementation of dynamic allocation.
Since the nature of most of the MLOCR data
was variable length and variable size, dynamic
allocation of class objects was a convenient tool
for data management. Real time constraints of
the system made it inadvisable to use the lan-
guage provided utilities of “new” and “delete”
for this purpose. Instead, pools of fixed sized
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objects were created and managed using data
pointers and queues.

The controller also instantiates queues to store
input data for all system components. As output
data is received from one processor in the sys-
tem, input data is acquired for the next. These
input data are maintained in data queues. When
a board is ready for its next input, the data can
be simply retrieved from the specific queue for
the processor.

Data Management

The foundation of the Data Management mod-
ule is the Data Management container class.
The Data Management class is actually an empty
class: it contains no member functions or data.
The only purpose of the container class is to
create a common pointer for accessing data of
various other class types. There are four data
classes that inherit from the Data Management
container class: these classes are 1) the Enve-
lope class; 2) the Cab class; 3) the Word class;
‘and 4) the Character class. Since each of the
four data classes inherits the Data Management
class, each can be referenced by a common class
pointer type.

The Data Management module makes use of
this inheritance relationship to maintain a tree
structure of MLOCR data as shown in Figure
11. The Data Management pointer is also use-
ful in preserving the current data for processing
modules. Each time a processor board is sent
input data, the current location in the envelope

\

tree structure is saved with a set of Data Man-
agement pointers.

The tree structure reflects a basic truth about
the nature of envelope data. Each envelope can
be expected to have one or more blocks of text
that will be searched for the destination address.
Each of the candidate address blocks can be ex-
pected to contain multiple character box lists,
which are roughly equivalent to words. Finally,
each word can have one or more characters.
Therefore, the system controller requires ex-
actly one envelope class data structure, and all
its sub-trees, to process an envelope through the
MLOCR pipeline.

Timer Services

The MLOCR system controller is real-time soft-
ware responsible for insuring that the processing
for each envelope is completed by the time the
envelope reaches the sort gate. Also, the con-
troller provides watchdog timers for the VABL
and HABL subsystems to insure that these sub-
systems do not exceed their execution time al-
lotment.

The Controller obtains timer services from the
two timer registers on the Motorola 147 board.
The first register is used to support a system
clock with 0.0002 second resolution. The timer
register is configured to send a Clock class ob-
ject an interrupt every 200 microseconds. The
clock is used to record the starting times of data
items as they are sent to processor modules.
The clock is also used in conjunction with the

#= Envelope Class
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CAB Class CAB Class
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—

Word Class
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Character Class
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Fig. 11. Data Management Tree
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second timer register to provide event timer ser-
vices. A queue maintains a sorted list of event
timers. The timer register is always set to inter-
rupt for the first event in the queue. Each time
an elapsed timer expires, notification is made
and the elapsed timer register is reset to the next
event in the queue.

| Interrupt Handlers

Along with timer register interrupts, the sys-
tem controller also receives VMEbus interrupts
from each of the MLOCR components. The
nature of these interrupts is message passing.
Each time the controller receives one of these
interrupts, message data is transferred across the
VMEDbus. The flow chart used for the message
interrupt handler is depicted in Figure 12. Each
time the controller receives a message interrupt,
it first disables any other interrupt that would

General Interrupt Service Routine for Device (i)

Disable Selec
Interrupts

Data from
Device (i)

Get Output ’

Is
Device (i+l)
Idle?

Data to
Device (i+l)

Send Input ’

More
Input Data for
Device (i)2

No

Input Data
to Device (i)

Enable Select
Interrupts

Fig. 12. Interrupt Service Routines

Send Next I

try to also access the same data as the current
interrupt handler. Then, the controller retrieves
the current state of the interrupting processor
and copies the message data across the VME
bus. If the next subsystem is currently idle, it
is immediately sent input data. If there is more
data available in the input queue for the current
processor, it is also sent another data entry. Fi-
nally, any disabled interrupts are restored and
the interrupt service routine is terminated.

Conclusion

The multiprocessor architecture, algorithms, and
controller software presented have been fully
implemented in a prototype system. Custom
hardware components for the VABL, HABL,
and the OCR subsystems have been designed,
debugged, and integrated into the system along
with general purpose, commercial off-the-shelf
hardware. The prototype system used the same
VME bus architecture and communications pro-
tocol as specified for the real time system. This
has facilitated the integration of custom hard-
ware modules, and served as a proof of concept
verification of the MLOCR system.
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