Journal of Computing and Information Technology - CIT 2, 1994, 2, 113-121

An Approach to

113

Register Number Determination
Based on Simulation of Register
Allocation via Graph Colouring

Bojana Dalbelo BaSi¢

Faculty of Forestry, University of Zagreb, Zagreb, Croatia

An important task in most optimising compilers is register
allocation i.e. deciding which program variables will use
physical registers of processors. Register allocation may
be formulated as a graph colouring problem. The nodes in
the interference graph represent variables, and two nodes
are connected by an edge if variables they represent are
simultaneously live. The allocation process is successful
if the graph can be coloured so that adjacent nodes are
assigned different colours. The number of colours is de-
termined by the number of available registers. Based on
simulation of the register allocation procedure via graph
colouring this paper discusses the necessary number of
registers for storing variables within a single procedure.

Introduction

Deciding which program variables and compiler
produced temporaries will be stored in a limited
number of physical registers of the processor is
one of the most important optimisation tasks of
compilers. Efficient register allocation results
in faster program execution because:

* the instructions involving register operands
are faster and shorter;

x traffic between memory and processor is re-
duced if operands of an instruction are kept
in a register (a previous instructions had ei-
ther defined them or used them).

The register allocation problem may be inter-
preted as the problem of mapping of unlimited
number of variables onto a limited, fixed num-
ber of physical registers of a processor under
certain conditions. One of the elegant ways of

solving this problem is to formulate it as a graph
colouring problem.

The graph colouring method has become one of
the prevailing techniques in solving the global
register allocation problem since its first appli-
cation in 1981 (Chaitin et al., 1981) although
other methods are being applied in practice as
well, e.g. the oldest technique is register alloca-
tion via usage counts, and another, more recent
one, is the integer linear programming (Luque
et al., 1992). The reasons for the prevailing of
graph colouring are: simplicity of the method,
efficiency of programs on which the register al-
location via graph colouring has been applied,
and the possibility to honour the characteristics
of the processor to which the allocation pro-
cedure is adapted. Examples of application of
the graph colouring method to solve the regis-
ter allocation problem for different compilers
and different architecture are numerous, some
of them being shown in works: (Chaitin, 1982),
(Chow and Hennessy, 1984), (Larus and Hilfin-
ger, 1986), (Briggs et al., 1989), (Callahan and
Koblenz, 1991).

This paper discusses the number of physical
registers in a processor based on the simula-
tion of the register allocation procedure using
graph colouring. The first part of the paper
explains the concept of interference. The regis-
ter allocation procedure using graph colouring
method based on Chaitin’s heuristic (Chaitin
et al., 1981) is described next. Application is

114

Bojana Dalbelo Basi¢: Register Number Determination Based on Simulation of Register Allocation

shown on a simple exemplar program for Fi-
bonacci numbers. Differences in applying the
graph colouring method in compilers to RISC
and CISC processor architectures are explained.

The main part of the paper describes the sim-
ulations of register allocation using Chaitin’s
heuristic for graph colouring. The initial goal
in the simulations was to allocate the largest
possible number of variables to registers. Sim-
ulation parameters were determined from the
results given in (Briggs et al., 1989) and (Bern-
stein et al., 1989) and the heuristic used was first
described in (Chaitin et al., 1981). The upper
limit of the number of registers is discussed.

1.- Concept of interference

Compiler front-end produces an intermediate
code, i.e. a low-level language defined for an
abstract computer (thus machine independent)
which is easily transformed into the machine
or assembly code. The intermediate code is
very convenient for transformations and there-
fore it is the interproduct of optimising com-
pilers. The primary difference between the in-
termediate code and the assembly code is that
the intermediate code does not specify the regis-
ters. The intermediate code preferred by many
compilers is the three-address code (Aho et
al., 1986). Three-address instruction has the
form: ,where , can be constants,
names of variables defined by the programmer,
or names of compiler generated temporaries,
and being an arithmetical or logical opera-
tion. As register allocation procedure is per-
formed on an intermediate code, intermediate

code names are candidates for residing in regis-
ters and they are often called symbolic registers,
names, temporaries, or variables. In this paper
we shall be using the term variable.

The instruction defines and uses
, (Aho et al,, 1986). A sequence of con-
secutive instructions of the three-address code
entered only at its beginning and whose control
flow is sequential, without halt or possibility
of branching, (except at the end of such a se-
quence), represents a basic block (Aho et al.,
1986). A directed graph with nodes represent-
ing basic blocks and with directed edges repre-
senting control flow between blocks, makes a
flow graph.
A simple code generator takes a sequence of
three-address instructions which form a basic
block and generates the target code assuming
that all register values must be stored in mem-
ory when moving across basic blocks bound-
aries. Register allocation inside the basic block
or a smaller sequential part of the code is lo-
cal register allocation (Aho et al., 1986) and it
can be solved efficiently but we are then forced
to store register values at the end of each basic
block. Global register allocation helps reduce
the number of LOAD and STORE instructions
by defining which variables will stay in the reg-
ister across block boundaries, so registers are
actually allocated for the entire procedure.

The fundamental terms related to register allo-
cation are variable life and interference of vari-
ables. A variable is [ive at a given point in a
program if it is previously defined and if there
is a path in the flow graph from this point to
a certain usage of this variable, otherwise vari-
able is dead (Aho et al., 1986). If two variables

x is live y is live

xi=3 definition of x
PI ->
y:=x+1 use of x
P >
c:=x-d use of x
Py >
Xy definition of x
a,‘:y*z

Fig. 1. Example of variable life and interference. Variable

x and y interfere

is live at points ; and 5, dead in the point ;

Bojana Dalbelo Basi¢: Register Number Determination Based on Simulation of Register Allocation

115

are simultaneously /ive (in data flow sense) they
interfere. An example of life of variables x and
y and their interference is given in Fig. 1.

The main constraint in a register allocation pro-
cedure is that the variables which interfere can-
not be allocated to the same physical register.
In the register allocation procedure using graph
colouring, the variables which interfere will rep-
resent nodes in the graph connected with an
edge.

A more restrictive definition of interference is
given in the reference (Chaitin et al., 1981): two
variables interfere if one of them is live at the
moment of definition of the other and if both of
them do not have the same value. This definition
enables a simpler and cheaper (in the terms of
space and time) procedure for the construction
of the interference graph. Live variable anal-
ysis is performed in the compiler optimisation
phase called data flow analysis. By applying
various data flow algorithms, compiler gathers
information about program in whole and then
used them in optimisation actions, code genera-
tion and register allocation. A flow graph is the
basic structure for global data-flow algorithms.
(Aho et al., 1986).

We assume that global register allocation has
been carried out after a flow graph had been
constructed and live variable analysis accom-
plished by marking all live variables entering or
leaving each basic block.

2. Formulation of the Allocation Problem
as a Graph Colouring Problem

The colouring of the graph G = (V, E) is the
function p from a set of nodes V to a set of
colours {1,2,...,k}, so that each node is as-
signed one of k colours. Colouring is regular if
adjacent nodes v;, v; € V, {v;,v;} € E, where
E is set of edges, have been assigned different
colours, i.e. p(v;) # p(v;). If such a function
exists it is said that the graph G is k-colourable.

From this point in the paper, graph colouring
will be understood as regular colouring.

The register allocation problem can be formu-
lated as a graph colouring problem in the fol-
lowing way:

The interference graph is constructed when vari-
ables in the program are represented as graph
nodes, with an edge existing between two nodes
representing interfering variables. The number
of colours equals the number of available regis-
ters. If the graph can be coloured by & colours, it
implies that we have assigned different colours
to adjacent nodes, i.e., we have allocated vari-
ables which interfere to k physical registers.

Since the problem of k-colourability of graphs
is NP-complete (Garey and Johnson, 1979), a
heuristic method is introduced to yield satisfac-
tory results in polynomial time.

The introduced heuristic (Chaitin, 1981) is the
following: If there is a node v in the graph the
degree ow which is strictly less than &, then: G
is k-colourable when and only when |G \ v] is
k-colourable.

Based on this simple heuristic, an unlimited
number of variables from the intermediate code
is tried to be mapped onto a limited number of
physical registers.

The register allocation process comprises four
steps: construction of the interference graph,
graph simplification, spill code insertion, and
graph colouring (Fig. 2).

The construction of the interference graph is the
phase of stepped pass over intermediate code in-
structions, and at each definition of a variable
a new node to the interference graph is added.
Edges which are added to the graph connect the
newly introduced node with all currently live
variables at the moment of new node’s defini-
tion. During the graph construction phase the
compiler uses results of live variable analysis
earliery performed as part of the global data
flow analysis (Aho et al., 1986).

v

GRAPH CONSTRUCTION P GRAPH SIMPLIFICATION |——» SPILL CODE INSERTION

GRAPH COLOURING

Fig. 2. Phases in register allocation via graph colouring

116

Bojana Dalbelo Basi¢: Register Number Determination Based on Simulation of Register Allocation

During the simplification phase, nodes of a de-
gree less than k are consecutively removed from
the graph (until such nodes remain in the graph)
and are put on the stack for colouring. This
process is blocked if only nodes of a degree
higher or equal to k remain in the graph. At this
point, a node (variable) is selected for which
an additional LOAD and STORE instructions
will be inserted (LOAD at each use and STORE
at each definition of this variable). Such addi-
tional code is called spill code. The selected
variable is also removed from the interference
graph and the simplification procedure contin-
ues until an empty graph is obtained. After the
simplification phase, graph nodes are either on
the stack for colouring or are marked for spill
code insertion (if there are any).

If after simplification there are no nodes for
spill code insertion, this means that k-colouring
of the graph is achieved. Nodes are taken from
the stack and are assigned a colour which was
not already assigned to the adjacent nodes. The
way the nodes were eliminated from the graph
ensures that each time we take a node from the
top of the stack there will be at least one colour
not assigned to the adjacent nodes. Namely, if
we are able to colour graph G with k colours,
then graph G in which we introduce a node v
(with a degree less then k) is also k-colourable.

If there are nodes selected for spilling after the
simplification phase, it means that the graph
construction procedure will be repeated and
then the simplification as well. Namely, the life
of variables selected for spilling will be split into
several short segments. Therefore, instead of a
node with numerous edges, we shall introduce
into the graph several nodes with a smaller num-
ber of edges. Considering the applied heuristic,
such a graph will be more suitable for simplifi-
cation in the next iteration.

Example

The following Pascal module finds the n-th ele-
ment in the Fibonacci sequence (1, 1,2, 3, 5, 8,
13, 21...) in which every element is defined as
the sum of the preceeding two (except the first
two).

function FIBON (N:integer): integer;
var
FN, FN1, FN2, I : integer

begin
if N =1 then
FIBON:=1
else if N = 2 then
FIBON :=1
else if N > 2 then
begin
FN1 :=1;
FN2 :=1;
Li=3
repeat
FN := FN1 + FN2;
FN2 := FN1;
FN1 :=FN;
I:=1+1;
until I > N;
FIBON := FN;
end;
end;

In accordance with the definition of the life of
variables and the interference of variables, the
interference graph for the Fibonacci numbers
program is shown on Fig. 3.

FIBON

FN1

FN2

Fig. 3. Graph with chromatic number 5

Obviously, this graph cannot be coloured with
4 colours (it contains a complete subgraph of 5
nodes, so the chromatic number of the graph is
5). Applying the heuristic (Chaitin et al., 1981)
for register allocation via graph colouring, an at-
tempt of simplification would have had placed
a node FIBON on the stack for colouring, and
then found that there were no nodes of a degree
less than 4, and therefore would select a node
— for instance, FN2 — for spilling.

In the second iteration, in the interference graph
constructed based on the intermediate code with
a spill code for node FN2, the number of in-
terferences was not decreased. Interferences

Bojana Dalbelo Basi¢: Register Number Determination Based on Simulation of Register Allocation

117

of node FN2 are determined with currently live
variables at the moment of its definition (LOAD
instruction), and these are still nodes N, I, FN1,
and FN, therefore one more node for spilling,
for instance N, should be selected in the second
iteration.

Fig. 4 shows the interference graph in the third
iteration. There are no more interferences be-
tween FN2 and N, since neither of them is live
at the moment of definition of the other, so these
variables may use the same physical register.

FIBON

FN1

FN2

Fig. 4. Graph with chromatic number 4

Simplification of such graph (i.e. successive re-
moval of nodes of a degree less than 4) will
place all nodes on the stack for colouring. One
of the possible sequences of graph simplifica-
tion gives the following state on the stack for
colouring:

top of the stack =—=> | I — R4
FN — R3
FN1 — R2
N — Rl
FN2 — Rl
FIBON | — RI1

Thus, 4-colouring of the interference graph is
determined, i.e. all variables from the interme-
diate code, with inserted spill code for FN2 and
N, are allocated to 4 registers. Finally, the se-
ries of three-address instructions for the critical
part of the Fibonacci numbers program, with
inserted information on the need to reference
FN2 and N from the memory, is as follows:

R2:=1
STORE 1, FN2
R4:=3

loop:

LOAD R1, FN2
R3:=R2+R1
STORE R2, FN2
R2:=R3
R4:=R4 +1
LOADRI1, N
if R4 > R1 goto end
goto loop

end: ...

3. Differences in Graph Colouring
Method Application to RISC and CISC
Processor Architectures

The main difference between the application of
the graph colouring method in register alloca-
tion to compilers for RISC and CISC processor
architectures is that for RISC each operand has
to be brought to a register before the execution
of an operation. It means that the register allo-
cation procedure (Chaitin at al., 1981) is either
iterative and only terminates when all operands
are in the registers (which is achieved at times
by inserting a spill code) or it does not have
to be iterative, but then two registers have to
be reserved for those values for which a free
physical register could not be found (Larus and
Hilfinger, 1986). CISC architecture compilers
can solve the register allocation problem in this
way too, but this is neither essential nor opti-
mal, because of the possibility of using instruc-
tions referencing the memory operand. While
spilling for RISC means inserting LOAD and
STORE instructions as described in (Chaitin et
al., 1981) and in this paper, spilling for CISC
could be implemented using instructions refer-
encing a memory operand. The application of
the graph colouring method for CISC type pro-
cessors is given in (Chow and Hennessy, 1984).
In Chow’s priority based procedure each vari-
able is initially placed in the memory and is
assigned a priority — an estimated additional
cost if a variable resides in the memory rather
than in a register. Variables with more than n
neighbours are assigned to registers in decreas-
ing order of priority.

It should be pointed out that procedure calls are
points in the program at which register pressure
is the highest, especially for CISC architecture
compilers. For RISC architecture compilers a
separate set of registers may be dedicated for the

118

Bojana Dalbelo Basic¢: Register Number Determination Based on Simulation of Register Allocation

passing of parameters at procedure calls either
by hardware (e.g. register windows) or software
conventions.

4. Description of Simulations

Simulations were carried out with the aim to
test the upper bound of the number of physi-
cal registers with the intention of placing, using
Chaitin’s heuristic, as many variables as possi-
ble in registers without spilling.

The efficiency of the allocation was tested by
changing the number of available colours (i.e.
number of registers), but other parameters as
well, such as: number of nodes in the graph (IV),
degree of nodes in the graph and graph density,
i.e. number of edges divided by (N — 1) x N/2.

Adjacency matrices of interference graphs were
generated randomly, the order of these matrices
ranging between 10 and 200. As the graph
colouring method determines the global reg-
ister allocation within a single procedure, the

100 -

selected range agrees with the number of live
variables in a predominant majority of medium
and smaller procedures (Briggs et al., 1989).

The first test aimes to compare the efficiency of
allocation of variables to 8, 16 and 32 registers
for the same randomly generated adjacency ma-
trix of the interference graph. The percentage of
variable allocation to registers is observed when
the order of the matrix grows.

Since the adjacency matrices of the interference
graph are sparse, the probability of interference
between any two variables (i.e. nodes) equalling
0.3 was chosen. The matrix order N was in-
creased from 10 to 200, with an increment of
10. Adjacency matrices of interference graphs
are attempted to be coloured with 8, 16, and
32 colours (representing number of registers).
The average percentage of variable register al-
location, using Chaitin’s heuristic, for sets of
four randomly generated adjacency matrices is
shown on Fig. 5.

Register allocation in %

0 T T | — T I T

T T T i T T T T T T

0 10 20 30 40 S0 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of nodes

-o- 8 registers -=-16 registers »«-32 registers

Fig. 5. Results of variable allocation in 8, 16 and 32 registers for graph with 30% density.

Bojana Dalbelo Basi¢: Register Number Determination Based on Simulation of Register Allocation

119

The results show that the percentage of alloca-
tion to registers for randomly generated graphs
with the same probability of interference be-
tween nodes is inversely proportional to the or-
der of the adjacency matrix of the interference
graph, the results being better the larger is the
number of available registers.

It could be stated that the results of variable al-
location to registers are relatively poor, and that
this is expected and could be explained if the
graph node degree is defined as a random vari-
able of binomial distribution with parameters
B(N —1,0.3). The expectation of the node de-
gree is equal for all nodes, which means that all
degree values will be about 0.3(N — 1), since
the probability of interference between any two
nodes is exactly 0.3.

As Chaitin’s algorithm effectively allocates vari-
ables to registers only if there are nodes of a
degree strictly less than the given number of
colours, in the majority of cases the algorithm
will be blocked very early. This implies that
some elimination from the graph of nodes cho-
sen for spilling will be performed as to reach
the node which meets the criterion for register
allocation.

If we consider a graph of equal density, but with
significant variety in nodes degrees within the
graph (just contrary to the test, where the expec-
tation of the degrees was equal for all nodes),
then it might be possible to immediately deter-
mine the nodes which meet the condition for
register allocation and, by their elimination, the
degrees of the remaining nodes would dynami-
cally decrease, so that there is the possibility of
consecutive elimination from the graph of nodes
which meet the condition for register allocation.

We would like to point out here the high depen-
dence of the efficiency of the algorithm upon
the manner the edges within the graph are dis-
tributed for the same N and same graph density.
A graph formed in a way that the expectations
of the degrees are equal within the graph seems
to be the most unsuitable for Chaitin’s heuristic
algorithm.

The definition of parameters for adjacency ma-
trices which form the input for the algorithm
in the next test is based on the quotation from
(Berstein et al., 1989):

“Although theoretically any arbitrary graph
can arise in this manner, in practice, the in-

terference graphs that are obtained from actual
programs are quite sparse. A good (experimen-
tally sound) estimate is that the number of edges
will be approximately 20 times the number n of
vertices.”

In this test, the probability of interference be-
tween two variables is not the same for any
graph size as it was in the previous test. Since
the number of edges in this test is 20 times the
number of nodes, the following is valid for the
density:

donsity — _ 20FN 40
Y ENs(-1) N-1
)

Thus, the probability of interference between
two variables in this test is set to 40/(N — 1),
which means that the probability of an edge
existing between two nodes will be inversely
proportional to the number of nodes in the in-
terference graph.

Forrandom generated matrices (/N ranging from
50 to 200), with the probability of interference
between two variables equaling 40/(N — 1), Ta-
ble 1 shows the results of variable allocation to
registers (in percentages) for a selected number
of 16 and 32 registers. Clearly, all deviations of
40%, or 80%, in these tables are random.

The obtained results are explained if we assume
that the rows (or columns) in the adjacency ma-
trix are Bernoulli’s trials in which the occur-
rence of one for each graph is given depending
on N (precisely 40/(N — 1)) and is constant
within the matrix. In other words, the expected
number of the degree of nodes is constant re-
gardless to the size of the graph, and equals 40.
The nodes in a large graph (N = 200) as well
as in a small one (N = 50) will in average have
the same degree which equals 40.

If we choose 64 registers, we shall clearly be
able to assign for allocation to registers all
nodes, regardless to the size of the graph. If we
select a 500 node graph, the graph’s density is
8% and the probability of a node occurring with
a degree higher than 64 is practically zero. This
means that if we choose 64 registers we shall
be able to place into registers all variables. The
boundary number of registers above which we
shall be able to assign practically all variables

120

Bojana Dalbelo Basi¢: Register Number Determination Based on Simulation of Register Allocation

Table 1. Results of allocation in 16 and 32 registers

Number of Density= % in 16 % in 32
nodes N 40/(N —1) | registers | registers
200 0.20 41.5 82.0
190 0.21 384 78.4
180 0.22 411 80.6
170 0.24 37.1 79.4
160 0.25 38.8 82.5
150 0.27 413 80.6
140 0.29 40.0 76.4
130 0.31 36.9 81.5
120 0.34 41.6 81.6
110 0.37 40.0 80.9
100 0.40 37.0 80.0
90 0.45 38.9 78.9
80 0.51 39.8 78.7
70 0.58 357 81.4
60 0.68 35.0 80.0
50 0.82 40.0 78.0

from the program using algorithm (Chaitin et
al., 1981) for graph colouring is found to be 40.

This conclusion is drawn from the results of
simulations carried out on randomly generated
graphs with the equal probability of interfer-
ence between any two nodes, i.e. with a homo-
geneous structure, which certainly cannot be
expected to be the case with graphs obtained
from actual programs. In reference (Bernstein
et al., 1989) it is stated that graphs that are ob-
tained from actual programs do not seem to be
structurally similar to random sparse graphs.
This observation has lead to the idea to test
whether, for graphs with a higher nonhomo-
geneity of degrees of nodes (structurally more
alike graphs from actual programs), Chaitin’s
heuristic would yield better results of register
allocation than in the previous test.

For the comparison of results, graph densi-
ties equal those in the previous test, namely
40/(N — 1), but the probability of interfer-
ence between nodes is not the same within the
graph. Generated graphs had 10% of pairs of
nodes with a higher probability of interference
than 40/(N — 1) and 10% of pair of nodes
with a lower probability of interference than
40/(N —1). These two probabilities were cho-
sen so that the graph density for the given N
remained the same as in the previous test. Thus,
graphs were generated consisting of nodes with
significantly lower or significantly higher de-
grees then 40.

Table 2. presents results of register allocation
simulation for variables from such interference
graphs. As expected, these results are better
than the results of the previous test.

Table 2. Percentages of variables allocated to registers
for graphs of 40/(N — 1) density and introduced nonho-
mogeneity in graph structure,

Number of | Density= | %in8 | %in16 | % in 32
nodes N | 40/(IN — 1) | registers | registers | registers
60 0.68 26.2 57.5 95.0
80 0.51 27.0 56.9 99.4
120 0.34 314 63.4 100
150 0.27 341 67.5 100
170 0.24 31.7 59.4 100

Results show that changing the graph structure
has resulted in significant increase in the per-
centage of assignment to registers, e.g. for
32 registers an average of 98.9% of variables
(from graphs generated as described) could be
assigned to registers without spilling. Hold-
ing equal graph density as in previous test, i.e.
40/(N — 1), but introducing nonhomogeneity
implies that some nodes have lower degree than
40 and some higher than 40. This enables the
consecutive elimination nodes with the degree
less then a number of registers (32) and by re-
moving them dynamically decreasing degree of
other nodes, thus making available for colour-
ing nodes which initially had a degree higher
than 32.

An even higher nonhomogeneity in the graph
structure and, thus, even better results than in
the above simulations, could be intuitively ex-
pected for interference graphs generated from
actual programs.

5. Conclusion

Based on the evaluation of the density of the in-
terference graphs created from actual programs
given in (Bernstein et al., 1989), it can be con-
cluded that the upper bound for the number of
registers for which we shall be able to assign
almost all variables to registers without spilling
using heuristics for graph colouring, is 40. It
should be stressed that this conclusion refers
to the randomly generated graphs with 40/(N-
1) density, for any number of nodes N and with

Bojana Dalbelo Basi¢: Register Number Determination Based on Simulation of Register Allocation

121

the same expectations of node degrees equalling
40. Choosing the same graph density but intro-
ducing nonhomogeneity in graph structure (in-
tuitively expected for interference graphs gen-
erated from actual programs) this upper bound
of the number of registers is reduced to 32.

An example of different approach for regis-
ter number determination, based on empirical
evaluation of particular Instruction Set Proces-
sor (namely DECsystem10) is given in (Lunde,
1977). It is stated that there are no test programs
(six CALGO algorithms coded in four different
languages) using more then 15 registers simul-
taneously.

Taking into account that simulations described
in this paper were designed to be completely
machine independent and with the aim to place
as many variables as possible into registers with-
out spilling, it could be expected that the optimal
number of registers for global allocation would
be less than 32.

Acknowledgements

I express my gratitude to Prof. Slobodan Riba-
ri¢, ScD, for his assistance in the development
of the simulations and preparation of this work.

References

AHO, A.V., SETHI, R., ULLMAN, 1.D. (1986), Compil-
ers, Principles, Techniques and Tools, Addison-
Wesley, Reading, Mass.

BERNSTEIN, D., GOLDIN, D., GOLUMBIC, C., KRAWCZYK,
H., MANSOUR, Y., NASHON, L., PINTER, Y.R. (1989),
Spill Code Minimization Techniques for Optimiz-
ing Compilers, Proceedings of the ACM SIGPLAN
’89 Conference on Programming Language Design
and Implementation, June 1989, pp. 258-263.

BRIGGS, P., COOPER, D.K., KENNEDY, K., TORCZON, L.
(1989), Coloring Heuristics for Register Alloca-
tion, Proceedings of the ACM SIGPLAN 89 Con-
ference on Programming Language Design and
Implementation, June 1989, pp. 275-284.

CALLAHAN, D. AND KOBLENZ, B. (1991), Register Al-
location via Hierarchical Graph Coloring, Proceed-
ings of the ACM SIGPLAN *91 Conference on Pro-
gramming Language Design and Implementation,
26-28 June 1991, pp.192-203.

CHAITIN, G.J., AUSLANDER, M.A., CHANDRA, A.K., COCKE,

J., HOPKINS, M.E., MARKSTEIN, P.W. (1981), Reg-
ister Allocation via Coloring, Computer Languages,
Vol. 6, No. 1, pp. 47-57.

CHAITIN, G. J. (1982), Register Allocation & Spilling
via Graph Coloring, Proceedings of the SIGPLAN

'82 Symposium on Compiler Construction, June
1982, pp. 98-105.

CHOW, F. AND HENNESSY, J. (1984), Register Allocation
- by Priority Based Coloring, Proceedings of the
SIGPLAN °84 Symposium on Compiler Construc-
tion, SIGPLAN Notices, Vol. 19, No. 6, June 1984,

pp- 222-232.

GAREY, M.R. AND JOHNSON, D. S. (1979), Computers
and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco.

LARUS, J. AND HILFINGER, P. (1986), Register Allocation
in the SPUR Lisp Compiler, Proceedings of the
SIGPLAN '86 Symposium on Compiler Construc-
tion, SIGPLAN Notices, Vol. 21, No. 7, June 1986,
pp- 255-263.

LUNDE, A. (1977) Empirical evaluation of some features
of Instruction Set Processor Architectures, Com-
munications of the ACM, Vol.20, No.3, pp. 143-
153,

LUQUE, E., RIPOLL, A., DIEZ T. (1992), Heuristic Algo-
rithms for Register Allocation, IEE Proceedings-E,
Vol. 139, No. 1, January 1992, pp. 73-80.

Received: December, 1993
Accepted: January, 1994

Contact address:

Bojana Dalbelo Basic,

Faculty of Forestry,

University of Zagreb,

SvetoSimunska 25, Zagreb

Tel. +385-41-218-288

Fax: 4385-41-218-616

E-mail: bojana.dalbelo@x400.srce.hr
Croatia

Bojana Dalbelo Basi¢ graduated in mathematics in 1982 at the Faculty
of Natural Sciences and Mathematics, University of Zagreb. In 1993
she received her MSc degree in computer sciences from the Faculty of
Electrical Engineering, University of Zagreb. She is currently assistant
lecturer at the Faculty of Forestry, University of Zagreb.

